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Recursive Weighted Median Filters Admitting
Negative Weights and Their Optimization

Gonzalo R. ArceFellow, IEEE,and José L. Paredes

Abstract—A recursive weighted media(RWM) filter structure  are, in essence, restricted to “lowpass” type filtering characteris-
admitting negative weights is introduced. Much like the sample me- tics. In a large number of engineering applications where “band-

dian is analogous to the sample mean, the proposed class of RWM pass” or “highpass” type filtering characteristics are required
filters is analogous to the class of infinite impulse response (lIR) . ; . ’
linear filters. RWM filters provide advantages over linear IIR fil- weighted median smoo_thgrs_are madequatg. .

ters, offering near perfect “stopband” characteristics and robust- 10 overcome these limitations, a generalized weighted me-

ness against noise. Unlike linear IIR filters, RWM filters are al-  dian filtering structure admitting positive and negative weights
ways stable under the bounded-input bounded-output criterion, has been recently introduced [4]. The generalization follows
regardless of the values taken by the feedback filter weights. RWM naturally, is surprisingly simple, and leads to a significantly

filters also offer a number of advantages over their nonrecursive . h | f weighted dian filt In fact h like th
counterparts, including a significant reduction in computational fICher ciass or weighied median TIters. in1act, much iike e

complexity, increased robustness to noise, and the ability to model Sample median can be thought of as being analogous to the
“resonant” or vibratory behavior. A novel “recursive decoupling” sample mean, the generalized WM filter structure is analogous
adaptive optimization algorithm for the design of this class of re- 1o linear FIR filters. Weighted median filters, admitting nega-
cursive WM filters is also introduced. Several properties of RWM /e weights, have been shown to be capable of effectively ad-
fllters are presented, and a number.of S|mulat|on§ are |ncludeq to d - b ffund tal bl L | .
illustrate the advantages of RWM filters over their nonrecursive 9'€SSing anumber ofiundamentalproblems in signal processing
counterparts and IIR linear filters. that could not adequately be addressed by prior weighted me-
dian smoother structures [4].

Having the framework for weighted median filters, it is nat-
ural to extend it to other more general signal processing struc-
tures. This paper focuses on precisely this goal. In particular, we

. INTRODUCTION introduce a class of recursive weighted median filters, admit-
EIGHTED median (WM) smoothe¥have received con- ting real-valued weights. These filters are analogous to the class
siderable attention in signal processing research over thieinfinite impulse response (lIR) linear filters. Recursive filter
last two decades [1]-[3]. It is often stated that there are masiructures are particularly important because they can be used
analogies between weighted median smoothers and linear FdRnodel “resonances” that appear in many natural phenomena
filters. Recently, however, it was shown that WM smoothers aseich as in speech. In fact, in the linear filtering framework,
highly constrained, having significantly less powerful charactes- large number of systems can be better characterized/mod-
istics than linear FIR filters. In fact, WM smoothers are equiweled by a pole-zero transfer function than by a transfer func-
alent to normalized weighted mean filters admitting only posiion containing only zeros. In addition, IIR linear filters often
tive weights—a severely constrained subset of linear FIR filtelead to reduced computational complexity reduction. Much like
Admitting only positive weights, weighted median smoothed$R linear filters provide these advantages over linear FIR fil-
ters, recursive WM filters also exhibit superior characteristics
than nonrecursive WM filters. For instance, an infinitely iter-
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[IR filter counterparts, RWM filters are always stable under Note, in (2), that the sign of the weight affects the corre-
the bounded-input bounded-output criterion, regardless of teigonding input sample, and the weighting is constrained to be
values taken by the feedback filter weights. In the presencerafn-negative. X
noise, the advantages of RWM filters over IIR filters are even It was shown in [4] that the sample medigh =
more overwhelming, offering robustness to noise levels that avlEDIAN (X, X5, ..., X)), which plays an analogous
unacceptable with traditional lIR filters. In fact, the performancele to the sample mean in location estimation, can be extended
of lIR linear filters is strongly degraded if the input signal is conto the general weighted median filter structure admitting
taminated with impulsive noise. positive and negative weights as

In practice, the (real-valued) filter coefficients of the pro-
posed RWM filter structures must be determined in some 3 = MEDIAN(|W}|osgnW;)X,
fashlon.'Thls paper presents the first optimization method for (Wa| o SQMWa) X, ..., |[Wi
the design of recursive WM filters and smoothers. A novel
“recursiye decpuplin_g" adaptive optimization algorithm Orlvith W, € Rfori = 1,2,.... N, and wheres is the replica-
RWM filter weights is developed under the mean absolute w, times

error (MAE) criterion. In this framework, the previous outputs, defined &8’ o X _m Aqain. th
used to compute the recursive WM filter output are replacé'(?n operator define i0di = A4, &g, ..., Xi. Again, the

by desired previous outputs. Thus, the recursive WM filté(}’eight signs are gncoupled from 'the weight magnitud.e values
becomes a two-input, single-output filter that depends on tﬁQd are merged with the observation samples. The weight mag-

input samples and on delayed samples of the desired respoﬂglédeS play the equivalent role of positive weights in the frame-

This structure avoids the feedback inherent in the recursiW@rk of weighted median smoothers [3]. Although the weights

operation and, therefore, leads to a much simpler derivation'B{%) May Se?”;] restricted to iﬂtgger values,da rr?or:a general in-
the gradient in the steepest descent algorithm used to updatet?r'i_IBr:et?tl'on o t gopzrazlor Wi be przeser;]te fs ortly. .
filter coefficients. The adaptive RWM filter algorithm, which_ e filters |n.( ) anc ( ,) can be thought of as nonrecursive
is referred to as théast least mean absolute (LMAcursive filter duals. This duality is next_extended_ to th_elr recursive
WM algorithm, has an update complexity comparable with th rms. The general structure of linear IIR filters is defined by
of the LMS algorithm. the difference equation

