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Recursive Weighted Median Filters Admitting
Negative Weights and Their Optimization

Gonzalo R. Arce, Fellow, IEEE,and José L. Paredes

Abstract—A recursive weighted median(RWM) filter structure
admitting negative weights is introduced. Much like the sample me-
dian is analogous to the sample mean, the proposed class of RWM
filters is analogous to the class of infinite impulse response (IIR)
linear filters. RWM filters provide advantages over linear IIR fil-
ters, offering near perfect “stopband” characteristics and robust-
ness against noise. Unlike linear IIR filters, RWM filters are al-
ways stable under the bounded-input bounded-output criterion,
regardless of the values taken by the feedback filter weights. RWM
filters also offer a number of advantages over their nonrecursive
counterparts, including a significant reduction in computational
complexity, increased robustness to noise, and the ability to model
“resonant” or vibratory behavior. A novel “recursive decoupling”
adaptive optimization algorithm for the design of this class of re-
cursive WM filters is also introduced. Several properties of RWM
filters are presented, and a number of simulations are included to
illustrate the advantages of RWM filters over their nonrecursive
counterparts and IIR linear filters.

Index Terms—Adaptive filter, median filters, nonlinear signal
processing, recursive median filter, robustness.

I. INTRODUCTION

WEIGHTED median (WM) smoothers1 have received con-
siderable attention in signal processing research over the

last two decades [1]–[3]. It is often stated that there are many
analogies between weighted median smoothers and linear FIR
filters. Recently, however, it was shown that WM smoothers are
highly constrained, having significantly less powerful character-
istics than linear FIR filters. In fact, WM smoothers are equiv-
alent to normalized weighted mean filters admitting only posi-
tive weights—a severely constrained subset of linear FIR filters.
Admitting only positive weights, weighted median smoothers
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1Weighted median smoothers admitting only positive weights have tradition-
ally been referred to in the literature as WM filters, although, as detailed in this
paper, they are limited to lowpass operators. In this paper, we denote these struc-
tures as “smoothers” to differentiate them from the more powerful WM filter
structures that admit negative weights that can synthesize general frequency se-
lecting filtering.

are, in essence, restricted to “lowpass” type filtering characteris-
tics. In a large number of engineering applications where “band-
pass” or “highpass” type filtering characteristics are required,
weighted median smoothers are inadequate.

To overcome these limitations, a generalized weighted me-
dian filtering structure admitting positive and negative weights
has been recently introduced [4]. The generalization follows
naturally, is surprisingly simple, and leads to a significantly
richer class of weighted median filters. In fact, much like the
sample median can be thought of as being analogous to the
sample mean, the generalized WM filter structure is analogous
to linear FIR filters. Weighted median filters, admitting nega-
tive weights, have been shown to be capable of effectively ad-
dressing a number of fundamental problems in signal processing
that could not adequately be addressed by prior weighted me-
dian smoother structures [4].

Having the framework for weighted median filters, it is nat-
ural to extend it to other more general signal processing struc-
tures. This paper focuses on precisely this goal. In particular, we
introduce a class of recursive weighted median filters, admit-
ting real-valued weights. These filters are analogous to the class
of infinite impulse response (IIR) linear filters. Recursive filter
structures are particularly important because they can be used
to model “resonances” that appear in many natural phenomena
such as in speech. In fact, in the linear filtering framework,
a large number of systems can be better characterized/mod-
eled by a pole-zero transfer function than by a transfer func-
tion containing only zeros. In addition, IIR linear filters often
lead to reduced computational complexity reduction. Much like
IIR linear filters provide these advantages over linear FIR fil-
ters, recursive WM filters also exhibit superior characteristics
than nonrecursive WM filters. For instance, an infinitely iter-
ated use of a weighted median filter can often be synthesized by
a single pass of a properly designed recursive weighted median
filter [2]. Indeed, recursive WM filters can synthesize nonrecur-
sive WM filters of much larger window sizes. In terms of noise
attenuation, recursive median smoothers have far superior char-
acteristics than their nonrecursive counterparts [5], [6]. A disad-
vantage of recursive median smoothers is that they can exhibit
some blurring artifacts on the output; nonetheless, these artifacts
have been observed when no optimization of the weights is per-
formed. Having the optimization tool introduced in this paper,
we believe that many of those artifacts common to recursive me-
dian smoothers can be minimized.

