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Abstract—Weighted median smoothers, which were introduced
by Edgemore in the context of least absolute regression over 100
years ago, have received considerable attention in signal pro-
cessing during the past two decades. Although weighted median
smoothers offer advantages over traditional linear finite impulse
response (FIR) filters, it is shown in this paper that they lack the
flexibility to adequately address a number of signal processing
problems. In fact, weighted median smoothers are analogous to
normalized FIR linear filters constrained to have only positive
weights. In this paper, it is also shown that much like the
mean is generalized to the rich class of linear FIR filters, the
median can be generalized to a richer class of filters admitting
positive and negative weights. The generalization follows naturaly
and is surprisingly simple. In order to analyze and design this
class of filters, a new threshold decomposition theory admit-
ting real-valued input signals is developed. The new threshold
decomposition framework is then used to develop fast adaptive
algorithms to optimally design the real-valued filter coefficients.
The new weighted median filter formulation leads to significantly
more powerful estimators capable of effectively addressing a
number of fundamental problems in signal processing that could
not adequately be addressed by prior weoghted median smoother
structures.

Index Terms—Adaptive filters, filtering, median filters, nonlin-
ear estimation, nonlinear filters, robustness.

I. INTRODUCTION

W EIGHTED median smoothers, which were introduced
by Edgemore in the context of least absolute regression

over 100 years ago [1], have received considerable attention in
signal processing research over the last two decades [2]–[4].
Although these structures are widely known in the signal
processing literature as filters, for reasons that will become
apparent shortly, we will refer to these structures asweighted
median smoothers. During the last few years, the theory behind
WM smoothers has been developing quite fast. Today, due
to its sound underlying theory, weighted median smoothers
are increasingly being used particularly in image processing
applications. The success of median smoothers in image pro-
cessing is based on two intrinsic properties: edge preservation
and efficient attenuation of impulsive noise—properties not
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shared by traditional linear filters. The applications of weighted
median smoothers, however, have not significantly spread
beyond image processing applications. It is often stated that
there are many analogies between weighted median smoothers
and linear finite impulse response (FIR) filters. In this paper,
however, we show that weighted median (WM) smoothers
are highly constrained and that they are significantly less
powerful than linear FIR filters. In fact, WM smoothers are
equivalent to normalized weighted mean filters, which are a
severely constrained subset of linear FIR filters. Admitting
only positive filter weights, weighted median and normalized
weighted mean filters are, in essence, smoothers having “low-
pass” type filtering characteristics.

A large number of engineering applications require “band-
pass” or “highpass” frequency filtering characteristics. Equal-
ization, deconvolution, prediction, beamforming, and system
identification are example applications where filters having
“bandpass” or “highpass” characteristics are of fundamental
importance. Linear FIR equalizers admitting only positive
filter weights, for instance, would lead to completely un-
acceptable results. Thus, it is not surprising that weighted
median smoothers admitting only positive weights lead to
unacceptable results in a number of applications. To overcome
the limitations of WM filters, a number of generalizations have
been proposed. Typically, a combination of linear and median
type operations are used in tandem [4]–[9]. Hybrid methods
have proven useful but are nonethelessad hocand are often
too cumbersome, requiring a large number of parameters.

In this paper, based on fundamental principles of parameter
estimation, a new weighted median filtering structure that
admits positive and negative weights is defined. It is shown
that the new WMF structure is analogous to the class of linear
FIR filters, whereas the previous definition of weighted median
smoothers used in the literature is analogous to constrained
normalized weighted mean smoothers. The latter class is
referred to asweighted median smoothers, and the new filter
class that admits real-valued filter weights is referred to as
weighted median filters. The generalization follows naturally
and is surprisingly simple. As would be expected, smoothers
reduce to weighted median smoothers whenever the filter
coefficients are constrained to be positive.