The organization of the paper is as follows. In Section I, N M
the new recursive weighted median filtering structure admit- -
. S S ) Y(n)= AY(n—1¢ B, X(n—k 5
ting real-valued coefficients is introduced. In Section lll, the (n) 42;1 n—£)+ Z kX ) ®
threshold decomposition property is adapted to this problem and

several examples of recursive WM filters are shown, and thejf o sets: the feedback coefficierts, } and the feedforward
performance is compared with that of nonrecursive WM filteigpefficients{ B, }. In all, N + M; + M, + 1 coefficients are

and to linear IIR filters. Finally, some conclusions are drawn iReeded to define the recursive difference equation in (5). Often,

osgnWn)Xn) (4)

k=—M;

Section V. M, is set to zero for a causal IIR filter implementation.
The generalization of (5) to an RWM filter structure is
II. RECURSIVEWM FILTERS ADMITTING REAL-VALUED straightforward. Following a similar approach to that intro-
WEIGHTS duced in [4], the summation operation is replaced with the

edianoperation, and thenultiplicationweighting is replaced

In order to define the class of RWM filters, it is best to firs e . .
Y weighting througtsigned replication

recast the similarities between linear FIR filters and weight

median fiIters_. Given an observation s€t, X,,..., Xy, the :
sample meaf = MEAN(Xy, X5, ..., Xy) can be general- Y(n) = MEDIAN (|Az| osgnA)Y (n — £)|=y
ized to linear FIR filters as

|Bel o sgrBu) X (n = B)N2_y, ) )

B=MEAN(W; - X1, Ws - Xo,... Wxn-Xy) (1) . L
A noncausal implementation is assumed from now on, where

whereW; ¢ R. It will be seen shortly that it is useful to rewrite2 = 0 andM, = M, leading to

(1) as
Y (n) = MEDIAN (|Ay| ¢ sgn{Ax)Y (n — N),. ..
3 = MEAN(|W1| - sgn{Wy) X, |A1] o sgn(A1)Y (n — 1), [Bol| o sgn(Bo) X (n), - ..
[Wa| - sgnW2) Xz, ..., |Wal-sgnWa)Xn) (2) |Bu| o sgn(Ba)X(n+ M)). @)
where sgn denotes the sign function defined as The recursive WM filter operation is schematically described in
Fig. 1.

sgnX) = +1, fX>0 3) Note that if the weightsd, and B, are constrained to be
9 1 -1, if X <O. positive, (7) reduces to the recursive WM smoother previously
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X(n) Y(n) is the vector containing the “signed” past output samples, and
21 Z-I
— . W " 1—) S (1) = [SOM(Bo) X (n), SgrBy) X n + 1),...
X(n+1 n-
: e MEDIAN : sgn(Bar) X (n + M)]T 9)
‘ : : - denotes the vector containing the “signed” input observa-
: L tion samples used to compute the filter's output at tim&he
RN N vN) ith-order statistic 08(n) is denoted a$;(n),i = 1,2,..., L,

where S(l)(n) < 5(2) n) < -+ £ S(L) (n) with
L = N + M + 1 as the window size. Note thaf(;) is
the joint order statistic of the signed past output samplésin
and the signed input observation sample$ ja Furthermore,
studied in [7] and [8]. The recursive WM filter output for nonwe let A = [A;, As, ..., Ax]T andB = [Bo, B1, ..., By]?

Fig. 1. Structure of a recursive WM filter.

integer weights can be determined as follows: be the vectors containing feedback and feed-forward filter
1) Calculate the threshold, = (1/2)(33N, |4, + Ccoefficients, respectively.
M
> k=0 | Br).

2) Jointly sort the “signed” past output sampled. Stability of Recursive WM Filters

sgA)Y (n — £) and the “signed” input observa- one of the main problems in the design of linear IR filters
tions sgiiBy) X (n + k). . _ is the stability under the bounded-input bounded-output (BIBO)
3) Sum the magnitudes of the weights corresponding to thgterion, which establishes certain constraints on the feedback
sorted “signed” samples beginning with the maximumjer coefficient values. In order to guarantee the BIBO stability
and continuing down in order. _ of a linear IIR filter, the poles of its transfer function must lie
4) If 21, is an even number, the output is the average bgjthin the unit circle in the complex plane [9]. Unlike linear IIR
tween the signed sample whose weight magnitude caugggys, recursive WM filters are guaranteed to be stable under
the sum to become>7; and the next smaller signedihe BIBO criterion.
sample; otherwise, the output is the signed sample whosgroperty 1: Recursive weighted median filters, as defined in
weight magnitude causes the sum to becoris. (7), are stable under the BIBO criterion, regardless of the values
The following example illustrates this proceduretaken by the feedback coefficientsl,} for £ =1,2,..., N.
Consider the window size 6 RWM filter defined by The proof of Property 1 is straightforward and is not in-
the real-valued weights{{4s, A1, Bo, B1, B2, Bs)) = cluded here. Fig. 2 illustrates, through the impulse response, the
((0.2,0.4,0.6,—-0.4,0.2,0.2)). The output for this filter oper- stability conditions for the linear IIR filtet’(n) = AY (n —
ating on the observation sgt(n—2),Y(n—1),X(n), X(n+ 2) + A4;Y(n — 1) + ByX(n) and the recursive WM filter
1),X(n +2),X(n +3)F = [-2,2,-1,3,6,8]" is found Y (n)=MEDIAN(A50Y (n—2), A;0Y (n—1), ByoX(n)) for
as follows. Summing the absolute weights gives the threshale filter weights: In Fig. 2(a),(Az, A1, Bo)) = ((—0.5,0,1)).
To =(1/2)(A; + Az + Bo + By + By) = 1. The “signed” set In Fig. 2(b), ({42, A1, Bo)) = ({(-1,0,1)). In Fig. 2(c),
of samples spanned by the filter's window, the sorted set, th&irdz, A;, Bo)) = ((2,0,2}). Note that in Fig. 2(a), the RWM
corresponding weight, and the partial sum of weights (froffiter's response is a single pulse at time= 0, whereas the