It will also be shown in this paper that RWM filters can pro-
vide advantages over linear IIR filters. Notably, “bandpass” and
“highpass” RWM filters exhibit perfect “stopband” characteris-
tics not attainable with linear IIR filters. Moreover, unlike their
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IIR filter counterparts, RWM filters are always stable under
the bounded-input bounded-output criterion, regardless of the
values taken by the feedback filter weights. In the presence of
noise, the advantages of RWM filters over IIR filters are even
more overwhelming, offering robustness to noise levels that are
unacceptable with traditional IIR filters. In fact, the performance
of IIR linear filters is strongly degraded if the input signal is con-
taminated with impulsive noise.

In practice, the (real-valued) filter coefficients of the pro-
posed RWM filter structures must be determined in some
fashion. This paper presents the first optimization method for
the design of recursive WM filters and smoothers. A novel
“recursive decoupling” adaptive optimization algorithm of
RWM filter weights is developed under the mean absolute
error (MAE) criterion. In this framework, the previous outputs
used to compute the recursive WM filter output are replaced
by desired previous outputs. Thus, the recursive WM filter
becomes a two-input, single-output filter that depends on the
input samples and on delayed samples of the desired response.
This structure avoids the feedback inherent in the recursive
operation and, therefore, leads to a much simpler derivation of
the gradient in the steepest descent algorithm used to update the
filter coefficients. The adaptive RWM filter algorithm, which
is referred to as thefast least mean absolute (LMA)recursive
WM algorithm, has an update complexity comparable with that
of the LMS algorithm.

The organization of the paper is as follows. In Section II,
the new recursive weighted median filtering structure admit-
ting real-valued coefficients is introduced. In Section III, the
threshold decomposition property is adapted to this problem and
used, subsequently, to derive the adaptive algorithms for the op-
timization of the recursive WM filter coefficients. In Section IV,
several examples of recursive WM filters are shown, and their
performance is compared with that of nonrecursive WM filters
and to linear IIR filters. Finally, some conclusions are drawn in
Section V.

II. RECURSIVEWM FILTERS ADMITTING REAL-VALUED

WEIGHTS

In order to define the class of RWM filters, it is best to first
recast the similarities between linear FIR filters and weighted
median filters. Given an observation set , the
sample mean MEAN can be general-
ized to linear FIR filters as

MEAN (1)

where . It will be seen shortly that it is useful to rewrite
(1) as

MEAN sgn

sgn sgn (2)

where sgn denotes the sign function defined as

sgn
if
if

(3)

Note, in (2), that the sign of the weight affects the corre-
sponding input sample, and the weighting is constrained to be
non-negative.

It was shown in [4] that the sample median
MEDIAN , which plays an analogous
role to the sample mean in location estimation, can be extended
to the general weighted median filter structure admitting
positive and negative weights as

MEDIAN sgn

sgn sgn (4)

with for , and where is the replica-

tion operator defined as

times

. Again, the
weight signs are uncoupled from the weight magnitude values
and are merged with the observation samples. The weight mag-
nitudes play the equivalent role of positive weights in the frame-
work of weighted median smoothers [3]. Although the weights
in (4) may seem restricted to integer values, a more general in-
terpretation of the operator will be presented shortly.

The filters in (2) and (4) can be thought of as nonrecursive
filter duals. This duality is next extended to their recursive
forms. The general structure of linear IIR filters is defined by
the difference equation

(5)

where the output is formed not only from the input but also
from previously computed outputs. The filter weights consist
of two sets: the feedback coefficients and the feedforward
coefficients . In all, coefficients are
needed to define the recursive difference equation in (5). Often,

is set to zero for a causal IIR filter implementation.
The generalization of (5) to an RWM filter structure is

straightforward. Following a similar approach to that intro-
duced in [4], the summation operation is replaced with the
medianoperation, and themultiplicationweighting is replaced
by weighting throughsigned replication:

MEDIAN sgn

sgn (6)

A noncausal implementation is assumed from now on, where
and , leading to

MEDIAN sgn

sgn sgn

sgn (7)

The recursive WM filter operation is schematically described in
Fig. 1.