Median smoothers have traditionally relied on threshold
decomposition for their analysis and design [10]. Threshold
decomposition is a powerful tool that exploits the following
property: Median smoothing a positive signal is equivalent
to decomposing the signal into several binary thresholded
signals, smoothing each binary signal separately with the
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corresponding binary median smoother, and then adding the
binary output signals together. The advantage provided by
this weak superpositionproperty is that the analysis of me-
dian smoothing binary signals is significantly easier than
the analysis of median smoothing real-valued signals. Al-
though threshold decomposition as defined in [11] admits only
positive-valued signals, it can be used with real-valued input
signals by adding,a priori, a large enough positive constant to
the input signal. Once the smoothing is performed, the dc bias
is subtracted. Unfortunately, this decomposition framework is
not adequate for the analysis of weighted median filters with
positive and negative weights. Even if a sufficiently large
constant is added to the input signal, the negative weights
applied to the data will map the dc-shifted samples to the
negative domain. In order to analyze the new WM filter class,
we first define a new threshold decomposition framework
that allows real-valued inputs and negative sample weighting.
The new threshold decomposition architecture overcomes the
shortcomings associated with prior definitions.

In practice, the (real-valued) filter coefficients of the new
WM filter must be determined in some fashion. In this paper,
through the use of the new threshold decomposition architec-
ture, an adaptive algorithm is developed for training WM filters
under the mean absolute error (MAE) criterion. The obtained
adaptive algorithm, which is referred to as thefast least mean
absolute (LMA) weighted median algorithm, is simple, having
an update complexity comparable with that of the ubiquitous
LMS algorithm.

The organization of the paper is as follows. In Section II, the
new weighted median filtering structure that admits real-valued
coefficients is introduced. In Section III, the new threshold
decomposition architecture is described. Adaptive algorithms
to find the optimal WM filter coefficients are derived in
Section IV. In Section V, several examples of adaptive and
nonadaptive WM filters are shown, and their performance is
compared with that of traditional WM smoothers.

II. WEIGHTED MEDIAN FILTERS

WITH REAL-VALUED WEIGHTS

The sample median and sample mean have deep roots
in statistical estimation theory. In particular, they are the
Maximum Likelihood(ML) estimators of location derived from
sets of independent and identically distributed (i.i.d.) samples
obeying the Laplacian and Gaussian distributions, respectively.
Thus, if are i.i.d. Gaussian distributed
samples with constant but unknown mean, the maximum
likelihood estimate of location is the value, which maximizes
the likelihood function

(1)

This is equivalent to minimizing the least squares sum

(2)

The value minimizing (2) is the sample mean
Similarly, when the set of i.i.d. samples obey

the Laplacian distribution, it can be shown that the maximum
likelihood estimate of location is the value that minimizes
the sum of least absolute deviations

(3)

The value minimizing (3) is the sample median
MEDIAN The sample mean and median
thus play an analogous role in location estimation. While
the mean is associated with the Gaussian distribution that
often emerges naturally in practice, the median is related to
the Laplacian distribution, which has heavier tails and can
often provide a better model for impulsive-like processes. The
robustness of the sample median is explained by the heavy
tails of the Laplacian distribution.

The sample mean and median can be generalized by ex-
tending the model of maximum likelihood estimation. Let the
sample set be independent but not identically
distributed. In particular, assume the ’s obey the same
distribution, but assume that their variance is not identical for
all samples. Under the Gaussian assumption, the ML estimate
of location in this case can be shown to be the value
minimizing

(4)

where is the variance of theth sample in the set. The value
minimizing (4) is the normalized weighted average

(5)

with Likewise, under the Laplacian model,
the maximum likelihood estimate of location minimizes the
sum of weighted absolute deviations

(6)

The value minimizing (6) is the weighted median originally
introduced over 100 years ago by Edgemore [1] and defined as

MEDIAN (7)

where and where is the replication operator

defined as

times

It should be noted
that the weights in (5) and (7) are constrained to take on
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non-negative values due to their inverse relationship to the
variances of the respective observation samples.

