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A General Weighted Median Filter
Structure Admitting Negative Weights

Gonzalo R. Arce Senior Member, IEEE

Abstract—Weighted median smoothers, which were introduced shared by traditional linear filters. The applications of weighted
by Edgemore in the context of least absolute regression over 100median smoothers, however, have not significantly spread
years ago, have received considerable attention in signal pro- beyond image processing applications. It is often stated that

cessing during the past two decades. Although weighted median h logies b iahted di h
smoothers offer advantages over traditional linear finite impulse there are many analogies between weighted median smootners

response (FIR) filters, it is shown in this paper that they lack the and linear finite impulse response (FIR) filters. In this paper,
flexibility to adequately address a number of signal processing however, we show that weighted median (WM) smoothers
problems. In fact, weighted median smoothers are analogous to gre highly constrained and that they are significantly less
normalized FIR finear filters constrained to have only positive oo erf| than linear FIR filters. In fact, WM smoothers are
weights. In this paper, it is also shown that much like the . . . . .

mean is generalized to the rich class of linear FIR filters, the €quivalent to normalized weighted mean filters, which are a
median can be generalized to a richer class of filters admitting Severely constrained subset of linear FIR filters. Admitting
positive and negative weights. The generalization follows naturaly only positive filter weights, weighted median and normalized

and is surprisingly simple. In order to analyze and design this \yejghted mean filters are, in essence, smoothers having “low-
class of filters, a new threshold decomposition theory admit- pass” type filtering characteristics.

ting real-valued input signals is developed. The new threshold . . L -
decomposition framework is then used to develop fast adaptive A large number of engineering applications require “band-

algorithms to optimally design the real-valued filter coefficients. pass” or “highpass” frequency filtering characteristics. Equal-
The new weighted median filter formulation leads to significantly jzation, deconvolution, prediction, beamforming, and system
more powerful estimators capable of effectively addressing a jgentification are example applications where filters having
number of fundamental problems in signal processing that could “nandpass” or “highpass” characteristics are of fundamental
not adequately be addressed by prior weoghted median smoother . ) S =
structures. importance. Linear FIR equalizers admitting only positive
filter weights, for instance, would lead to completely un-
acceptable results. Thus, it is not surprising that weighted
median smoothers admitting only positive weights lead to
unacceptable results in a number of applications. To overcome
. INTRODUCTION the limitations of WM filters, a number of generalizations have

EIGHTED median smoothers, which were introducelieen proposed. Typically, a combination of linear and median
by Edgemore in the context of least absolute regressitfpe operations are used in tandem [4]-[9]. Hybrid methods
over 100 years ago [1], have received considerable attentiorhave proven useful but are nonethelesshocand are often
signal processing research over the last two decades [2]-{#p cumbersome, requiring a large number of parameters.
Although these structures are widely known in the signal In this paper, based on fundamental principles of parameter
processing literature as filters, for reasons that will becorgstimation, a new weighted median filtering structure that
apparent shortly, we will refer to these structuresvasghted admits positive and negative weights is defined. It is shown
median smoother®uring the last few years, the theory behindhat the new WMF structure is analogous to the class of linear
WM smoothers has been developing quite fast. Today, dbtR filters, whereas the previous definition of weighted median
to its sound underlying theory, weighted median smoothessoothers used in the literature is analogous to constrained
are increasingly being used particularly in image processingrmalized weighted mean smoothers. The latter class is
applications. The success of median smoothers in image preferred to asveighted median smootherand the new filter
cessing is based on two intrinsic properties: edge preservatiass that admits real-valued filter weights is referred to as
and efficient attenuation of impulsive noise—properties n#teighted median filtersThe generalization follows naturally
and is surprisingly simple. As would be expected, smoothers
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corresponding binary median smoother, and then adding fhleis is equivalent to minimizing the least squares sum

binary output signals together. The advantage provided by N

thls weak superpo_smorpro_perty is thgt th_e analysis pf me- Go(f) = Z( X, - B)% @)

dian smoothing binary signals is significantly easier than

the analysis of median smoothing real-valued signals. Al- _ _

though threshold decomposition as defined in [11] admits onlj?¢ value 3 minimizing (2) is the sample meaw =

positive-valued signals, it can be used with real-valued inp=: Xi/N. Similarly, when the set of ii.d. samples obey

signals by addinga priori, a large enough positive constant téhe Laplacian distribution, it can be shown that the maximum

the input signal. Once the smoothing is performed, the dc bidelihood estimate of location is the valyg that minimizes

is subtracted. Unfortunately, this decomposition framework {8€ sum of least absolute deviations

not adequate for the analysis of weighted median filters with N

positive and negative weights. Even if a sufficiently large G1(B) = Z|Xi - 4. (3)

constant is added to the input signal, the negative weights i=1

applied to the data will map the dc-shifted samples to thleh

negative domain. In order to analyze the new WM filter clas e value .
EDIAN (X1, X5,---,Xx). The sample mean and median

we first define a new threshold decomposition frameon ; . R .
. . .. thus play an analogous role in location estimation. While
that allows real-valued inputs and negative sample we|ght|r1%.?
0

i=1

£ minimizing (3) is the sample mediaﬁ =

o . g mean is associated with the Gaussian distribution that
The new threshold decomposition architecture overcomes . . T
en emerges naturally in practice, the median is related to

shortcomings associated with prior definitions. . - . : :
. . . the Laplacian distribution, which has heavier tails and can
In practice, the (real-valued) filter coefficients of the new : . L
i : ; . . often provide a better model for impulsive-like processes. The
WM filter must be determined in some fashion. In this paper L )
. . Tobustness of the sample median is explained by the heavy
through the use of the new threshold decomposition architec: . .
ails of the Laplacian distribution.