Note that if the weights and are constrained to be
positive, (7) reduces to the recursive WM smoother previously
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Fig. 1. Structure of a recursive WM filter.

studied in [7] and [8]. The recursive WM filter output for non-
integer weights can be determined as follows:

1) Calculate the threshold
.

2) Jointly sort the “signed” past output samples
sgn and the “signed” input observa-
tions sgn .

3) Sum the magnitudes of the weights corresponding to the
sorted “signed” samples beginning with the maximum
and continuing down in order.

4) If is an even number, the output is the average be-
tween the signed sample whose weight magnitude causes
the sum to become and the next smaller signed
sample; otherwise, the output is the signed sample whose
weight magnitude causes the sum to become

The following example illustrates this procedure.
Consider the window size 6 RWM filter defined by
the real-valued weights

The output for this filter oper-
ating on the observation set

is found
as follows. Summing the absolute weights gives the threshold

. The “signed” set
of samples spanned by the filter's window, the sorted set, their
corresponding weight, and the partial sum of weights (from
each ordered sample to the maximum) are

sample set in window
corresponding weights

sorted signed samples
absolute weights
partial weight sums

Thus, the output is since when starting
from the right (maximum sample) summing the weights, the
threshold is not reached until the weight associated with

1 is added. The underlined sum value above indicates that this
is the first sum that meets or exceeds the threshold.

For the sake of notational simplicity, the “signed” samples in
the window of the recursive WM filter at timeare denoted by
the vector , where

sgn sgn

sgn (8)

is the vector containing the “signed” past output samples, and

sgn sgn

sgn (9)

denotes the vector containing the “signed” input observa-
tion samples used to compute the filter's output at time. The
th-order statistic of is denoted as ,

where with
as the window size. Note that is

the joint order statistic of the signed past output samples in
and the signed input observation samples in. Furthermore,
we let and
be the vectors containing feedback and feed-forward filter
coefficients, respectively.

A. Stability of Recursive WM Filters

One of the main problems in the design of linear IIR filters
is the stability under the bounded-input bounded-output (BIBO)
criterion, which establishes certain constraints on the feedback
filter coefficient values. In order to guarantee the BIBO stability
of a linear IIR filter, the poles of its transfer function must lie
within the unit circle in the complex plane [9]. Unlike linear IIR
filters, recursive WM filters are guaranteed to be stable under
the BIBO criterion.

Property 1: Recursive weighted median filters, as defined in
(7), are stable under the BIBO criterion, regardless of the values
taken by the feedback coefficients for

The proof of Property 1 is straightforward and is not in-
cluded here. Fig. 2 illustrates, through the impulse response, the
stability conditions for the linear IIR filter

and the recursive WM filter
MEDIAN for

the filter weights: In Fig. 2(a), .
In Fig. 2(b), . In Fig. 2(c),

. Note that in Fig. 2(a), the RWM
filter's response is a single pulse at time , whereas the
impulse response of the linear IIR filter goes to zero after a few
oscillations. Note also, in Fig. 2(b), that the impulse response of
the linear IIR filter oscillates indefinitely, whereas the impulse
response of the RWM filter reaches its final value after a few
oscillations. Fig. 2(c) shows the instability of the linear IIR
filter, whereas the RWM filter's response is stable converging
to zero after a few oscillations.

III. RECURSIVE WM FILTERS AND THRESHOLD

DECOMPOSITION

Threshold decomposition is a powerful theoretical tool
used in the analysis and design of RWM filters. Conceptually,
threshold decomposition was originally formulated to be
used only with non-negative integer-valued signals with finite
quantization levels [10]. Threshold decomposition was later
extended to admit real-valued signal in the analysis of stack
smoothers [3] and stack filters [4], [11]. For the purpose of this
paper, we adopt a threshold decomposition formulation similar
to that described in [4].
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Fig. 2. Impulse responses of linear IIR filterY (n) = A Y (n�2)+A Y (n�1)+B X(n) (left) and RWM filterY (n) = MEDIAN(A �Y (n�2); A �
Y (n� 1);B �X(n)) (right) for (a)hhA ;A ;B ii = hh�0:5; 0; 1ii, (b) hhA ;A ;B ii = hh�1;0; 1ii and (c)hhA ;A ;B ii = hh2;0; 2ii.