Notably, the location parameter estimation problem just
described is related to the time-series filtering problem where
the output , at time , can be thought of as an estimate of
location and where

are the set of observation samples. Al-
though these samples, in general, exhibit temporal correlation,
the independent but not identically distributed model described
above can be used to capture the mutual correlation. This
is possible by observing that the estimate can rely
more on the sample than on the other samples of

that are further away in time. Thus, is more
reliable than or , which, in turn, are
more reliable than or , and so on. By
assigning different variances (reliabilities) to the independent
but not identically distributed location estimation model, the
temporal correlation used in time-series filtering is captured.
The weighting structure in (5) and (7) reflect the varying
reliability of the samples in the observation set.

From the smoother structures described in (5) and (7), it can
be seen that the class of smoothers as defined by Edgemore
and, as used extensively in signal processing [2], is equivalent
to the class of normalized weighted average filters. Since the
former filter class is severely constrained, allowing only linear
combinations of positively weighted input samples, it follows
that WM smoothers are also severely limited in their structure.

Much like the sample mean can be generalized to the rich
class of linear FIR filters, there must be a logical way to
generalize the median to an equivalently rich class of filters
that admit both positive and negative weights. We next show
that this is, in fact, possible. It turns out that the extension is
not only natural, leading to a significantly richer filter class,
but it is simple as well. Perhaps the simplest approach to
derive the class of WM filters with real-valued weights is by
analogy. The sample mean MEAN can
be generalized to the class of linear FIR filters as

MEAN (8)

where In order to apply the analogy to the median
filter structure, (8) must be written as

MEAN sign sign

sign (9)

where the sign of the weight affects the corresponding input
sample, and the weighting is constrained to be non-negative.
By analogy, the class of smoothers admitting real-valued
weights emerges as

MEDIAN sign sign

sign (10)

with for Again, the weight signs
are uncoupled from the weight magnitude values and are
merged with the observation samples. The weight magnitudes
play the equivalent role of positive weights in the framework
of weighted median smoothers. It is simple to show that

the weighted mean (normalized) and the weighted median
operations shown in (9) and (10), respectively, minimize

sign and

sign (11)

Although is a convex continuous function, is
a convex but piecewise linear function whose minima is
guaranteed to be one of the “signed” input samples (i.e.,
sign ). The WM filter output for noninteger weights
can be determined as follows.

1) Calculate the threshold
2) Sort the “signed” observation samples sign
3) Sum the magnitude of the weights corresponding to the

sorted “signed” samples beginning with the maximum
and continuing down in order.

4) The output is the signed sample whose magnitude weight
causes the sum to become

The following example illustrates this procedure. Consider
the window size 5 WM filter defined by the real-valued
weights
The output for this filter operating on the observation set

is found as fol-
lows. Summing the absolute weights gives the threshold

The “signed” observation samples,
sorted observation samples, their corresponding weight, and
the partial sum of weights (from each ordered sample to the
maximum) are:

observation samples
corresponding weights

sorted signed
observation samples

corresponding absolute
weights

partial weight sums

Thus, the output is since, when starting from the right
(maximum sample) and summing the weights, the threshold

is not reached until the weight associated with
is added. The underlined sum value above indicates that this
is the first sum that meets or exceeds the threshold.

Although the four-step procedure described above to com-
pute the weighted median is straightforward, the weighted
median computation can be expressed more succinctly as
follows. Let the “signed” samples sign and their
corresponding absolute valued weights be denoted asand

, respectively. The sorted “signed” samples are then
denoted as , where The
absolute valued weights corresponding to the sorted signed
samples are denoted as , where refers to the
location of the th-order statistic. In the previous example,
the weight associated with the fourth-order statistic is,
for instance, With this notation, the
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smoother output can be written as

for which (12)

The effect that negative weights have on the weighted
median operation is similar to the effect that negative weights
have on linear FIR filter outputs. Fig. 1 illustrates this concept
where and , which are the cost functions
associated with linear FIR and WM filters, respectively,
are plotted as a function of Recall that the output of
each filter is the value minimizing the cost function. The
input samples are again selected as

, and two sets of weights are used. The
first set is ,
where all the coefficients are positive, and the second set is