ture, an adaptive algorithm is developed for training WM filters X .
o .~ The sample mean and median can be generalized by ex-
under the mean absolute error (MAE) criterion. The obtam?d . . L -
adaptive algorithm, which is referred to as fast least mean ending the model of maximum likelihood est|mat|_on. L_et the
' sample seX;, X5, - -+, X be independent but not identically

absolute (LMA) we|ghted median alg_orlthna simple, ha_vm_g distributed. In particular, assume th€!’s obey the same
an update complexity comparable with that of the ubiquitous”, . " . . L : . .
: Istribution, but assume that their variance is not identical for

LMS algorithm. : X )
o . : all samples. Under the Gaussian assumption, the ML estimate
The organization of the paper is as follows. In Section I, the, o, )
. o . of location in this case can be shown to be the vaftie
new weighted median filtering structure that admits real-valued

coefficients is introduced. In Section Ill, the new threshold""'M#N9

decomposition architecture is described. Adaptive algorithms N o
to find the optimal WM filter coefficients are derived in Ga(3) IZ;(Xi—ﬁ)Q 4)
Section IV. In Section V, several examples of adaptive and =1t
nonadaptive WM filters are shown, and their performance \here, 2 is the variance of théith sample in the set. The value
compared with that of traditional WM smoothers. 3 minimizing (4) is the normalized weighted average
N
S Wi X;
IIl. WEIGHTED MEDIAN FILTERS S
WITH REAL-VALUED WEIGHTS i ()
The sample median and sample mean have deep roots ZWZ‘
in statistical estimation theory. In particular, they are the =1

Maximum LikelihoodML) estimators of location derived from with W, = 1/gi2 > 0. Likewise, under the Laplacian model,
sets of independent and identically distributed (i.i.d.) samplgge maximum likelihood estimate of location minimizes the
obeying the Laplacian and Gaussian distributions, respectivedyim of weighted absolute deviations

Thus, if X;,X5,.--, Xy are N ii.d. Gaussian distributed
samples with constant but unknown mednthe maximum
likelihood estimate of location is the vale which maximizes
the likelihood function

N

AOEDPEAL| (6)

=1 °

The values minimizing (6) is the weighted median originally
introduced over 100 years ago by Edgemore [1] and defined as

B =MEDIAN (W, 0 X1, Wo 0 Xz, -, Wy o Xn) (7)

L(xlv T 7$N;ﬁ)

N
=[] f@i-5
=1

whereW, = 1/0% > 0 and wheres is the replication operator

L AN N w, times
/_/\ﬁ
= <2 2) exp <_ Z(Xi —/3)2/202>. (1) defined asW; o X; = X;. X;,---,X;. It should be noted
i that the weights in (5) and (7) are constrained to take on

=1
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non-negative values due to their inverse relationship to thee weighted mean (normalized) and the weighted median
variances of the respective observation samples. operations shown in (9) and (10), respectively, minimize
Notably, the location parameter estimation problem just

described is related to the time-series filtering problem where ol . . 2

the outputY'(n), at timen, can be thought of as an estimate of Ga2(B) = Z |Wil(sign(W:)X; — 3)° and
location and whereX(n — Ny),---, X(n— 1), X(n), X(n + 2:,1

1),---,X(n + Ny) are the set of observation samples. Al- _ e v,

though these samples, in general, exhibit temporal correlation, Gi(p) = ; [Willsign(Wa) X; = f. (11)

the independent but not identically distributed model described

above can be used to capture the mutual correlation. ThBhough G»(/3) is a convex continuous functior7; (3) is

is possible by observing that the estimait&n) can rely a convex but piecewise linear function whose minima is
more on the sampleX(n) than on the other samples ofguaranteed to be one of the “signed” input samples (i.e.,
{X(n)} that are further away in time. Thus{(n) is more sign(W;)X;). The WM filter output for noninteger weights
reliable thanX(n — 1) or X(n + 1), which, in turn, are can be determined as follows.

more reliable thanX(n_ —2) or X(n+ 2), and so on. By 1) Calculate the threshold, = LN Wil.

assigning different variances (reliabilities) to the independenty) gort the “signed” observation samples o) X,

but not identically distributed location estimation model, the 3) Sum the magnitude of the weights corresponding to the
temporal correlation used in time-series filtering is captured. = ggrted “signed” samples beginning with the maximum
The weighting structure in (5) and (7) reflect the varying and continuing down in order.

reliability of the samples in the observation set. _ 4) The output is the signed sample whose magnitude weight
From the smoother structures described in (5) and (7), itcan = -5,ses the sum to becormel,.

