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Abstract—The normalized least mean square (NLMS) algo-
rithm is an important variant of the classical LMS algorithm
for adaptive linear filtering. It possesses many advantages over
the LMS algorithm, including having a faster convergence and
providing for an automatic time-varying choice of the LMS step-
size parameterthat affects the stability, steady-state mean square
error (MSE), and convergence speed of the algorithm. Anauxil-
iary fixed step-size that is often introduced in the NLMS algorithm
has the advantage that its stability region (step-size range for
algorithm stability) is independentof the signal statistics.

In this paper, we generalize the NLMS algorithm by de-
riving a class of nonlinear normalized LMS-type (NLMS-type)
algorithms that are applicable to a wide variety of nonlinear filter
structures. We obtain a general nonlinear NLMS-type algorithm
by choosing an optimal time-varying step-size that minimizes
the next-step MSE at each iteration of the general nonlinear
LMS-type algorithm. As in the linear case, we introduce a
dimensionless auxiliary step-size whose stability range is indepen-
dent of the signal statistics. The stability region could therefore
be determined empirically for any given nonlinear filter type.
We present computer simulations of these algorithms for two
specific nonlinear filter structures: Volterra filters and the recently
proposed class ofMyriad filters. These simulations indicate that
the NLMS-type algorithms, in general, converge faster than their
LMS-type counterparts.

Index Terms—Adaptive filtering, least mean square, nonlinear
adaptive algorithms, nonlinear filters, normalized LMS.

I. INTRODUCTION

T HE LEAST MEAN square (LMS) algorithm [1] is widely
used for adapting the weights of a linear FIR filter that

minimizes the mean square error (MSE) between the filter
output and a desired signal. Consider an input (observation)

vector of samples and a weight

vector of weights Denote the
linear filter output by The filtering

error, in estimating a desired signal, is then
Under the mean square error (MSE) criterion, the optimal

filter weights minimize the cost function ,
where denotes statistical expectation. In an environment
of unknown or time-varying signal statistics, the standard
LMS algorithm [1] continually attempts to reduce the MSE

Manuscript received May 4, 1998; revised January 26, 1999. This work
was supported in part by the National Science Foundation under Grant MIP-
9530923. The associate editor coordinating the review of this paper and
approving it for publication was Dr. Hitoshi Kiya.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Delaware, Newark, DE 19716 USA.

Publisher Item Identifier S 1053-587X(99)05419-7.

by updating the weight vector, at each time instant, as

(1)

where is the so-calledstep-sizeof the update. The
computational simplicity of the LMS algorithm has made it
an attractive choice for several applications in linear signal
processing, including noise cancellation, channel equalization,
adaptive control, and system identification [1]. However, it
suffers from a slow rate of convergence. Further, its imple-
mentation requires the choice of an appropriate value for the
step-size that affects the stability, steady-state MSE, and con-
vergence speed of the algorithm. The stability (convergence)
of the LMS algorithm has been extensively studied in the lit-
erature [1]. The stability region for mean-square convergence
of the LMS algorithm is given by trace

[1], where is the correlation matrix of
the input vector When the input signal statistics are
unknown or the environment is nonstationary, it is difficult to
choose a step-size that is guaranteed to lie within the stability
region.

The so-called normalized LMS (NLMS) algorithm [1] ad-
dresses the problem of step-size design by choosing atime-
varying step-size in (1) such that the next-step MSE

is minimized at each iteration. This
algorithm can be developed from several different points of
view; we shall focus on the criterion of minimization of the
next-step MSE (see [1, Problem 14]) since this will be the
most convenient interpretation when we later consider the
case of a general nonlinear filter. The step-size that minimizes
the next-step MSE is given by , where

is the squared Euclidean norm of the
input vector After incorporating anauxiliary step-size

, the NLMS algorithm is written as

(2)

The theoretical bounds on the stability of the NLMS algorithm
are given by [1]. A significant advantage here is that
unlike the LMS step-size of (1), the auxiliary step-size is
dimensionless, and the stability region for is independent of
the signal statistics. This allows for an easier step-size design
with guaranteed stability (convergence) of the algorithm. Fur-
ther, the NLMS algorithm has a potentially faster convergence
than the LMS algorithm [2]. The NLMS algorithm can also
be alternatively interpreted as a modification of the LMS
algorithm of (1), where the update term is divided (normalized)
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by the squared-norm so that the update stays bounded
even when the input vector becomes large in magnitude.

In this paper, we generalize the NLMS algorithm of (2) by
deriving a class of nonlinear normalized LMS-type (NLMS-
type) algorithms [3] that are applicable to a wide variety of
nonlinear filter structures. Although linear filters are useful in
a number of applications, several practical situations exist in
which nonlinear processing of the signals involved is essential
in order to maintain an acceptable level of performance. Appli-
cations of nonlinear models and filtering include polynomial
(Volterra) filters used in nonlinear channel equalization and
system identification [4]–[6] and the class oforder statistic
filters used in image processing [7], [8]. Severaladaptive
nonlinear filters have also been developed based on Volterra
and order statistic filters [9]–[11]. Consider now the case of an
arbitrary nonlinear filter whose output is given by
Under the MSE criterion, the LMS algorithm of (1) can be
generalized to yield the class of nonlinear LMS-type adaptive
algorithms (see Section II)

(3)