, where has been changed, with
respect to the first set of weights, from to Fig. 1(a)
shows the cost functions of the linear FIR filter for
the two sets of filter weights. Notice that by changing the
sign of , we are effectively moving to its new location
sign This, in turn, pulls the minimum of
the cost function toward the relocated sample sign
Negatively weighting on has a similar effect, as
shown in Fig. 1(b). In this case, the minimum is pulled toward
the new location of sign The minimum, however,
occurs at one of the samples sign

III. T HRESHOLD DECOMPOSITION

FOR REAL-VALUED SIGNALS

Threshold decomposition is a powerful theoretical tool used
extensively in the analysis of smoothers. Introduced by Fitch
et al. [10], threshold decomposition was originally formulated
to admit signals having only a finite number of positive-
valued quantization levels. Threshold decomposition was later
extended to admit continuous-level positive-valued signals
[11]. By adding a large enough positive constant to a signal
encountered in practice, it was argued that this latter approach
to threshold decomposition could be applied to an arbitrary
real-valued signal. Although this approach may be adequate for
the analysis of WM smoothers having only positive weights, it
is not suitable for WM filters with positive and negative filter
weights. Since negative weighting is equivalent to changing
the sign of a weighted sample, regardless of the constant added
to the signala priori, the weighting operation will invariably
map positive dc-shifted samples back to the negative domain.

In the following, we further extend threshold decomposi-
tion, allowing the decomposition of real-valued signals. This
decomposition, in turn, can be used to analyze WM filters
having real-valued weights. Consider the set of real-valued
samples with , and define a smoother
by the corresponding real valued weights
Decompose each sample as

sgn (13)

(a)

(b)

Fig. 1. Effects of negative weighting on the cost functions
G2(�) and G1(�): The input samples are [X1; X2; X3; X4;

X5]T = [�2; 2;�1; 3; 6]T , which are filtered by the two set of weights
[0:1;0:2;0:3;0:2;0:1]T and [0:1;0:2;0:3;�0:2;0:1]T , respectively.

where , and where

sgn
if
if
if

(14)

Thus, each sample is decomposed into an infinite set of
binary points taking values in and a single point equal
to 0 obtained for The original real-valued sample

can be perfectly reconstructed from the infinite set of
thresholded signals. To show this, let ,
where

(15)
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Since the first and last integrals in (15) cancel each other and
since

(16)

it follows that Hence, the original signal can
be reconstructed from the infinite set of thresholded signals as

(17)

With this threshold decomposition, the WM filter operation
can be implemented as

MEDIAN sgn

MEDIAN sgn sgn

(18)

The expression in (18) represents the median operation of a
set of weighted integrals, each synthesizing a signed sample.
Note that the same result is obtained if the weighted median
of these functions, at each value of, is taken first, and the
resultant signal is integrated over its domain. Thus, the order
of the integral and the median operator can be interchanged
without affecting the result, leading to

MEDIAN sgn sgn

(19)

In this representation, the “signed” samples play a fundamental
role; thus, we define the “signed” observation vectoras

sgn sgn sgn

(20)

The threshold decomposed signed samples, in turn, form the
vector defined as

sgn sgn sgn sgn

(21)

Letting be the vector whose elements are the magni-
tude weights , the WM filter
operation can be expressed as

sgn (22)

The WM filter representation using threshold decomposition
is compact, although it may seem that the integral term may be
difficult to implement in practice. As shown in [11], however,
it can easily be simplified based on the fact that there are
at most different binary signals for each observation
vector Let be the th smallest “signed” sample; then,
the different vectors are

for

for

for

(23)

where denotes a value on the real line approaching
from the right. Using these vectors in (22), we have

sgn

sgn

sgn (24)

The above equation reduces to

sgn (25)

which simplifies to

sgn

(26)
The computation of WM filters with the new threshold decom-
position architecture is efficient, requiring only threshold
logic (sign) operators, allowing the input signals to be arbitrary
real-valued signals and allowing positive and negative filter
weights.

The filter representation in (26) also provides us with a
useful interpretation of WM filters. The output is computed
by the sum of the midrange of the signed samples

, which provides a coarse estimate of location,
and by a linear combination of the th spacing

for Hence

(27)

The coefficients take on values 1/2 or 1/2, depending
on the values of the observation samples and filter weights.