each ordered sample to the maximum) are impulse response of the linear IIR filter goes to zero after a few
oscillations. Note also, in Fig. 2(b), that the impulse response of
sample setinwindow -2, 2, -1, 3, 6, 8 the linear IIR filter oscillates indefinitely, whereas the impulse

corresponding weights0.2, 0.4, 0.6, —0.4, 0.2, 0.2 response of the RWM filter reaches its final value after a few
oscillations. Fig. 2(c) shows the instability of the linear IIR

sorted signe_d samples—-3, -2, -1, 2, 6, 8 filter, whereas the RWM filter's response is stable converging
absolute weights 04, 02, 0.6, 04, 02 0.2 tozero after a few oscillations.
partial weight sums 2.0, 1.6, 14, 08, 04 0.2

Thus, the output i§—1 — 2)/2 = —1.5 since when starting Ill. RECURSIVE WM FILTERS AND THRESHOLD
from the right (maximum sample) summing the weights, the DECOMPOSITION
thresholdly = 1 is not reached until the weight associated with Threshold decomposition is a powerful theoretical tool

_—1 is a_dded. The underlined sum value above indicates that this,§ in the analysis and design of RWM filters. Conceptually,
is the first sum that meets or exceeds the 'f‘hreShOI”d' threshold decomposition was originally formulated to be
For the sake of notational simplicity, the “signed” samples ifjseq only with non-negative integer-valued signals with finite
the window of the re;:ursweTWM fT|Iterat time are denoted by 4 antization levels [10]. Threshold decomposition was later
the vectorS(n) = [Sy (n), Sx(n)]", where extended to admit real-valued signal in the analysis of stack
smoothers [3] and stack filters [4], [11]. For the purpose of this
Sy (n) = [sgn(A1)Y (n — 1),sgn(A2)Y (n — 2),. .. paper, we adopt a threshold decomposition formulation similar
sgnAn)Y (n — N)|¥ (8) to that described in [4].
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Fig. 2. Impulse responses of linear IR filte(n) = A.Y (n —2)+ A, Y (n — 1)+ By X (n) (left) and RWM filterY (n) = MEDIAN(A; 0 Y (n —2), A, o
Y(n —1), By o X(n)) (right) for (a){((Az2, A1, Bo)) = {({(—=0.5,0,1)), (b) ((As, A1, Bo)) = ({(—=1,0,1)) and (c){{Az, A1, Bo)) = {(2,0,2)).

Consider the real-valued vect® = [71,7,...,Zr]*. value, the infinite set of binary vecto{g?} seems redundant in
Threshold decomposition maps this real-valued vector to egpresenting the real-valued vectér Indeed, some of the bi-
infinite set of binary vectorg? € {—1,1}%,¢q € (—o0,00), nary vector{z?} are infinitely repeated. Fof(1, < g < Z3),

where for instance, all the binary vectofs?} are identical. As shown
o T in [3], threshold signal representation can be simplified based
= [sgn(Z1 — q), sgr(Z2 —q),...,SgNZL — q)] on the fact that there are at mdst+ 1 different binary vectors
=[2],23,...,2%] (10) {z7} for each observation vect@r. Using this fact, (12) reduces

where sgn denotes the sign function defined in (3). The origintgl
vectorZ can be exactly reconstructed from its binary represen-

tation through the inverse process [4] as & {2} =

| e [1,1,...,1]%, for —oo < ¢ < Zy

Z; = - 21 d 11 zr ozt z+ 1%

2 /_Oo # 0 (11) 2 P2y 2 |, for Ziy < ¢ < Zigr)

fori =1,2,...,L. 1<i<L-1
Thus, a real-valued vector has a unique threshold signal rep- | [-1,-1,..., 1], for Zipy < g < +o0
resentation, and vice versa (13)
78 {29} (12)

whereZt denotes a value on the real line approachifig
where & denotes the one-to-one mapping provided by tHfeom the right. The simplified representationin (13) will be used
threshold decomposition operation. Singean take any real shortly.
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Using the threshold signal decomposition in (10) and (119f the recursive WM filter can take at makt+ 1 different bi-