Consider the real-valued vector .
Threshold decomposition maps this real-valued vector to an
infinite set of binary vectors ,
where

sgn sgn

(10)

where sgn denotes the sign function defined in (3). The original
vector can be exactly reconstructed from its binary represen-
tation through the inverse process [4] as

(11)

for .
Thus, a real-valued vector has a unique threshold signal rep-

resentation, and vice versa

(12)

where denotes the one-to-one mapping provided by the
threshold decomposition operation. Sincecan take any real

value, the infinite set of binary vectors seems redundant in
representing the real-valued vector. Indeed, some of the bi-
nary vectors are infinitely repeated. For ,
for instance, all the binary vectors are identical. As shown
in [3], threshold signal representation can be simplified based
on the fact that there are at most different binary vectors

for each observation vector. Using this fact, (12) reduces
to

for

for

for
(13)

where denotes a value on the real line approaching
from the right. The simplified representation in (13) will be used
shortly.
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Using the threshold signal decomposition in (10) and (11),
the recursive WM operation in (6) can be expressed as

MEDIAN

sgnsgn

sgnsgn

(14)

At this point, we resort to the weak superposition property
of the nonlinear median operator, which states that applying a
weighted median operator to a real-valued signal is equivalent
to decomposing the real-valued signal using threshold decom-
position, applying the median operator to each binary signal
separately, and then adding the binary outputs to obtain the
real-valued output [10]. This superposition property leads to in-
terchanging the integral and median operators in the above ex-
pression, and thus, (14) becomes

MEDIAN

sgnsgn

sgnsgn (15)

To simplify the above expression, let and denote the
threshold decomposition of the signed past output samples and
the signed input samples respectively, i.e.,

sgnsgn

sgnsgn

sgnsgn

sgnsgn

where . Furthermore, we let
be the threshold decomposition repre-

sentation of the vector containing
the signed samples. With this notation and following a similar
approach to that presented in [4], it can be shown that (15)
reduces to

sgn (16)

where is the vector whose elements are the magnitudes of
the feedback coefficients , and

is the vector whose elements are the magnitudes of the
feed-forward coefficients . Note
in (16) that the filter's output depends on the signed past outputs,
the signed input observations, and the feedback and feedforward
coefficients.

The integral term in (16) required to compute the output of the
recursive WM filter may seem difficult to implement. It should
be emphasized, however, that the representation on (16) will be
used for analysis and not for computation. Further simplifica-
tions of this expression can be achieved, however, if the fact that
the theshold decomposition of the signed samples in the window

of the recursive WM filter can take at most different bi-
nary vectors is used. This leads to

sgn

sgn

sgn (17)

After some simplifications, (17) reduces to

sgn (18)

where is the th-order statistic of the “signed” sample. The
filter representation in (18) provides us with an interesting in-
terpretation of recursive WM filters. The filter output at time
is computed by the sum of the midrange of the signed samples

and the linear combination of the differences
between successive order statistics .

IV. A DAPTIVE RECURSIVEWM FILTERING ALGORITHM

In general, the coefficients of the recursive WM filter have to
be designed in some optimal fashion. In this section, we develop
the first adaptive optimization algorithm for the design of re-
cursive WM filters. Threshold decomposition developed in the
last section is used to find a closed-form and adaptive expres-
sion for the optimal weights. Since recursive WM smoothers are
included in the class of recursive WM filters, the optimization
algorithms developed here will be suited for the optimization of
recursive WM smoothers.

The main objective of the optimization is to find the best filter
coefficients such that a performance cost criterion is minimized.
A criterion widely used in the design of median-based filters is
the mean absolute error (MAE) between the filter's output and
the desired signal. Consider an observed process that
is statistically related to a desired process . Further, as-
sume that both processes are jointly stationary. Under the MAE
criterion, the goal is to determine the weights and

to minimize the cost function

(19)

where denotes the statistical expectation, and is the
output of the recursive WM filter given in (7).

To form an iterative optimization algorithm, the steepest de-
scent algorithm is used, in which the filter coefficients are up-
dated according to
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(20)

Note that in (20), the gradient of the cost function has to
be previously computed to update the filter weights. Due to the
feedback operation inherent in the recursive WM filter, however,
the computation of becomes intractable.