be seen that the cIa;s Of. smoothers as dgfmed .by Edgemﬂgg following example illustrates this procedure. Consider
and, as used extensively in signal processing [2], is equaliﬁé window size 5 WM filter defined by the real-valued
to the class of normalized weighted average filters. Since RN%ights[Wl Wa, Wy, Wy, W7 = [0.1,0.2,0.3, —0.2, 0.1]7
former filter class is severely constrained, allowing only IineaIrhe outputvfor 7thi57 filtér (;)perating 7on 7the 7obse;vation set
combinations of positively weighted input samples, it follow: X1, Xo, Xo, X, X7 = [=2,2,—1,3,6]7 is found as fol-
that WM smoothers are also severely limited in their structur Wé. S’um;”niné t%e absolu7te7 we7ig’hts gives the threshold
Much like the sample mean can be generalized to the rich _ Ly} |W;] = 0.45. The “signed” observation samples,

. ) . 0
class of linear FIR filters, there must be a logical way tgorted observation samples, their corresponding weight, and

generalize the median to an equivalently rich class of fiIte{ﬁe partial sum of weights (from each ordered sample to the
that admit both positive and negative weights. We next sh aximum) are:

that this is, in fact, possible. It turns out that the extension is
not only natural, leading to a significantly richer filter class, observation samples -2, 2
but it is simple as well. Perhaps the simplest approach t@orresponding weights 0.1, 0.2
derive the class of WM filters with real-valued weights is by

analogy. The sample me@h= MEAN (X, X,,---, Xy)can  sorted signed

’ _1a 3a 6
. 03, —02, 0.1

be generalized to the class of linear FIR filters as observation samples -3, -2, -1, 2, 6
_ corresponding absolute
f=MEAN (W1 - Xy, Wo - Xp, o, Wi - Xxv) - (8)  yeights 0.2, 01, 03, 02, 01

whereW,; € R. In order to apply the analogy to the median partial weight sums 09, 0.7, 06, 03 0L

filter structure, (8) must be written as Thus, the output is-1 since, when starting from the right
= i , i . (maximum sample) and summing the weights, the threshold
- ’ ’ o = 0.45 is not reached until the weight associated witl
] MEAN(|W1|. sign(W) Xy, |Wa| - sign(Ws3) X» T 4 hed L th gh 4 with
Wi | - sign(Wy)Xn) (9) is added. The underlined sum value above indicates that this

where the sign of the weight affects the corresponding in i&tthe first sum that meets or exceeds the threshold.
g e weigt . P g 1np Although the four-step procedure described above to com-
sample, and the weighting is constrained to be non-negative. . T : .
- te the weighted median is straightforward, the weighted
By analogy, the class of smoothers admitting real-valuc?c'fI , . :
sights emeraes as Mmedian computation can be expressed more succinctly as
weig 9 follows. Let the “signed” samples sid@iV;).X; and their
3 =MEDIAN (W1 o sign(W1) X1, |[Wa| o sign(W) Xa corresponding absolute valued weights be denoted; a&and
oo W] o Sign(Wx) X x) (10) |W;|, respectively. The sorted “signed” samples are then
AW nlosigNiWa) AN denoted asS(;, where S;y < Sy < -+ < Sivy. The
with W; € R, for i = 1,2,---, N. Again, the weight signs absolute valued weights corresponding to the sorted signed

are uncoupled from the weight magnitude values and agi@mpPles are denoted 88|, where ¢, refers to the

merged with the observation samples. The weight magnitud@§ation of thekth-order statistic. In the previous example,

play the equivalent role of positive weights in the frameworf'€ Weight associated with the fourth-order statisig, is,

of weighted median smoothers. It is simple to show thi®" Instance,[We | = |[Wa[ = 0.2. With this notation, the
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smoother output can be written as

G,(B)
—~ k
8= {Sk: min for which ; Wy | > To}. (12)
The effect that negative weights have on the weighted

median operation is similar to the effect that negative weights
have on linear FIR filter outputs. Fig. 1 illustrates this concept
where G2(3) and G1(3), which are the cost functions
associated with linear FIR and WM filters, respectively,

are plotted as a function off. Recall that the output of
each filter is the value minimizing the cost function. The 3 -2 1 2 3 6
input samples are again selected a5, Xo, X3, X4, X5] = © o =
[-2,2,-1,3,6], and two sets of weights are used. The \/

first set is [W17W27W37W4,W5] = [01,02,03,02,01],

where all the coefficients are positive, and the second set is @
[0.1,0.2,0.3,—-0.2,0.1], where W, has been changed, with
respect to the first set of weights, frol® to —0.2. Fig. 1(a) GI( B)
shows the cost function&»(3) of the linear FIR filter for
the two sets of filter weights. Notice that by changing the

sign of Wy, we are effectively movingX, to its new location
sign(W,)X, = —3. This, in turn, pulls the minimum of
the cost function toward the relocated sample $§igh)X.
Negatively weightingX, on G1(8) has a similar effect, as
shown in Fig. 1(b). In this case, the minimum is pulled toward -
the new location of sigtW,)X.. The minimum, however,
occurs at one of the samples sidg#;).X;.
2 3 6