the recursive WM operation in (6) can be expressed as nary vectors is used. This leads to
Sy
Y(n) = MEDIAN <|Aé| Y(n) = %/ sgr(A§s§<1>(n) n stf;“(n)) dq
ol +Oos Msgn(A¢)Y (n — £) — q] dg|{- 1 S st st
2 [ SomsgnAgtin U *le=1 +3 Z/ sgn(Ast‘”(n) + st{’(n)) dq
. S, .
1 +oo =1 @)
Bi|o = sgrsgn(By) X k) —qldq|iL, ). +oo
| k|<> 3 /_Oo gr[ gr( k) (7’L—|— ) Q] Q|k—0> +1/ Sgr(AZS¢OO(7’L)+BZS}OC(TL)) dq (17)
(14) 5o
At this point, we resort to the weak superposition propertyfter some simplifications, (17) reduces to
of the nonlinear median operator, which states that applying a I—1
weighted median operator to a real-valued signal is equivalent ,,) — Sw(®) +Sw)(n) + 1 Z (Sas1y(n) = Siy(m)
to decomposing the real-valued signal using threshold decom- 2 2=
position, applying the median operator to each binary signal v S v S
separately, and then adding the binary outputs to obtain the X Sgn<Aa sy ’(n) +Bgsy (”)) (18)

real-valued output [10]. This superposition property leads to in-
terchanging the integral and median operators in the above wkeresS;) is theith-order statistic of the “signed” sample. The

pression, and thus, (14) becomes filter representation in (18) provides us with an interesting in-
| oo terpretation of recursive WM filters. The filter output at time
Y(n) == / MEDIAN (|A4| is computed by the sum of the midrange of the signed samples
—oo ((S1y +S(ny)/2) and the linear combination of the differences
o sgrsgn(Ay)Y (n —£) — q]|2_,, between successive order statistifg)(n) — S_1)(n)).

| Bi| o sgrisgn(Bu) X (n + k) — dlliLo) da. (15)

To simplify the above expression, lgt!. } and{s% } denote the
threshold decomposition of the signed past output samples anth general, the coefficients of the recursive WM filter have to

IV. ADAPTIVE RECURSIVEWM FILTERING ALGORITHM

the signed input samples respectively, i.e., be designed in some optimal fashion. In this section, we develop
Db the first adaptive optimization algorithm for the design of re-
Sy (n) & si(n)=[sgnsgnA)Y(n —1)—¢,... cursive WM filters. Threshold decomposition developed in the
sgnisgnAx)Y(n — N) — ¢]]* Ie}st section is }Jsed to find a (;Iosed—form and adaptive expres-
T.D. sion for the optimal weights. Since recursive WM smoothers are
Sx(n) & sk(n) = [sgrisgn(Bo) X (n) — q] i i i i imizati
X 0 - included in the class of recursive WM filters, the optimization
sgrsgn(Ba) X (n + M) — q]]* algorithms developed here will be suited for the optimization of

recursive WM smoothers.
N The main objective of the optimization is to find the best filter
[[s3- ()", [s% (m)]"]" be the thre;hold d;:comTposmoq 'ePr€¢oefficients such that a performance cost criterion is minimized.
sentation of the vectd8(n) = [Sy(n), Sk (n)]" containing A criterion widely used in the design of median-based filters is
the signed samples. With th|§ notatl_on and following a simil e mean absolute error (MAE) between the filter's output and
approach to that presented in [4], it can be shown that ( desired signal. Consider an observed pro¢ase:)} that
reduces to is statistically related to a desired proc€$3(n)}. Further, as-

1 [t sume that both processes are jointly stationary. Under the MAE

Y(n)= 5/_ sgn(Ags}(n) + Bysk(n)) dg  (16) criterion, the goal is to determine the weightd,}|Y_, and
= {B}|* , to minimize the cost function
where A, is the vector whose elements are the magnitudes of
the feedback coefficientd, = [|A:],|A42],...,|Ax]]*, and J(A1,...,An,Bo,....,Byn) = E{|D(n) = Y(n)|} (19)
B, is the vector whose elements are the magnitudes of the
feed-forward coefficient8, = [|Bo|, |Bil, ..., |Bm|]". Note where£{-} denotes the statistical expectation, angh) is the
in (16) that the filter's output depends on the signed past outputgtput of the recursive WM filter given in (7).
the signed input observations, and the feedback and feedforwardo form an iterative optimization algorithm, the steepest de-
coefficients. scent algorithm is used, in which the filter coefficients are up-
The integral term in (16) required to compute the output of trated according to

recursive WM filter may seem difficult to implement. It should
be emphasized, however, that the representation on (16) will bele(n +1) = A¢(n)
qsed for gnalyss and not for com.putanon. Furthgr simplifica- o —iJ(Al, .. An.Bo, ..., Bx)
tions of this expression can be achieved, however, if the fact that aA,
the theshold decomposition of the signed samples in the window £=1,....N

where ¢ € (—o0,+0o0). Furthermore, we lets?(n) =
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Br(n+1) = Bi(n) sgn(D(n)-q)

+1

J(Ay, ..., AN, Bo,...,By) , .

+2u|— - -
-1 M) ¥(n)

a
OBy,

k=0,...,M. (20)

Note that in (20), the gradient of the cost functiow./) has to
be previously computed to update the filter weights. Due to tt+1  —
feedback operation inherent in the recursive WM filter, howeve
the computation o¥J becomes intractable. D@ q
To overcome this problem, the optimization framework re1
ered to asequation error formulationis used [12]. Equation
error formulation is used in the design of linear IIR filters ant .
is based on the fact that ideally the filter's output is close to tt+2 !
desired response. The lagged value¥ ¢#) in (7) can thus be |
replaced with the corresponding lagged vall¥s). Hence, the D( Wn)
previous outputd (n—¢)|Y_, are replaced with the previous de- q ) D(n) 4
sired outputd(n — £)|_; to obtain a two-input, single-output
filter that depends on the input sampl&$n + k)[3L, and on
delay samples of the desired respobse. — )|, namely

sgn(A s + Bls?)