IV. OPTIMAL WEIGHTED MEDIAN FILTERING

In many applications, it is desirable to design the weights
of a filter in some optimal fashion. In this section, we develop
closed-form and adaptive algorithms to find the optimal real-
valued weights of WM filters. The analysis herein exploits
the new threshold decomposition architecture introduced in
Section III. We assume that the observed process is
statistically related to some desired process of interest.

is typically a transformed or corrupted version of
Furthermore, we assume that these processes are

jointly stationary. A window of width slides across the
input process pointwise estimating the desired sequence. The
vector containing the samples in the window at time is

(28)
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with The running WM filter output estimates
the desired signal as

MEDIAN sgn

where both the weights ’s and samples take on
real values. The goal is to determine the weight values in

, which will minimize the estima-
tion error. Under the mean absolute error (MAE) criterion, the
cost to minimize is

(29)

sgn sgn (30)

where the threshold decomposition representation of the sig-
nals was used. The absolute value and integral operators in
(30) can be interchanged since the integral acts on a strictly
positive or a strictly negative function. This results in

sgn sgn (31)

Furthermore, since the argument inside the absolute value
operator in (31) can only take on values in the set ,
the absolute value operator can be replaced by a properly
scaled second power operator. Thus

sgn sgn

(32)
Taking the gradient of the above, we find

sgn (33)

where sgn sgn Since the sign
function is discontinuous at the origin, its derivative will
introduce dirac impulse terms that are inconvenient for further
analysis. To overcome this difficulty, the sign function in
(33) is approximated by a differentiable function. A simple
approximation is given by the hyperbolic tangent function

sgn (34)

Since sech , it
follows that

sgn sech (35)

Evaluating the derivative in (35) and after some simplifica-
tions, we find

sgn sech

sgn
sgn

...
sgn

(36)

Using (36) in (33), we obtain

sech sgn

(37)

Using the gradient, the optimal coefficients can be found
through the steepest descent recursive update

sech

sgn (38)

Using the instantaneous estimate for the gradient, we can
derive an adaptive optimization algorithm, where

sech

sgn

sech

sgn

sgn sech

sech

sgn (39)

The error term in the first and last integrals can be shown
to be zero; thus, the adaptive algorithm reduces to

sgn

sech (40)

for Since the MAE criterion was used
in the derivation, the recursion in (40) is referred to as
the least mean absolute(LMA) weighted median adaptive
algorithm. This algorithm is similar to that of Yin and Neuvo’s
[11], except that their algorithm is applicable to the design
of weighted median smoothers that do not admit negative
weight values; thus, a projection operator mapping all negative
weights to zero is needed in their algorithm. Moreover, updates
in Yin and Neuvo’s algorithm contain thresholded signals at
levels determined by the sample order-statistics and not at
the “signed” order statistics. In addition, a positive domain
threshold decomposition architecture is used in [11]; thus, the
nonlinear term in the update of their algorithm differs from
the sech nonlinearity appearing in (40).

The LMA weighted median algorithm is simple in nature,
but it requires a sum of terms contributing to
the updated of , where each term is related to the
contribution of the thresholded vectors

The weight updates in
(40) can be shown to have complexity
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and in terms of multiplications and additions,
respectively. In addition, the sechoperation must be
computed at each level of the decomposition.

The contribution of most of the terms in (40), however,
is negligible compared with that of the vector as
it will be described here. Using this fact and following the
arguments used in [11], the algorithm in (40) can be simplified
considerably, leading to a fast LMA WM adaptive algorithm.
The contribution of each term in (40) is, to a large extent,
determined by sech for The sech func-
tion achieves its maximum value when its argument satisfies

Its value decreases rapidly and monotonically to
zero as the argument departs from zero. From the vectors

, there is one for which the inner product is
closest to zero. Consequently, the update term corresponding
to this vector will provide the biggest contribution in the
update. Among all vectors , the vector providing the
largest update contribution can be found through the definition
of the WM filter. Since is equal to one of the signed
input samples, the output of the WM filter is if and
only if three inequalities are satisfied simultaneously