3 -2 1
lIl. THRESHOLD DECOMPOSITION © *—@ *—

FOR REAL-VALUED SIGNALS \_/

Threshold decomposition is a powerful theoretical tool used
i . ) ) (b)
extensively in the analysis of smoothers. Introduced by Fitch 1 Effect . i i " ¢ funct
. P 1g. 1. ects O negative  weignting on e COos unctions

et al [1Q], threshold dgcomposmon_ was originally formu!a_tte@z(ﬁ) and Gi(3). The input samples are[X1,Xo, X3, X1,
to admit signals having only a finite number of positivex;]7 = [—2,2,—1,3,6]7, which are filtered by the two set of weights
valued quantization levels. Threshold decomposition was lafé.0-2,0.3,0.2,0.1]" and[0.1,0.2,0.3, —0.2,0.1]", respectively.
extended to admit continuous-level positive-valued signals
[11]. By addmg a Iar_ge enough positive con;tant to a signahere oo < ¢ <o, and where
encountered in practice, it was argued that this latter approach
to threshold decomposition could be applied to an arbitrary

real-valued signal. Although this approach may be adequate for 1, ?f Xi>q
the analysis of WM smoothers having only positive weights, it sgn(X; —q) = (1)’ :I ‘;? z q (14)
-4 7 q-

is not suitable for WM filters with positive and negative filter
weights. Since negative weighting is equivalent to changing
the sign of a weighted sample, regardless of the constant addéds, each sampl&’; is decomposed into an infinite set of
to the signala priori, the weighting operation will invariably binary points taking values ifr-1, 1] and a single point equal
map positive dc-shifted samples back to the negative domaim.0 obtained forX; = ¢. The original real-valued sample
In the following, we further extend threshold decomposiX; can be perfectly reconstructed from the infinite set of
tion, allowing the decomposition of real-valued signals. Thigiresholded signals. To show this, & = lims_,.o XST>,
decomposition, in turn, can be used to analyze WM filtekghere
having real-valued weights. Consider the set of real-valued

samplesXy, Xo,---, Xy, With X; € R, and define a smoother —1X: 1X;
by the corresponding real valued weightg , Ws,---, Wy. X§T> =1 / zldg+ 5 / z! dg
Decompose each samplg; as -T . —1X:l
+1 / xl dg. (15)
[ X

z! = sgn(X; — q) (13)
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Since the first and last integrals in (15) cancel each other antiere SJg denotes a value on the real line approachihg

since from the right. Using these vectors in (22), we have
| X
q = . ~ S(U —
/_|X7-| z dg =2X; (16) 3 :% / Sgn(WfsS<1>) dq
it follows thatXfT> = X, = X,. Hence, the original signal can . N-1 Sty o st
be reconstructed from the infinite set of thresholded signals as +3 Z /S Sgn(WaS <*>) dg
o0 =1 (&)
. — 1 q [e9)
Xi =3 /_Oo ; dg. 17) +1 / sgn(W2s>) dg. (24)
S
With this threshold decomposition, the WM filter operation o
can be implemented as The above equation reduces to
3 =MEDIAN (|W;| o sgn(W;)X;|¥,) A N1
oo =% lim (Squy+Q)+3 Stix1y — St
=MEDIAN <|Wi|<>% / sgn[sgn(W;)X; — | 2 ano( W +Q)+3 ; (1) — 5y)
oo .
) csgn(Wls®o) =1 lim (Q— S (25)
- dg f_l)- (18) ( )% Jim (@ 500)

The expression in (18) represents the median operation oWQICh simplifies to

set of weighted integrals, each synthesizing a signed sample. Sy 4 Sin LNt .

Note that the same result is obtained if the weighted media = ~2 =) | = > (Sesn — S(i))sgn(WaTsSm).

of these functions, at each value @fis taken first, and the 2 2

resultant signal is integrated over its domain. Thus, the order i ) _ (26)

of the integral and the median operator can be interchangEdf computation of WM filters with the new threshold decom-
without affecting the result, leading to position architecture is efficient, requiring only— 1 threshold

oo logic (sign) operators, allowing the input signals to be arbitrary
8= %/ MEDIAN (|W;| o sgn[sgn(W;)X; — qm\;l) dgq.  real-valued signals and allowing positive and negative filter
o0 weights.
(19)  The filter representation in (26) also provides us with a
In this representation, the “signed” samples play a fundamenlt§€ful interpretation of WM filters. The outpyitis computed

role; thus, we define the “signed” observation vectoas by the sum of th(_e midrapge of the signe_d samplés:_
(S(1y +Sv))/2, which provides a coarse estimate of location,

S =[sgn(W1)X1,sgn(W2)Xa, - -, sgn(Wn ) X n)]* and by a linear combination of thg, i + 1)th spacingV; =
:[Sl,SQ,“',SN]T. (20) S(z) — S(ifl) for i = 1,2,---,N. Hence
The threshold decomposed signed samples, in turn, form the X N .
vector s defined as B=V+>_ C(Wa,7 SS@)Vf,. (27)
s? =[sgn[sgn(W1)X1 — q], - - -, sgn[sgn(Wx ) Xn — " =
=[s, 83, s4]". (21) The coefficientsC(-) take on values-1/2 or 1/2, depending