B

Q
=
=
o

J

e'(n)

-2

(a) (b)

Y(”) = MEDIAN (|AN < Sgr(AN)D(” - N), s Fig. 3. Threshold decompositions of the desired signéh), filter output
|A1] 0 sgn(A1)D(n — 1), | Bol o sgn(Bo) X (n), . .. }E% anldV (err)or functione(n) = D(n) — Y(n). @) D(n) < Y(n). (b)
n) > n
|Bar| o sgr(Bar) X (n + M)). (21)

The approximation leads to an outpﬁ(n) that does not de- thate?(n) can be thought of as the threshold decomposition of
pend on delayed output samples, and, therefore, the filter #¢ error functiore(n) = D(n) — Y'(n) for a fixedn. Fig. 3
longer introduces feedback reducing the output to a two-inp&tjowse?(r) for two different cases. Fig. 3(a) shows the case
single-output nonrecursive system. This “recursive decoupling’here the desired filter's outpu®(n) is less than the filter's
optimization approach provides the key to a gradient-based @tputy’(n). Fig. 3(b) shows the second case where the desired

timization algorithm for recursive WM filters. filter outputD(@) is greater tha_n the filter outpﬁ_”[(n). The case
According to the approximate filtering structure, the cogvhere the desired response is equal to the filter's output is not
function to be minimized is shown in Fig. 3. Note that for a fixed, the integral operator in

. . (23) acts on a strictly negative function [Fig. 3(a)] or a strictly
J(A1,...,An,By,...By) = E{|D(n) - Y(n)|} (22) positive function [Fig. 3(b)], and therefore, the absolute value

R and integral operators in (23) can be interchanged, leading to
whereY (n) is the nonrecursive filter output (21). Siné¥n)

and X(n) are not functions of the feedback coefficients, the I q
derivative of J(A;,..., An, Bo, ... By) with respect to the J(Av, ..., Ax, Bo, Br,..., Bu) = 5/700 Ellet(n)ll dg
filter weights is nonrecursive, and its computation is straightfor- (24)

ward. The adaptive optimization algorithm using the steepeghere we have used the linear property of the expectation.
descent method (20), wherd(Ay,..., Ay, Bo,...,Buy) Fig. 3 also depicts that?(n) can only take on values in the

is replaced byj(Al,...,AN,BO,...,BM), is derived as set{—2,0,2}; therefore, the absolute value operator can be re-
follows. Define the vectorS(n) = [SE(n),S%(n)]* as placed by a properly scaled second power operator. Thus
that containing the signed samples in the sliding window | e
of the two-input, single-output nonrecursive filter (21) atj(A,....,An.Bo,Bi,...,By) =~ E[(e%(n))?] dq.
time n, whereSp(n) = [sgnA4;)D(n — 1),sgn4>)D(n 4/ (25)

2),...,sgnAx)D(n— N)]*, andSx (n) is given by (9). Wlth _ L , ,
this notation and using threshold decomposition, (22) becomgaking derivatives of the above expression with respect to the

filter coefficients A, and By, yields, respectively

A 1 oo
J(Ar, oA, Bo, -, Bu) = §E{‘/m [sgr(D(n) —q) iJ(A:L,. .yAN,Bo,...By)

04,
+oo r
— sgn(Als%(n) + BLs% (n)) dq] ‘} (23) — _1/ E eq( 9 sgn(ATst, + BTsL)|  (26)
2/ o A,
where{s%,(n)} is the corresponding threshold decomposition ¢ 9 J(A1,..., Ay, Bo,...By)
of the vectorSp(n). dB;
Now, lete?(n) be the argument inside the integral operator, 1 [+ T q T T
ie.,1(n) = sgr{D(n)—q)~SGNATs) (n)+BTst (n).Note = 2 _ P | (Mgp, s9Acsh +Bask) | (27)
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Since the sgn function has a discontinuity at the origin, itintrg= € {(—oco, min(Sey,), Si;y)] U (max(Sem), S¢;y), +00) }
duces thdlirac function in its derivative, which is not conve- Thus, the adaptive optimization algorithm reduces to

nient for further analysis. In order to overcome this difficulty,

max(S(m),5(;))

the sgn function is approximated by the differentiable hyper- A(n+1) = Ad(n) + u/ e!(n)

bolic tangent function sdw) ~ tanh(x) whose derivative is
(8/8z)tanh(z) = secH (). Using this approximation in (26),

it follows that

15
9A, Sgn(AaTS(jlj + stg()

~ sec (ALs?, + BLs%) 9 (ALs? + BLs%)

0A;
= secH (A7s%, + BYs%) sgn(A,)s},

wheres{, is the/th component of the vecta],. Similarly

15]
9B sgn(A]'s}, + B]s%)

~ seci (ALs%, + BIs%) 9 (Als?, +Bls%)

By
= sechf (Als], + BLs%) sgn(By)sk,

wheres%;, is thekth component of the vectafy . Using (28)
and (29) in (26) and (27), respectively, it follows that

a -
a—fléJ(Al’.“’AN’BO’”.’BN[)
1
2 —o0
x sgr(A¢)sh, ] dg
J .
—aBkJ(Al,...,AN,BO,...,BM)
1
2/ oo

X Sgr(Bk)sg(k] dg.
Using (30) in (20), the weighted updates reduce to

Ag(n + 1) = A[(TL)

oo
+2pu F / E [¢?(n)sect (ALs], + BTs%)

2

ade o)

% Sgr(Ag)sh | dq}
Bk(n + 1) = Bk(TL)