To overcome this problem, the optimization framework ref-
ered to asequation error formulationis used [12]. Equation
error formulation is used in the design of linear IIR filters and
is based on the fact that ideally the filter's output is close to the
desired response. The lagged values of in (7) can thus be
replaced with the corresponding lagged values . Hence, the
previous outputs are replaced with the previous de-
sired outputs to obtain a two-input, single-output
filter that depends on the input samples and on
delay samples of the desired response , namely

MEDIAN sgn

sgn sgn

sgn (21)

The approximation leads to an output that does not de-
pend on delayed output samples, and, therefore, the filter no
longer introduces feedback reducing the output to a two-input,
single-output nonrecursive system. This “recursive decoupling”
optimization approach provides the key to a gradient-based op-
timization algorithm for recursive WM filters.

According to the approximate filtering structure, the cost
function to be minimized is

(22)

where is the nonrecursive filter output (21). Since
and are not functions of the feedback coefficients, the
derivative of with respect to the
filter weights is nonrecursive, and its computation is straightfor-
ward. The adaptive optimization algorithm using the steepest
descent method (20), where
is replaced by , is derived as
follows. Define the vector as
that containing the signed samples in the sliding window
of the two-input, single-output nonrecursive filter (21) at
time , where sgn sgn

sgn , and is given by (9). With
this notation and using threshold decomposition, (22) becomes

sgn

sgn (23)

where is the corresponding threshold decomposition
of the vector .

Now, let be the argument inside the integral operator,
i.e., sgn sgn . Note

Fig. 3. Threshold decompositions of the desired signalD(n), filter output
Ŷ (n), and error functione(n) = D(n) � Ŷ (n). (a)D(n) < Ŷ (n). (b)
D(n) > Ŷ (n).

that can be thought of as the threshold decomposition of
the error function for a fixed . Fig. 3
shows for two different cases. Fig. 3(a) shows the case
where the desired filter's output is less than the filter's
output . Fig. 3(b) shows the second case where the desired
filter output is greater than the filter output . The case
where the desired response is equal to the filter's output is not
shown in Fig. 3. Note that for a fixed, the integral operator in
(23) acts on a strictly negative function [Fig. 3(a)] or a strictly
positive function [Fig. 3(b)], and therefore, the absolute value
and integral operators in (23) can be interchanged, leading to

(24)
where we have used the linear property of the expectation.

Fig. 3 also depicts that can only take on values in the
set ; therefore, the absolute value operator can be re-
placed by a properly scaled second power operator. Thus

(25)
Taking derivatives of the above expression with respect to the
filter coefficients and yields, respectively

sgn (26)

sgn (27)
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Since the sgn function has a discontinuity at the origin, it intro-
duces thedirac function in its derivative, which is not conve-
nient for further analysis. In order to overcome this difficulty,
the sgn function is approximated by the differentiable hyper-
bolic tangent function sgn tanh whose derivative is

tanh sech . Using this approximation in (26),
it follows that

sgn

sech

sech sgn (28)

where is the th component of the vector . Similarly

sgn

sech

sech sgn (29)

where is the th component of the vector . Using (28)
and (29) in (26) and (27), respectively, it follows that

sech

sgn (30)

sech

sgn

Using (30) in (20), the weighted updates reduce to

sech

sgn (31)

sech

sgn (32)

for , and . Now, as shown in
Fig. 3, the threshold decomposition of the error term
takes nonzero values only if is between the desired output

and the actual filter output . Assuming that the
desired output is one of the signed samples,2 say ,
and that the actual output is for

.
Thus, the adaptive optimization algorithm reduces to

sech sgn

where the instantaneous estimate for the gradient is used. Eval-
uating the above integral leads to

sgn

sech (33)

for . Similar simplifications can be made to (32),
leading to

sgn

sech (34)

for .
Since the MAE criterion was used in the derivation, the

recursion in (33) and (34) is referred to as theleast mean
absolute (LMA) recursive weighted median adaptive algo-
rithm. The principle of the adaptive optimization algorithm
can be explained as follows. Assume that the desired signal
is larger than the filter's output, i.e., . From Fig. 3(b),
the threshold decomposition of the error signal takes
positive values for , which is the interval of
interest where . Now, for those signed samples
whose magnitudes are smaller than the actual filter's output,
their corresponding weights are reduced since the threshold
decompositions of those signed samples (for ) are