(41)

(42)

(43)

where we assume and are distinct. This
ensures that is the vector whose inner product is
closest to zero. Since is the output of the WM filter at time

is also equal to Thus, the vector contributing
the most to the update in (40) is

sgn

sgn (44)

Using this vector as the principal contributor of the update, the
algorithm in (40) is simplified leading to the recursion referred
to as the fast LMA WM adaptive algorithm

sgn

sgn (45)

for
The updates in (45) have an intuitive explanation described

in Fig. 2. When the output of the WM filter is smaller than the
desired output, the magnitude of the weights corresponding
to the signed samples that are larger than the actual output
are increased. Thus, the weight for the signed sample
is decreased (larger negative value), whereas the weight for
signed sample is increased. Both cases will lead to
updated weights that will push the estimate higher toward

Similarly, the weights corresponding to the signed
samples, which are smaller than the actual output, are reduced.
Thus, the weight for the signed sample is increased
(smaller negative value), whereas the weight for signed sample

is decreased. Fig. 2(b) depicts the response of the
algorithm when the WM filter output is larger than the desired
output. The updates of the various samples follow similar
intuitive rules, as shown in Fig. 2(b).

(a)

(b)

Fig. 2. Weight updates when (a)D(n)>D̂(n) and (b)D(n)<D̂(n): The
signed samples are denoted as either(�1)Xi or (1)Xi:

The order of complexity of the fast algorithm in (45) is
for both the number of additions and multiplications

for each update of the filter weights. Since the updates only use
the most significant update term in (40), it is expected that the
fast algorithm requires a good initial weight vector. It has been
experimentally shown that a good initial weight vector is that
of the median filter. Due to the nonlinear nature of the adaptive
algorithm, a convergence analysis cannot be derived. The fast
algorithm, however, has worked quite well in the simulations
developed in this paper. This is not surprising since the fast
algorithm in (45) is similar to Yin and Neuvo’s fast algorithm
for the WM smoother [11], which has been extensively tested
in a number of applications. Since a convergence analysis
is not available for the fast LMA WM adaptive algorithm,
exact bounds on the step-sizeare not available. A reliable
guideline to select the step size of this algorithms is to select
a step size on the order of that required for the standard LMS
algorithm. The step size can then be further tuned according
to the user’s requirements and by evaluation of the response
given by the initial step size choice.

V. APPLICATIONS OF WM FILTERS

WITH REAL-VALUED WEIGHTS

The added flexibility provided by negative weights in WM
filters is illustrated in this section. First, it is shown that
“frequency-selective” WM filters can be easily designed. In
particular, the frequency response characteristics of a linear
FIR bandpass filter and of a WM bandpass filter, both with 100
taps, is tested. We also show that the frequency response of the
best equivalent weighted median smoother, whose coefficients
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(a)

(b)

(c)

(d)

Fig. 3. Frequency selective filter outputs. (a) Chirp test signal. (b) Linear
FIR filter output. (c) Weighted median smoother output. (d) Weighted median
filter output with real-valued weights.

are constrained to positive values, is severely constrained.
Finally, we test the new adaptive WM filter algorithm in the
design of an optimal robust high-pass filter.

A. Frequency Selective WM Filters

The major limitation of WM filters with positive weights
is that these filter structures are smoothers in nature. A large
number of important problems in signal processing require
the design ofbandpassand highpassfilters. Channel equal-
ization, beamformers, and predictors are example applications
where flexible frequency-selective processing is needed where
weighted median filter smoothers were precluded right from
the start. The new WM filter structure opens the possibility
of utilizing WM filters as signal processing elements in these
applications.

Since linear FIR filters output the mean of a set of weighted
samples, the median of an equivalently weighted sample set
ought to provide a similar output. Notably, this is the case
when the same set of weights as those designed for a linear
FIR filter is used in the smoother structure. As we will see
shortly, the frequency response characteristics of the attained
WM filter follows that of the equivalent linear FIR filter, but
more importantly, these are significantly more robust in the
processing of signals embedded in noise.