1ot
T2 {5 / E [¢!(n)sect (ALs], + Bs%)

— o0

x sgn(Bu)s%, | dq}

for/ = 1,...,N,andk = 0,...,M. Now, as shown in
Fig. 3, the threshold decomposition of the error terfin)
takes nonzero values only if is between the desired outpu
D(n) and the actual filter outpu¥’(n). Assuming that the
desired outputD(n) is one of the signed samplesay S,
and that the actual outpdi(n) is S, ¢i(n) =

+oo
~ ——/ E [e%(n) sech (ALs% +Bs%)

+oo
o~ ——/ E [e%(n)sech (ALs + BLs%)

min(S(m),S5¢;))
x sectt (Als], + BLs% ) sgn(A¢)s}, dg

where the instantaneous estimate for the gradient is used. Eval-
uating the above integral leads to

Ae(n+1) = Ag(n)

max(m,j)—1
+

+ 1 SgN(Ae) Z (S(i41) — 5(1))65(”(”)

i=min(m,j)

7 sE T S&HY SE
x sech <Aa sp? + BI sX‘”>sD‘;> (33)
for £ = 1,..., N. Similar simplifications can be made to (32),

leading to

Bk(n + 1) = Bk(TL)

max(m,j)—1 N

+usg(B) Y (Sary — Sw)e’ O ()

i=min(m,j)

st st st
x sech <AZSD“> + stXm) SX(;> (34)

fork=0,1,...,M.

Since the MAE criterion was used in the derivation, the
recursion in (33) and (34) is referred to as tleast mean
absolute (LMA) recursive weighted median adaptive algo-
rithm. The principle of the adaptive optimization algorithm
can be explained as follows. Assume that the desired signal
is larger than the filter's output, i.en, > j. From Fig. 3(b),
the threshold decomposition of the error sige&{n) takes
positive values foly € (S(;), Simy], which is the interval of
interest wheree?(n) # 0. Now, for those signed samples
whose magnitudes are smaller than the actual filter's output,
their corresponding weights are reduced since the threshold
decompositions of those signed samplgg)(for i < j) are
—1 in the interval(S;), S(y]- On the other hand, for those
signed samples whose magnitudes are larger than the desired
signal, their corresponding weights are either increased (more
positive) if the weights take positive values or decreased (more
negative) if the weights are negatives. Consequently, both cases
will lead to updated weights that will push the estimate toward
the desired output. Similar conclusions can be reached when
the desired signal is smaller than the filter's output. Note that
if the desired response is equal to the filter's outptitn) is
equal to zero for ally, and therefore, the filter coefficients
remain unchanged, and no update is needed. The following are
some remarks of the optimization algorithm.

An interesting characteristic of this optimization algorithm
is that at each iteration, the feedback filter coefficients do not
thave to satisfy any stability constraints since, as shown in Sec-

2For simplicity in the analysis, we will approximai&(n) as one of the signed
samples. This approximation is not necessary, but since it provides accurate re-
sults and simplifies the notation significantly, we find it useful.
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tion Il, the recursive WM filters are always stable under thequal toY(n). Thus,q = Y(n) produces the largest update
BIBO criterion, regardless of the values taken by the feedbac&ntribution. Since
filter weights. This advantage of the recursive WM filters is not v (n) 3
. : . oS = |sgnlSp, - Y ,
shared by the linear IIR filters, where the feedback filter coeffi- 7 [ 9 ( D1 (n))
cients are contrained such that the poles of the transfer function sgr(SDN _ y(n))}
Y(m),

sgr(SD2 - Y(n)) Ve

T

fall inside the unit circle.

The adaptive optimization algorithm is suitable for the desigand
of recursive WM smoothers that do not admit negative weight SY(n) _ [sgr(SX _ sgr(SX _ Y(n))
values. On closer examination, it turns out that the constraint of ' : ’
having non-negative weight can be accomplished by a projec- Sgr(SXM _ Y(n)ﬂT
tion operator that maps all the negative weights to zero. Using

this constraint, the adaptive optimization algorithm for recursivge algorithmin (33) and (34) is simplified, leading to the recur-
WM smoothers reduces to sion referred to as the fast LMA adaptive algorithm

Adn +1) = Ae(n) + p(D(n) — ¥(n)

Adn+1) =Pl Adn) x sgr(Ae(n) sgn(Sp, — ¥(n))  (38)

max(m,j)—1 o Bk(TL + 1) = Bk(TL) + /J(D(TL) — Y(TL))
T usgtdo. z; N (Si+1) = S@)e @ (n) sgr(Bi(n))sgn(Sx, — Y(n))  (39)
i=min(m,j
) ) ) for/ = 1,2,...,N andk = 0,1,..., M, whereSx, =
« sech < AT BTSS@>85@ (35) SONBL)X(n+ k), andSp, = sgn(A¢)D(n — £).
a”D amX oD Due to the nonlinear nature of the adaptive algorithm, a con-

vergence analysis cannot be derived. Thus, exact bounds on the

step-sizeu are not available. We have observed in practice that

a reliable guideline to select the step size of this algorithm is to

select a step size on the order of that required for the standard
mazx(m,j)—1 o LMS algorithm. Another approach is to use a variable step size
+ 1SN By) Z (S(i41) = S@y)e”@ (n) u(n), whereu(n) decreases as the training progresses.

i=min(m,j)

Bi(n+1) = P|Bi(n)