) on the values of the observation samples and filter weights.
Letting W, be the vector whose elements are the magni-

tude weightsW, = [|[W1|,|Wal,---,|Wx|]¥, the WM filter

operation can be expressed as IV. OPTIMAL WEIGHTED MEDIAN FILTERING
N T In many applications, it is desirable to design the weights
p=3 [ sgn(W, s7) dg. (22)  of a filter in some optimal fashion. In this section, we develop

closed-form and adaptive algorithms to find the optimal real-

_ The WMilter representation using threshold decompositiQpyeq weights of WM filters. The analysis herein exploits

is compact, although it may seem that the integral term may &, ney threshold decomposition architecture introduced in

_dlfncult to |_mpleme_nt in practice. As shown in [11], howeverggction 111. We assume that the observed prodesén)) is

it can easily be simplified based on the fact that there afgiigically related to some desired procgBén)} of interest.

at mostN + 1 different plnary signals .for each observa‘uqu(n)} is typically a transformed or Corrupted version of

vectors. Let 5;, be theith smallest “signed” sample; then,r ;)1 Furthermore, we assume that these processes are

the V + 1 different vectorss* are jointly stationary. A window of widthN slides across the
(1,1,---,1] for —co<g< Sy input process pointwise estimating the desired sequence. The

S St vector containing théV samples in the window at time is

sms(t)---s for Sy < g < S
s? = 1 22 > 19N (1) <94 (i+1) (23)
1<i<N -1 X(n) —_[X(TL—Nl),"',X(TL),"'X(TL+N2)]:Z

[-1,-1,---,-1] for S(N)<q<OO I[X1(7l),X2(n),---,X/\r(n)]T (28)
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with N = N; +N»+1. The running WM filter output estimatesUsing the gradient, the optimal coefficients can be found
the desired signal as through the steepest descent recursive update

) — ; AY. N

D(n) = MEDIAN [|W;| o sgn(W;) X;(n)|;_4] Wi(n+1) = Wy(n) + 2#[ asv ](W)}
where both the weightd¥;'s and samplesX;(n) take on

real values. The goal is to determine the weight values in =W;(n) +NU E{ei(n) sech (WZ(n)

W = [Wi,Ws, .-, Wy]¥, which will minimize the estima- ! - ¢

tion error. Under the mean absolute error (MAE) criterion, the v 4

cost to minimize is - 8%(n)) sgn(W;(n))sj(n)} d |- (38)
J(W) =E{|D(n) — D(n)|} (29) Using the instantaneous estimate for the gradient, we can

/ sgn(D — q) — sgn(W{ s7) dg

} (30) derive an adaptive optimization algorithm, where

= E{%
» . Wi(n+1)
where the threshold decomposition representation of the sig- .
nals was used. The absolute value and integral operators in = W;(n) +u/ e!(n) seclt (W7 (n)s?(n))

oo

(30) can be interchanged since the integral acts on a strictly _20
positive or a strictly negative function. This results in -sgn(W;(n))sj(n)(n) dg
o0 S g S-
JW)=1 / E{|sgn(D — q) — sgn(WZXs")|} dg. (31) = W;(n) +u/_ ¢ (n) secht (WaT(n)s @ (n))

N—-1
Furthermore, since the argument inside the absolute value Sa
g -sgN(W;(n))s; ' (n) dg + 1 > (Sit1) — Seiy)

operator in (31) can only take on values in the e, 0, 2},

=1
the absolute value operator can be replaced by a properly

n

scaled second power operator. Thus ”( )eS7 (n) sgn(W; (n)) secht (WaT(”)SS(”(”))
swy =4 [ B{(sand - 0) - san(Ws) "} dn i / % (n) sech (W (n)s" (n))

o (32) 0 st

Taking the gradient of the above, we find -sgn(W;(n))s; ™ (n) dg. (39)
iJ(W) = 1 /°° E{eq(n)iSQn(WaTSq) } dq (33) The error terme?(n) in the first and last integrals can be shown
ow 2o ow to be zero; thus, the adaptive algorithm reduces to

where ¢?(n) = sgn(D — ¢) — sgn(WXs?). Since the sign N-1

function is discontinuous at the origin, its derivative will Win+1)=W;(n)+u Z(S(i+1)(”) —Su)(n))

introduce dirac impulse terms that are inconvenient for further i=1

analysis. To overcome this difficulty, the sign function in & p '