Fig. 3(a) depicts a linearly swept-frequency cosine signal
spanning instantaneous frequencies ranging from 0 to 400 Hz.
Fig. 3(b) shows the chirp signal filtered by a 120-tap linear

(a)

(b)

(c)

(d)

Fig. 4. Frequency selective filter outputs in noise. (a) Chirp test signal in
stable noise. (b) Linear FIR filter output. (c) Weighted median smoother
output. (d) Weighted median filter output with real-valued weights.

FIR filter designed by Matlab’sfir1 function with passband
(normalized frequency with Nyquist

1). Fig. 3(c) shows the best WM filter (smoother) output
when the coefficients are constrained to positive values only.
The positive coefficients are found by the method described
in [12]. The WM smoother clearly fails to delete the low-
frequency components, and it also introduces artifacts at higher
frequencies. Fig. 3(d) depicts the output of the WM filter
output where real-valued weights are allowed. The 120 median
filter weights are set identically to that of the linear FIR
filter. Fig. 3(d) shows the significant attenuation obtained in
the low-frequency components. The high-frequency terms are
cancelled almost completely as well. The small amplitude
artifacts exhibited at low frequencies are due to the fact that
the output of the WM filter is constrained to be equal to one
of the input samples.

Fig. 4(a) depicts the chirp test signal with added-stable
noise. The parameter was used, simulating noise with
impulsive characteristics [13]. Fig. 4(a) is truncated so that the
same scale is used in all plots. Fig. 4(b) shows the noisy chirp
signal filtered by the 120-tap linear FIR filter. The output is
affected severely by the noise components. Ringing artifacts
emerge with each impulse fed into the filter. Fig. 4(c) shows
the WM filter output when the coefficients are constrained to
positive values only. In this case, the noise does not deteriorate
the response significantly, but the response is not satisfactory
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Fig. 5. Spectrograms of (a) Chirp signal. (b) Linear FIR filter output. (c) WM smoother output. (d) WM filter output with real-valued weights. (e) Chirp
signal (in noise). (f) Linear FIR filter output (in noise). (g) WM smoother output (in noise). (h) WM filter output with real-valued weights (in noise).

due to the lowpass characteristics of the WM smoother.
Fig. 4(d) depicts the output of the WM filter with real-valued
weights, which shows a considerable improvement.

To better evaluate the frequency response of the various
filters, Fig. 5 shows the time–frequency response of the var-
ious filters via the spectrogram. Fig. 5(a) and (e) show the
time–frequency plot of the clean and noisy chirps, respectively.
The impulses can be localized in time by their broad frequency
content, and the linear component in the time–frequency
plane can still be distinguished. Fig. 5(b) and (f) shows
the time–frequency response of the linear filter outputs. The
time–frequency localization in the noiseless case is clear, as
shown in Fig. 5(b). On the other hand, the time localization is
completely lost in the noisy environment. Fig. 5(c) and (g)
shows the spectrograms of the weighted median smoother
outputs. The time–frequency characteristics do not change
significantly with noise. The undesirable low-frequency com-

ponents are clearly seen in both plots. Fig. 5(d) and (h) shows
the spectrograms of the WM filter admitting negative weights.
The time–frequency localization is clearly seen and is not
affected by noise. Notably, the median filter provides better
time–frequency localization (resolution) than the linear filter,
although spurious artifacts in the time–frequency plane emerge
in both the noiseless and noisy case.

B. Design of Optimal Highpass WM Filter

Using the weight values of a linear FIR filter in a WM
filter structure leads, in general, to acceptable but suboptimal
results. Significant improvements can be attained by optimally
designing the WM filter weights for the application at hand.
Consider the design of a “highpass” WM filter whose objective
is to preserve a high-frequency tone while removing all low-
frequency terms. Fig. 6(a) depicts a two-tone signal with
normalized frequencies of 0.04 and 0.4 Hz. Fig. 6(b) shows
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(a)

(b)

(c)

(d)

(e)