R sg, r S5\ S5, V. APPLICATIONS OFRECURSIVEWM FILTERS
X See <A”'SD +Basy ) X This section illustrates the performance of the RWM filters.
In the first example, the performance of the RWM filters is com-
whereP(-) is the projection operator pared with that of the nonrecursive counterpart in image de-
z >0 noising. In the second example, a bandpass recursive WM filter
Plz) = { 0 =z 2 0. (36) is designed using the LMA and fast LMA adaptive optimization

This LMA optimization algorithm can be further simplified toalgorithms described in the previous section. The performance
of the resultant filters is compared with that of a linear IIR filter

obtain a faster adaptive optimization algorithm following sim= . ) ) .
ilar arguments to those used in [3] and [4]. On closer exarﬁnd of a nonrecursive WM filter designed for the same applica-
ination of (33) and (34), it turns out that the contribution tfjon.
each term is to a large extent determined by the nonlinear func- .
tion secR(ATs%, + BTs%). The sech(-) function achieves its A- IMage Denoising
maximum value when the argument is zero. Its value decreaseFig. 4(a) shows the original “portrait” image used in the sim-
rapidly and monotonically to zero as the argument departs frarfations. The noisy image in Fig. 4(b) is obtained by corrupting
zero. For some valug AZ's?, + BZ's% takes its closest value to the original image with impulsive noise. Each pixel in the image
zero, and therefore, the update term corresponding tg thi§  has a 10% probability of being contamined with animpulse. The
produce the bigest contribution in the update of the weights. Tiepulsives occur randomly and were generated usingLB 's
value ofq for which the largest update contribution occurs caimnoise function.
be found through the definition of the RWM filter. The output The noisy image is filtered by a 8 3 nonrecursive center
of the RWM filter is S(;y(n) if and only if the following three WM filter3 and by a 3x 3 nonrecursive center WM filter with
inequalities are satisfied simultaneously: the same set of weights [13]. Fig. 4(c) and (d) show their re-

ATsij*‘> I BTsf(”*” >0 spective fiI.ter outpL_lts vv_ith a center vv.eingc = 5. Note that.

e @ the recursive WM filter is more effective than its nonrecursive

ATs3) +BTsS9 > 0 counterpart.

S, . Sy .
AT70 L BT <0 (37)
h 5 g ds disti Si 3The center WM operation refers here to the WM filter where all the samples
where we assums;_1), 5¢j), and sy are distinct. SINCe i the window are weighted by 1, except for the center sample, which is weighted
S(jy is the output of the RWM filter at timer, S;) is also by W. > 1[13].
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Fig. 4. Image denoising using>3 3 recursive and nonrecursive WM filters. (a) Original. (b) Image with salt and pepper noise. (c) Nonrecursive center WM filter.
(d) Recursive center WM filter. (e) Optimal nonrecursive WM filter. (f) Optimal RWM filter.

A small 60 x 60 pixel area in the upper left part of therithms were used to filter the entire image. Fig. 4(f) and (e)
original and noisy images are used to train the recursisbow the output of the optimal RWM filter and the output
WM filter using the adaptive algorithm given by (35). Theof the nonrecursive WM filter, respectively. The normalized
same training data are used to train a nonrecursive WM filterean square errors and the normalized mean absolute errors
using the adaptive algorithm described in [3]. The initigbhroduced by each of the filters are listed in Table I. As can be
conditions for the weights for both algorithms were the filteseen by comparing the images and the error values, recursive
coefficients of the center WM filters described above. The st&gM filters outperform nonrecursive WM filters.
size used wa30—2 for both adaptive algorithms. The optimal
weights found by the adaptive algorithms afe38,1.64, g Design of a Bandpass RWM Filter
1.32 | 1.50,5.87,2.17 | 0.63,1.36,2.24) for the nonrecur-
sive WM filter and ((1.24,1.52,2.34 | 2.07,4.89,145 | In this example, we use both LMA and fast LMA adaptive
1.95,0.78,2.46)) for the RWM filter, where the underline optimization algorithms developed in Section V to design a ro-
weight is associated with the center sample of the 3 bust bandpass recursive WM filter. The performance of the de-
window. The optimal filters determined by the training algosigned recursive WM filter is compared with the performances
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TABLE |
RESULTS FORIMPULSIVE NOISE REMOVAL
Normalized Normalized
mean square error | mean absolute error (a)
Noisy image 2545.20 12.98
Recursive center WM filter 189.44 1.69
Non-recursive center WM filter 243.83 1.92
Optimal non-recursive WM filter 156.30 1.66
Optimal RWM filter 88.13 1.57

(b)

of a linear FIR filter, a linear IIR filter, and a nonrecursive WM

filter all designed for the same task. Moreover, to show the noi

attenuation capability of the recursive WM filter and compare

with those of the other filters, an impulsive noisy signal is use ©
as test signal.

The application at hand is the design of a 62-tap bandp:

RWM filter with passban®.075 < w < 0.125 (hormalized fre- ! il
quency with Nyquist= 1). We use white Gaussian noise witl
zero mean and variance equal to one as input training sigr
The desired signal is provided by the output of a large FI
filter (122-tap linear FIR filter) designed by MLAB 'sfirl func-
tion. The 31 feedback filter coefficients were initialized to sma
random numbers (on the orderiif—2). The feedforward filter @
coefficients were initialized to the values outputed bytvhB ‘s

firl with 31 taps and the same passband of interest. A varial
step sizeu(n) was used in both adaptive optimizations, wher
p(n) changes according tay exp[—n/100] with y1o = 1072.