(33) is approximated by a differentiable function. A simple w8 (n)e” O (n) sgn(W;(n))

approximation is given by the hyperbolic tangent function . secH (WT( )s <>( )) (40)

sgn(z) ~ tanh (z) = % (34) for j = 1,2,---,N. Since the MAE criterion was used

_ ~in the derivation, the recursion in (40) is referred to as
Since (9/0z) tanh (z) = sech (z) = (2/¢® + ¢ %), it the least mean absolutéLMA) weighted median adaptive

follows that algorithm. This algorithm is similar to that of Yin and Neuvo’s

ﬁsgn(Wqu) ~ sech (Wqu) 7] (Waqu)' (35) [11], except that their algorithm is applicable to the design

oW oW of weighted median smoothers that do not admit negative
Evaluating the derivative in (35) and after some simplificaveight values; thus, a projection operator mapping all negative
tions, we find weights to zero is needed in their algorithm. Moreover, updates
a in Yin and Neuvo's algorithm contain thresholded signals at
sgn(Wy)s? i old
P sgn(Wa)s4 Ieve!‘s_detefymmed by t_he_ sample o_r(_jer—statlstlgsf and not_ at
—sgn(Wqu) ~ secH (Wqu) _ . (36) the “signed” order statistics. In addition, a positive domain
ow : threshold decomposition architecture is used in [11]; thus, the
sgn(W)s%y nonlinear term in the update of their algorithm differs from
Using (36) in (33), we obtain the sech nonlinearity appearing in (40).
P The LMA weighted median algorithm is simple in nature,
WJ(W) but it requires a sum ofN — 1 terms contributing to
J

the updated ofW(n), where each term is related to the

_ 1/ E{e%(n) )sech (Wqu) sgn(W, q}dq contribution of the thresholded vectord(n),q € S =
oo {Sy(n),S2y(n),---,S(v—1y(n)}. The weight updates in

(37) (40) can be shown to have complexify N? + 6N ), O(N? +
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1), andO(N? + N) in terms of multiplications and additions, D(n)
respectively. In addition, the sethoperation must be
computed at each level of the decomposition.

DX woh o
The contribution of most of the terms in (40), however, 0 1 ! T

is negligible compared with that of the vectst ™ (n) as X wol o

it will be described here. Using this fact and following the (1) J 7 l

ey
arguments used in [11], the algorithm in (40) can be simplified D(n)

considerably, leading to a fast LMA WM adaptive algorithm. 1) P — W l ________________________
The contribution of each term in (40) is, to a large extent, k k
determined by seé{W?Zs?) for ¢ € S. The sech func- (DX ) o woh
tion achieves its maximum value when its argument satisfies ! L T
WZs1 = 0. Its value decreases rapidly and monotonically to @)
zero as the argument departs from zero. FronTfhel vectors
s?,q € S, there is one for which the inner produm’:fsq is ()X, - W, l -------------------------
closest to zero. Consequently, the update term corresponding
to this vector will provide the biggest contribution in the (DX ;oo W, T """"""
update. Among all vectors?, g € S, the vector providing the Din)
largest update contribution can be found through the definition
of the WM filter. SinceD(n) is equal to one of the signed (-DX | e LA l _________________________
input samples, the output of the WM filter &,,(n) if and
only if three inequalities are satisfied simultaneously A v, T ,,,,,,,,,,,,,

WlsSe—n > T, (41) D(n)

WlsSw >, (42) (b)
WZSS(HU <Tp (43) Fig. 2. Weight updates when (&(n) > D(n) and (b)D(n) < D(n). The

o _ signed samples are denoted as eithel ) X; or (1)X;.
where we assums;._1y, S(), and S(;41) are distinct. This

ensures that> is the vector whose inner produdt? s> is , ) , )
closest to zero. Sincs, is the output of the WM filter at time The order of complexity of the fast algorithm in (45) is
O(3N) for both the number of additions and multiplications

&’esr%slf tiliﬁeeﬁggggl)ign@;—)hgs’ the vector contributing for each update of the filter weights. Since the updates only use
the most significant update term in (40), it is expected that the
sP (n) =[sgn(S1(n) — D(n)),--- fast algorithm requires a good initial weight vector. It has been
Sgn(Si (n) — D(n))]T. (44) experimentally shown that a good initial weight vector is that
of the median filter. Due to the nonlinear nature of the adaptive
Using this vector as the principal contributor of the update, ti@gorithm, a convergence analysis cannot be derived. The fast
algorithm in (40) is simplified leading to the recursion referredlgorithm, however, has worked quite well in the simulations

to as the fast LMA WM adaptive algorithm developed in this paper. This is not surprising since the fast
. algorithm in (45) is similar to Yin and Neuvo's fast algorithm

Wi(n +1) =W;(n) + u(D(n) — D(n)) sgn(W;(n)) for the WM smoother [11], which has been extensively tested

-sgn(S;(n) — D(n)), (45) in a number of applications. Since a convergence analysis

) is not available for the fast LMA WM adaptive algorithm,
for j = 1,2, ) N. o . . exact bounds on the step-sizeare not available. A reliable
~ The updates in (45) have an intuitive explanation describggigeline to select the step size of this algorithms is to select
in Fig. 2. When the output of the WM filter is smaller than the, e, size on the order of that required for the standard LMS
desired output, the magnitude of the weights correspondiggyorithm. The step size can then be further tuned according

to the signed samples that are larger than the actual outpilthe yser's requirements and by evaluation of the response
are increased. Thus, the weight for the signed saml&; i en by the initial step size choice.
is decreased (larger negative value), whereas the weight Tor

signed sample+-1.X; is increased. Both cases will lead to
updated weights that will push the estimate higher toward
D(n). Similarly, the weights corresponding to the signed
samples, which are smaller than the actual output, are reducedhe added flexibility provided by negative weights in WM
Thus, the weight for the signed samplel X, is increased filters is illustrated in this section. First, it is shown that
(smaller negative value), whereas the weight for signed samffieequency-selective” WM filters can be easily designed. In
+1X; is decreased. Fig. 2(b) depicts the response of tharticular, the frequency response characteristics of a linear
algorithm when the WM filter output is larger than the desireBIR bandpass filter and of a WM bandpass filter, both with 100
output. The updates of the various samples follow similaaps, is tested. We also show that the frequency response of the
intuitive rules, as shown in Fig. 2(b). best equivalent weighted median smoother, whose coefficients