Fig. 6. (a) Two-tone input signal and output from (b) linear FIR high-pass
filter. (c) Optimal WM filter. (d) WM filter using the linear FIR weight values.
(e) Optimal WM smoother with non-negative weights.

the multitone signal filtered by a 28-tap linear FIR filter
designed by Matlab’sfir1 function with a normalized cut-off
frequency 0.2 Hz. The fast adaptive LMA algorithm was used
to optimize an MW filter with 28 weights. These weights, in
turn, were used to filter the multitone signal, resulting in the
estimate shown in Fig. 6(c). The low-frequency components
have been clearly filtered out. There are, however, some minor
artifacts present due to the “selection-type” behavior of the
WM filter. Fig. 6(d) depicts the WM filter output when the
weights values of the linear FIR filter are used. Although
the frequency content of the output signal is within the
specifications, there is a significant distortion in the amplitude
of the signal in Fig. 6(d). Next, Yin’s fast adaptive LMA
algorithm was used to optimize a MW filter (smoother) with
28 (positive) weights [11]. The filtered signal attained with

Fig. 7. Single-realization learning characteristics of the fast LMA adaptive
WM filter algorithm admitting real-valued weights.

TABLE I
MEAN ABSOLUTE FILTERING ERRORS

the optimized weights is shown in Fig. 6(e). The weighted
median smoother clearly fails to remove the low-frequency
components, as expected. The weighted median smoother
output closely resembles the input signal as it is the closest
output to the desired signal it can produce.

The step size used in all adaptive optimization experiments
was 10-3. The performance of the adaptive LMA algorithm in
(40) and of the fast adaptive LMA algorithm in (45) were very
similar. The algorithm in (40), however, proved to converge
somewhat faster than the algorithm in (45). This is not
surprising as the fast algorithm uses the most important, but not
all, information available for the update of the adaptive LMA
algorithm. Fig. 7 shows a single-realization learning curve for
the fast adaptive LMA WM filter algorithm in (45). It can
be seen that 400 iterations were needed for the fast adaptive
LMA algorithm to converge. The algorithm in (40) required
only 120 iterations; however, due to its computational load, the
fast LMA algorithm would be preferred in most applications.
The mean absolute error (MAE) between the desired signal
and the output of the various filters is summarized in Table I.
The advantage of allowing negative weights on the median
filter structure is readily seen in Table I. The performance of
the LMA WM optimization and of the fast implementation are
equivalent. The linear filter outperforms the median structures
in the noise-free case, as expected.

Having designed the various highpass filters in a noiseless
environment, their performance on signals embedded in noise
is tested next. Stable noise with was added to the
two-tone signal. Rather than training the various filters to this
noisy environment, we used the same filter coefficients as
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(a)

(b)

(c)

(d)

Fig. 8. (a) Two-tone signal in stable noise(� = 1:4). (b) Linear FIR filter
output. (c) WM filter output. (d) WM smoother output with positive weights.

in the noise-free simulations. Fig. 8(a) and (d) illustrates the
results. The MAE for the linear, WM filter, and WM smoother
were computed as 0.979, 0.211, and 0.692, respectively.
As expected, the outputs of the weighted median filter and
smoother are not affected, whereas the output of the linear
filter is severely degraded as the linear highpass filter amplifies
the high-frequency noise. Table I summarizes the MAE values
attained by the various filters.

VI. CONCLUSIONS

In this paper, it is shown that traditional weighted median
smoothers are analogous to normalized FIR linear filters

constrained to have only positive weights. Much like the mean
is generalized to the rich class of linear FIR filters, it is shown
that the median can also be generalized to a richer class
of WM filters admitting positive and negative weights. The
generalization follows naturally and is surprisingly simple. In
order to analyze and design the general WM filter structure,
the threshold decomposition architecture is extended and used
to derive adaptive optimization algorithms for the new filter
structure. The new structure now allows the use of WM
filters in a large number of applications where “bandpass” and
“highpass” type filtering is required.

Although this paper concentrates on generalizing the WM
filter structure, the underlying methods are readily applicable
to all filters having roots in M-estimation, including the rich
class ofMyriad filters recently introduced in [14] and [15].
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