As atest signal, we need to use a signal that spans all the range
of frequencies of interest. Fig. 5(a) depicts a linear swept-fre- _ _ _ _ _
quency signal spanning instantaneous frequencies form 0 to 4, Eandeess fe fesir. @ ut it sonel, () Beered S,
Hz, with a sampling rate of 2 kHz. Fig. 5(b) shows the chirgygput. (fy RwM filter output.
signal filtered by the 122-tap linear FIR filter that was used as
the filter that produced the desired signal during the training . .
stage. Fig. 5(c) shows the output of a 62-tap linear FIR filter usedln or_der to tes? the ro_bustne_s_s of the dlfferent filters, the_test
here for comparison purposes. The adaptive optimization alggna! is contamined with additive-stable noise, as shown in
rithm described in [4] was used to optimize a 62-tap nonrecdfid- 6(a). The parameter = 1.4 was used, simulating noise
sive WM filter admitting negative weights. The filtered signaYV'th impulsive characteristics [14]. Fig. 6(a) is truncated so that
attained with the optimized weights is shown in Fig. 5(d). Notée same scale is used in all the plots. Fig. 6(b) and 6(d) show
that the nonrecursive WM filter tracks the frequencies of intereie filter outputs of the linear FIR and the linear IIR filters, re-
but fails to attenuate completely the frequencies out of the d@ectively. Both outputs are severely affected by the noise. On
sired passband. MLAB 'syulewalk function was used to designthe other hand, the nonrecursive and recursive WM filters’ out-
a 62-tap linear IIR filter with passbar@l075 < w < 0.125. Puts, shown in Fig. 6(c) and 6(e), respectively, remain practi-
Fig. 5(e) depicts the linear IIR filter's output. Finally, Fig. 5(fcally unaltered. Fig. 6 clearly depicts the robust characteristics
shows the output of the optimal recursive WM filter determine@f median-based filters.
by the LMA training algorithm. Note that the frequency com- To better evaluate the frequency response of the various
ponents of the test signal that are not in the passband are attéters, a frequency domain analysis is performed. Due to the
uated completely. Moreover, the RWM filter generalizes veryonlinearity inherent in the median operation, traditional linear
well on signals that were not used during the training stage. Tlmls, like transfer function-based analysis, cannot be applied.
optimal RWM filter determined by the fast LMA training algo-However, if the nonlinear filters are treated as a single-input
rithm yields similar performance to that of the optimal RWMsingle-output system, the magnitude of the frequency response
filter determined by the LMA training algorithm, and thereforecan be experimentally obtained as follows. A single tone
its output is not shown. sinusoidal signadin(2 ft) is given as the input to each filter,

Comparing the different filtered signals in Fig. 5, it can b&here f spans the complete range of possible frequencies. A
seen that the recursive filtering operation performs much betsasfficiently large number of frequencies spanning the interval
than its nonrecursive counterpart having the same number|[@f1] is chosen. For each frequency value, the mean power
coefficients. Alternatively, to achieve a specified level of pewf each filter's output is computed. Fig. 7(a) shows a plot of
formance, arecursive WM filter generally requires considerabilge normalized mean power versus frequency attained by the
far fewer filter coefficients than the corresponding nonrecursiwkfferent filters. On closer examination of Fig. 7(a), it can be
WM filter. seen that the recursive WM filter yields the flattest response

)
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Fig. 6. Performance of the bandpass filter in noise. (a) Chirp test signal 4=
stable noise. (b) Linear FIR filter output. (c) Nonrecursive WM filter output. (d
Linear IIR filter output. () RWM filter output.

in the passband of interest. A similar conclusion can be dra
from the time domain plots shown in Fig. 5. o ,
In order to see the effects that impulsive noise has overt ° 0405 o1 015 02 025

magnitude of the frequency response, a contamined sinusoi (b)

signalsin(2x ft) +n is given as the input to each filter, wheye

is a-stable noise with parameter = 1.4. Following the same Fig. 7. Frequency response (a) to a noiseless sinusoidal signal (b) to a noisy
. sinusoidal signal. (—) RWM.-€ - — - —) nonrecursive WM filter (- - -) linear

procedure described above, the mean power versus frequegiR¥ier. (- - -) linear IR filter.

diagram is obtained and shown in Fig. 7(b). As expected, the

magnitudes of the frequency responses for the linear filters are _ )

highly distorted, whereas the magnitudes of the frequency RROMlY, whereas the performance of RWM filters remains

sponses for the median-based filters do not change significarfictically unalterable by the noise components. _
with noise. The second contribution of this paper is the introduction of

the first adaptive optimization algorithm for the design of re-
cursive WM filters. The “recursive-decoupling” algorithm in-
troduced in Section V uses the threshold decomposition repre-
In this paper, two important contributions were presentegentation to find a closed-form and adaptive expression for the
First, the class of recursive WM filters admitting negativgpdate of the filter coefficients.
WEIghtS was introduced. This new fllterlng framework is useful Computer_based simulations illustrate the advantages of re-
in applications that require a robust bandpass or highpaggsive WM filter over their nonrecursive counterparts. Alter-
characteristic, together with near-perfect “stopband” charact@gtively, to achieve a specified level of performance, a recursive
istics. This filtering structure is analogous to linear IIR ﬁ|terS\/\/M filter generally requires considerably fewer filter coeffi-

but unlike linear IR filters, RWM filters are always stablecients than the corresponding nonrecursive WM filter.
under the BIBO criterion, regardless of the values taken by the

feedback coefficients. Moreover, in comparing the performance

of the RWM filters with that of linear IIR filters, RWM filters REFERENCES
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VI. CONCLUSION
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