1 in the interval . On the other hand, for those
signed samples whose magnitudes are larger than the desired
signal, their corresponding weights are either increased (more
positive) if the weights take positive values or decreased (more
negative) if the weights are negatives. Consequently, both cases
will lead to updated weights that will push the estimate toward
the desired output. Similar conclusions can be reached when
the desired signal is smaller than the filter's output. Note that
if the desired response is equal to the filter's output, is
equal to zero for all , and therefore, the filter coefficients
remain unchanged, and no update is needed. The following are
some remarks of the optimization algorithm.

An interesting characteristic of this optimization algorithm
is that at each iteration, the feedback filter coefficients do not
have to satisfy any stability constraints since, as shown in Sec-

2For simplicity in the analysis, we will approximateD(n) as one of the signed
samples. This approximation is not necessary, but since it provides accurate re-
sults and simplifies the notation significantly, we find it useful.
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tion II, the recursive WM filters are always stable under the
BIBO criterion, regardless of the values taken by the feedback
filter weights. This advantage of the recursive WM filters is not
shared by the linear IIR filters, where the feedback filter coeffi-
cients are contrained such that the poles of the transfer function
fall inside the unit circle.

The adaptive optimization algorithm is suitable for the design
of recursive WM smoothers that do not admit negative weight
values. On closer examination, it turns out that the constraint of
having non-negative weight can be accomplished by a projec-
tion operator that maps all the negative weights to zero. Using
this constraint, the adaptive optimization algorithm for recursive
WM smoothers reduces to

sgn

sech (35)

sgn

sech

where is the projection operator

(36)

This LMA optimization algorithm can be further simplified to
obtain a faster adaptive optimization algorithm following sim-
ilar arguments to those used in [3] and [4]. On closer exam-
ination of (33) and (34), it turns out that the contribution to
each term is to a large extent determined by the nonlinear func-
tion sech . The sech function achieves its
maximum value when the argument is zero. Its value decreases
rapidly and monotonically to zero as the argument departs from
zero. For some value, takes its closest value to
zero, and therefore, the update term corresponding to thiswill
produce the bigest contribution in the update of the weights. The
value of for which the largest update contribution occurs can
be found through the definition of the RWM filter. The output
of the RWM filter is if and only if the following three
inequalities are satisfied simultaneously:

(37)

where we assume and are distinct. Since
is the output of the RWM filter at time is also

equal to . Thus, produces the largest update
contribution. Since

sgn sgn

sgn

and

sgn sgn

sgn

the algorithm in (33) and (34) is simplified, leading to the recur-
sion referred to as the fast LMA adaptive algorithm

sgn sgn (38)

sgn sgn (39)

for and , where
sgn , and sgn .

Due to the nonlinear nature of the adaptive algorithm, a con-
vergence analysis cannot be derived. Thus, exact bounds on the
step-size are not available. We have observed in practice that
a reliable guideline to select the step size of this algorithm is to
select a step size on the order of that required for the standard
LMS algorithm. Another approach is to use a variable step size

, where decreases as the training progresses.

V. APPLICATIONS OFRECURSIVEWM FILTERS

This section illustrates the performance of the RWM filters.
In the first example, the performance of the RWM filters is com-
pared with that of the nonrecursive counterpart in image de-
noising. In the second example, a bandpass recursive WM filter
is designed using the LMA and fast LMA adaptive optimization
algorithms described in the previous section. The performance
of the resultant filters is compared with that of a linear IIR filter
and of a nonrecursive WM filter designed for the same applica-
tion.

A. Image Denoising

Fig. 4(a) shows the original “portrait” image used in the sim-
ulations. The noisy image in Fig. 4(b) is obtained by corrupting
the original image with impulsive noise. Each pixel in the image
has a 10% probability of being contamined with an impulse. The
impulsives occur randomly and were generated using MATLAB 's
imnoise function.