V. APPLICATIONS OFWM FILTERS
WITH REAL-VALUED WEIGHTS
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Fig. 3. Frequency selective filter outputs. (a) Chirp test signal. (b) Linear

FIR filter output. (c) Weighted median smoother output. (d) Weighted medi#ig. 4. Frequency selective filter outputs in noise. (a) Chirp test signal in

filter output with real-valued weights. stable noise. (b) Linear FIR filter output. (c) Weighted median smoother
output. (d) Weighted median filter output with real-valued weights.

are constrained to positive values, is severely constrained.
Finally, we test the new adaptive WM filter algorithm in theFIR filter designed by Matlab’&irl ~ function with passband

design of an optimal robust high-pass filter. 0.075 < w < 0.125 (normalized frequency with Nyquist
_ _ = 1). Fig. 3(c) shows the best WM filter (smoother) output
A. Frequency Selective WM Filters when the coefficients are constrained to positive values only.

The major limitation of WM filters with positive weights The positive coefficients are found by the method described

is that these filter structures are smoothers in nature. A laffe[12]. The WM smoother clearly fails to delete the low-
number of important problems in signal processing requifééquency components, and it also introduces artifacts at higher
the design ofbandpassand highpassfilters. Channel equal- frequencies. Fig. 3(d) depicts the output of the WM filter
ization, beamformers, and predictors are example applicatidh#put where real-valued weights are allowed. The 120 median
where flexible frequency-selective processing is needed whéfer weights are set identically to that of the linear FIR
weighted median filter smoothers were precluded right frofiter. Fig. 3(d) shows the significant attenuation obtained in
the start. The new WM filter structure opens the possibilitjie low-frequency components. The high-frequency terms are
of utilizing WM filters as signal processing elements in thegeancelled almost completely as well. The small amplitude
applications. artifacts exhibited at low frequencies are due to the fact that
Since linear FIR filters output the mean of a set of weightgtie output of the WM filter is constrained to be equal to one
samples, the median of an equivalently weighted sample étthe input samples.
ought to provide a similar output. Notably, this is the case Fig. 4(a) depicts the chirp test signal with addedtable
when the same set of weights as those designed for a lineaise. The parameter = 1.4 was used, simulating noise with
FIR filter is used in the smoother structure. As we will seénpulsive characteristics [13]. Fig. 4(a) is truncated so that the
shortly, the frequency response characteristics of the attairguine scale is used in all plots. Fig. 4(b) shows the noisy chirp
WM filter follows that of the equivalent linear FIR filter, butsignal filtered by the 120-tap linear FIR filter. The output is
more importantly, these are significantly more robust in thaffected severely by the noise components. Ringing artifacts
processing of signals embedded in noise. emerge with each impulse fed into the filter. Fig. 4(c) shows
Fig. 3(a) depicts a linearly swept-frequency cosine signdile WM filter output when the coefficients are constrained to
spanning instantaneous frequencies ranging from 0 to 400 k»sitive values only. In this case, the noise does not deteriorate
Fig. 3(b) shows the chirp signal filtered by a 120-tap linedhe response significantly, but the response is not satisfactory



ARCE: GENERAL WEIGHTED MEDIAN FILTER STRUCTURE ADMITTING NEGATIVE WEIGHTS 3203

(@ . (h)

Fig. 5. Spectrograms of (a) Chirp signal. (b) Linear FIR filter output. (c) WM smoother output. (d) WM filter output with real-valued weights. (e) Chirp
signal (in noise). (f) Linear FIR filter output (in noise). (g) WM smoother output (in noise). (h) WM filter output with real-valued weights (in noise).

due to the lowpass characteristics of the WM smoothgronents are clearly seen in both plots. Fig. 5(d) and (h) shows

Fig. 4(d) depicts the output of the WM filter with real-valuedhe spectrograms of the WM filter admitting negative weights.

weights, which shows a considerable improvement. The time—frequency localization is clearly seen and is not
To better evaluate the frequency response of the varic@#ected by noise. Notably, the median filter provides better

filters, Fig. 5 shows the time—frequency response of the védime—frequency localization (resolution) than the linear filter,

ious filters via the spectrogram. Fig. 5(a) and (e) show tt@though spurious artifacts in the time—frequency plane emerge

time—frequency plot of the clean and noisy chirps, respectivel. Poth the noiseless and noisy case.