The noisy image is filtered by a 3 3 nonrecursive center
WM filter3 and by a 3 3 nonrecursive center WM filter with
the same set of weights [13]. Fig. 4(c) and (d) show their re-
spective filter outputs with a center weight . Note that
the recursive WM filter is more effective than its nonrecursive
counterpart.

3The center WM operation refers here to the WM filter where all the samples
in the window are weighted by 1, except for the center sample, which is weighted
byW > 1 [13].
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Fig. 4. Image denoising using 3� 3 recursive and nonrecursive WM filters. (a) Original. (b) Image with salt and pepper noise. (c) Nonrecursive center WM filter.
(d) Recursive center WM filter. (e) Optimal nonrecursive WM filter. (f) Optimal RWM filter.

A small 60 60 pixel area in the upper left part of the
original and noisy images are used to train the recursive
WM filter using the adaptive algorithm given by (35). The
same training data are used to train a nonrecursive WM filter
using the adaptive algorithm described in [3]. The initial
conditions for the weights for both algorithms were the filter
coefficients of the center WM filters described above. The step
size used was for both adaptive algorithms. The optimal
weights found by the adaptive algorithms are

for the nonrecur-
sive WM filter and

for the RWM filter, where the underline
weight is associated with the center sample of the 33
window. The optimal filters determined by the training algo-

rithms were used to filter the entire image. Fig. 4(f) and (e)
show the output of the optimal RWM filter and the output
of the nonrecursive WM filter, respectively. The normalized
mean square errors and the normalized mean absolute errors
produced by each of the filters are listed in Table I. As can be
seen by comparing the images and the error values, recursive
WM filters outperform nonrecursive WM filters.

B. Design of a Bandpass RWM Filter

In this example, we use both LMA and fast LMA adaptive
optimization algorithms developed in Section V to design a ro-
bust bandpass recursive WM filter. The performance of the de-
signed recursive WM filter is compared with the performances
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TABLE I
RESULTS FORIMPULSIVE NOISE REMOVAL

of a linear FIR filter, a linear IIR filter, and a nonrecursive WM
filter all designed for the same task. Moreover, to show the noise
attenuation capability of the recursive WM filter and compare it
with those of the other filters, an impulsive noisy signal is used
as test signal.

The application at hand is the design of a 62-tap bandpass
RWM filter with passband (normalized fre-
quency with Nyquist ). We use white Gaussian noise with
zero mean and variance equal to one as input training signal.
The desired signal is provided by the output of a large FIR
filter (122-tap linear FIR filter) designed by MATLAB 'sfir1 func-
tion. The 31 feedback filter coefficients were initialized to small
random numbers (on the order of ). The feedforward filter
coefficients were initialized to the values outputed by MATLAB 's
fir1 with 31 taps and the same passband of interest. A variable
step size was used in both adaptive optimizations, where

changes according to with .
As a test signal, we need to use a signal that spans all the range

of frequencies of interest. Fig. 5(a) depicts a linear swept-fre-
quency signal spanning instantaneous frequencies form 0 to 400
Hz, with a sampling rate of 2 kHz. Fig. 5(b) shows the chirp
signal filtered by the 122-tap linear FIR filter that was used as
the filter that produced the desired signal during the training
stage. Fig. 5(c) shows the output of a 62-tap linear FIR filter used
here for comparison purposes. The adaptive optimization algo-
rithm described in [4] was used to optimize a 62-tap nonrecur-
sive WM filter admitting negative weights. The filtered signal
attained with the optimized weights is shown in Fig. 5(d). Note
that the nonrecursive WM filter tracks the frequencies of interest
but fails to attenuate completely the frequencies out of the de-
sired passband. MATLAB 'syulewalk function was used to design
a 62-tap linear IIR filter with passband .
Fig. 5(e) depicts the linear IIR filter's output. Finally, Fig. 5(f)
shows the output of the optimal recursive WM filter determined
by the LMA training algorithm. Note that the frequency com-
ponents of the test signal that are not in the passband are atten-
uated completely. Moreover, the RWM filter generalizes very
well on signals that were not used during the training stage. The
optimal RWM filter determined by the fast LMA training algo-
rithm yields similar performance to that of the optimal RWM
filter determined by the LMA training algorithm, and therefore,
its output is not shown.

Comparing the different filtered signals in Fig. 5, it can be
seen that the recursive filtering operation performs much better
than its nonrecursive counterpart having the same number of
coefficients. Alternatively, to achieve a specified level of per-
formance, a recursive WM filter generally requires considerably
far fewer filter coefficients than the corresponding nonrecursive
WM filter.

Fig. 5. Bandpass filter design. (a) Input test signal. (b) Desired signal. (c)
Linear FIR filter output. (d) Nonrecursive WM filter output. (e) Linear IIR filter
output. (f) RWM filter output.

In order to test the robustness of the different filters, the test
signal is contamined with additive-stable noise, as shown in
Fig. 6(a). The parameter was used, simulating noise
with impulsive characteristics [14]. Fig. 6(a) is truncated so that
the same scale is used in all the plots. Fig. 6(b) and 6(d) show
the filter outputs of the linear FIR and the linear IIR filters, re-
spectively. Both outputs are severely affected by the noise. On
the other hand, the nonrecursive and recursive WM filters' out-
puts, shown in Fig. 6(c) and 6(e), respectively, remain practi-
cally unaltered. Fig. 6 clearly depicts the robust characteristics
of median-based filters.

To better evaluate the frequency response of the various
filters, a frequency domain analysis is performed. Due to the
nonlinearity inherent in the median operation, traditional linear
tools, like transfer function-based analysis, cannot be applied.
However, if the nonlinear filters are treated as a single-input
single-output system, the magnitude of the frequency response
can be experimentally obtained as follows. A single tone
sinusoidal signal is given as the input to each filter,
where spans the complete range of possible frequencies. A
sufficiently large number of frequencies spanning the interval

is chosen. For each frequency value, the mean power
of each filter's output is computed. Fig. 7(a) shows a plot of
the normalized mean power versus frequency attained by the
different filters. On closer examination of Fig. 7(a), it can be
seen that the recursive WM filter yields the flattest response
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Fig. 6. Performance of the bandpass filter in noise. (a) Chirp test signal in
stable noise. (b) Linear FIR filter output. (c) Nonrecursive WM filter output. (d)
Linear IIR filter output. (e) RWM filter output.

in the passband of interest. A similar conclusion can be drawn
from the time domain plots shown in Fig. 5.

In order to see the effects that impulsive noise has over the
magnitude of the frequency response, a contamined sinusoidal
signal is given as the input to each filter, where
is -stable noise with parameter . Following the same
procedure described above, the mean power versus frequency
diagram is obtained and shown in Fig. 7(b). As expected, the
magnitudes of the frequency responses for the linear filters are
highly distorted, whereas the magnitudes of the frequency re-
sponses for the median-based filters do not change significantly
with noise.

VI. CONCLUSION

In this paper, two important contributions were presented.
First, the class of recursive WM filters admitting negative
weights was introduced. This new filtering framework is useful
in applications that require a robust bandpass or highpass
characteristic, together with near-perfect “stopband” character-
istics. This filtering structure is analogous to linear IIR filters,
but unlike linear IIR filters, RWM filters are always stable
under the BIBO criterion, regardless of the values taken by the
feedback coefficients. Moreover, in comparing the performance
of the RWM filters with that of linear IIR filters, RWM filters
perform as well as linear IIR filters acting on noiseless signals.
In the presence of impulsive noise, linear IIR filters perform

Fig. 7. Frequency response (a) to a noiseless sinusoidal signal (b) to a noisy
sinusoidal signal. (—) RWM. (� � � � �) nonrecursive WM filter (- - -) linear
FIR filter. (- - -) linear IIR filter.

poorly, whereas the performance of RWM filters remains
practically unalterable by the noise components.

The second contribution of this paper is the introduction of
the first adaptive optimization algorithm for the design of re-
cursive WM filters. The “recursive-decoupling” algorithm in-
troduced in Section V uses the threshold decomposition repre-
sentation to find a closed-form and adaptive expression for the
update of the filter coefficients.

Computer-based simulations illustrate the advantages of re-
cursive WM filter over their nonrecursive counterparts. Alter-
natively, to achieve a specified level of performance, a recursive
WM filter generally requires considerably fewer filter coeffi-
cients than the corresponding nonrecursive WM filter.
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