The impulses can be localized in time by their broad frequency

content, and the linear component in the time—frequen8y Design of Optimal Highpass WM Filter

plane can still be distinguished. Fig. 5(b) and (f) shows Using the weight values of a linear FIR filter in a WM

the time—frequency response of the linear filter outputs. TRRer structure leads, in general, to acceptable but suboptimal
time—frequency localization in the noiseless case is clear, @gults. Significant improvements can be attained by optimally
shown in Fig. 5(b). On the other hand, the time localization igesigning the WM filter weights for the application at hand.

completely lost in the noisy environment. Fig. 5(c) and (dZonsider the design of a “highpass” WM filter whose objective
shows the spectrograms of the weighted median smootfeko preserve a high-frequency tone while removing all low-
outputs. The time—frequency characteristics do not chanfgequency terms. Fig. 6(a) depicts a two-tone signal with
significantly with noise. The undesirable low-frequency conmormalized frequencies of 0.04 and 0.4 Hz. Fig. 6(b) shows
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Fig. 7. Single-realization learning characteristics of the fast LMA adaptive
WM filter algorithm admitting real-valued weights.
TABLE |
MEAN ABSOLUTE FILTERING ERRORS
(© filter noise free with stable noise
linear FIR. 0.012 0.979
optimal WMF smoother 0.688 0.692
WMF with FIR weights 0.501 0.530
optimal WMF (fast alg.) 0.191 0.211
optimal WMF 0.190 0.205
(d) the optimized weights is shown in Fig. 6(e). The weighted

median smoother clearly fails to remove the low-frequency
components, as expected. The weighted median smoother
output closely resembles the input signal as it is the closest
output to the desired signal it can produce.
The step size used in all adaptive optimization experiments
was 10°. The performance of the adaptive LMA algorithm in
(40) and of the fast adaptive LMA algorithm in (45) were very
similar. The algorithm in (40), however, proved to converge
somewhat faster than the algorithm in (45). This is not
(e) surprising as the fast algorithm uses the most important, but not
Fig. 6. (a) Two-tone input signal and output from (b) linear FIR high-pas@ll' information available for the update of the adaptive LMA
filter. (c) Optimal WM filter. (d) WM filter using the linear FIR weight values. algorithm. Fig. 7 shows a single-realization learning curve for
(e) Optimal WM smoother with non-negative weights. the fast adaptive LMA WM filter algorithm in (45). It can
be seen that 400 iterations were needed for the fast adaptive
the multitone signal filtered by a 28-tap linear FIR filtetMA algorithm to converge. The algorithm in (40) required
designed by Matlab’érl  function with a normalized cut-off only 120 iterations; however, due to its computational load, the
frequency 0.2 Hz. The fast adaptive LMA algorithm was usedst LMA algorithm would be preferred in most applications.
to optimize an MW filter with 28 weights. These weights, iThe mean absolute error (MAE) between the desired signal
turn, were used to filter the multitone signal, resulting in thand the output of the various filters is summarized in Table I.
estimate shown in Fig. 6(c). The low-frequency componenthe advantage of allowing negative weights on the median
have been clearly filtered out. There are, however, some mitfitter structure is readily seen in Table I. The performance of
artifacts present due to the “selection-type” behavior of ttthe LMA WM optimization and of the fast implementation are
WM filter. Fig. 6(d) depicts the WM filter output when theequivalent. The linear filter outperforms the median structures
weights values of the linear FIR filter are used. Althoughm the noise-free case, as expected.
the frequency content of the output signal is within the Having designed the various highpass filters in a noiseless
specifications, there is a significant distortion in the amplitudmvironment, their performance on signals embedded in noise
of the signal in Fig. 6(d). Next, Yin's fast adaptive LMAIis tested next. Stable noise with = 1.4 was added to the
algorithm was used to optimize a MW filter (smoother) withwo-tone signal. Rather than training the various filters to this
28 (positive) weights [11]. The filtered signal attained witmoisy environment, we used the same filter coefficients as
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constrained to have only positive weights. Much like the mean
is generalized to the rich class of linear FIR filters, it is shown
that the median can also be generalized to a richer class
of WM filters admitting positive and negative weights. The
generalization follows naturally and is surprisingly simple. In
order to analyze and design the general WM filter structure,
the threshold decomposition architecture is extended and used
to derive adaptive optimization algorithms for the new filter
structure. The new structure now allows the use of WM

filters in a large number of applications where “bandpass” and

(@
[1]
[2]
(b)
[3]
[4]
[5]
(c) (6]
[7]
[8]
[0l
[10]
(d) [11]

Fig. 8. (a) Two-tone signal in stable noise = 1.4). (b) Linear FIR filter
output. (c) WM filter output. (d) WM smoother output with positive Weights.[lz]

in the noise-free simulations. Fig. 8(a) and (d) illustrates the

results. The MAE for the linear, WM filter, and WM smoothe13]
were computed as 0.979, 0.211, and 0.692, respectively,
As expected, the outputs of the weighted median filter and

smoother are not affected, whereas the output of the Iin%g]
filter is severely degraded as the linear highpass filter amplifies
the high-frequency noise. Table | summarizes the MAE values
attained by the various filters.

VI. CONCLUSIONS

“highpass” type filtering is required.

Although this paper concentrates on generalizing the WM
filter structure, the underlying methods are readily applicable
to all filters having roots in M-estimation, including the rich
class ofMyriad filters recently introduced in [14] and [15].
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