Note that (3) can be applied to any nonlinear filter for
which the derivatives exist. The above algorithm
inherits the main problem of the LMS algorithm of (1),
namely, the difficulty in choosing the step-size Unlike
the linear case, where step-size bounds are available, no
theoretical analysis of the LMS-type algorithm of (3) has
been performed to derive the stability range for This is
due to the mathematical complexity inherent in most nonlinear
filters. Consequently, there is a strong motivation (much more
than in the linear case) to develop automatic step-size choices
to guarantee stability of the LMS-type algorithm. The class
of nonlinear normalized LMS-type algorithms developed in
this paper addresses this problem of step-size design. Just
as the linear NLMS algorithm of (2) is developed from the
classical LMS algorithm of (1), we obtain a general nonlinear
NLMS-type algorithm from the LMS-type algorithm of (3)
by choosing a time-varying step-size that minimizes the next-
step MSE at each iteration. As in the linear case, we introduce
a dimensionless auxiliary step-size whose stability range has
the advantage of being independent of the signal statistics.
The stability region could therefore be determined empirically
for any given nonlinear filter. We show through computer
simulations that these NLMS-type algorithms have, in general,
a faster convergence than their LMS-type counterparts. As one
of our anonymous reviewers pointed out, normalization has
been employed as a heuristic method for stability in the areas
of numerical analysis and optimization. However, it hasnever
been used in the field ofnonlinear adaptive signal processing.
We have introduced this valuable tool for the first time into the
area of nonlinear signal processing and provided a theoretical
basis for this technique as well.

The paper is organized as follows. Section II presents LMS-
type nonlinear adaptive algorithms. The class of nonlinear
normalized LMS-type (NLMS-type) algorithms is derived in
Section III. In Section IV, we apply the NLMS-type algo-

rithms to two specific nonlinear filter structures: the well-
known polynomial (Volterra) filters and the recently proposed
class ofMyriad filters. The performance of these algorithms
is demonstrated through computer simulations presented in
Section V.

II. NONLINEAR LMS-TYPE ADAPTIVE ALGORITHMS

In this section, we briefly review the derivation of nonlinear
LMS-type adaptive algorithms that have been used in the
literature for the optimization of several types of nonlinear
filters. Consider a general nonlinear filter with the filter output
given by , where and are the -long input
and weight vectors, respectively. Theoptimal filter weights
minimize the mean square error (MSE) cost function

(4)

where is the desired signal, and is the filtering error.
The necessaryconditions for filter optimality are obtained by
setting the gradient of the cost function equal to zero

(5)

Due to the nonlinear nature of and, consequently, of
the equations in (5), it is extremely difficult to solve for the
optimal weights in closed form. Themethod of steepest descent
is a popular technique that addresses this problem by updating
the filter weights using the following equation in an attempt
to continually reduce the MSE cost function:

(6)

where is the th weight at iteration is the
step-sizeof the update, and the gradient at theth iteration
is given from (5) as

(7)

In order to utilize (6), we require a knowledge of the sta-
tistics of the signals involved. When the signal statistics are
either unknown or rapidly changing (as in a nonstationary
environment), we useinstantaneous estimatesfor the gradient

To this end, removing the expectation operator
in (7) and substituting into (6), we obtain the class of nonlinear
LMS-type adaptive algorithms:

(8)

Note that for a linear filter , we have
and (8) reduces, as expected, to the LMS algorithm of

(1). As mentioned in Section I, the mathematical complexity
inherent in nonlinear filtering has prevented a theoretical
analysis of (8) in order to determine the bounds on the step-
size for stable operation of the algorithm. There is therefore
a strong motivation for the development of automatic step-size
choices that guarantee the stability of the LMS-type algorithm.



2264 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 8, AUGUST 1999

The normalized LMS-type algorithms derived in the following
section address this problem by choosing an optimal time-
varying step-size at each iteration.

III. N ONLINEAR NORMALIZED

LMS-TYPE (NLMS-TYPE) ALGORITHMS

We derive the class of nonlinear normalized LMS-type
(NLMS-type) algorithms by choosing atime-varyingstep-size

in the LMS-type algorithm of (8). In order to do
this, we start by rewriting the steepest descent algorithm of
(6), using (5) to obtain

(9)

Now, at the th iteration, thenext-stepMSE is defined by

(10)

where the next-step filtering error is given by

(11)

Note that depends on the next-step weight vector
, which in turn is a function of We obtain the NLMS-

type algorithm from (9) by determining theoptimal step-size,
which is denoted by , that minimizes :

(12)

As mentioned in Section I, the criterion of minimization of
the next-step MSE is one of the several interpretations of the
normalized LMS algorithm of (2) (see [1, Problem 14]). We
use this criterion here since, out of all the interpretations, this
extends most easily to the case of a general nonlinear filter.
To determine , we need an expression for the derivative
function Referring to (10) and (11), we can
use the chain rule to write

(13)

To evaluate the expressions in (13), we first define the follow-
ing functions for notational convenience [see (7)]:

(14)

We can then rewrite the update in (9) as

(15)

Using (15), we obtain one of the terms to be evaluated in (13)
as

(16)

The other term in (13) can be written, using (14), as

(17)

Returning to the derivative function in (13), we substitute (16)
and (17) into (13) to obtain

(18)

Before simplifying (18) further, we note from (15) that

(19)

This leads to the significant observation that corre-
sponds to quantities at time, whereas corresponds to
quantities at time Consequently, we notice in (18)
that depends on , whereas does not. To
emphasize this fact, we define the function

(20)

It follows that

(21)

Using (20) and (21), we have the following expression for the
derivative of

(22)

Due to the nonlinearity of the quantities in the above equation
[see (20) and (21)], it is generally very difficult to simplify
(22) further in closed form. We therefore resort to an approx-
imation by employing a first-order Taylor’s series expansion
(linearization) of the functions about the point ,
assuming a small step-size :

(23)

Using this approximation in (22), we obtain

(24)

Notice that this also implies a linearization of the deriva-
tive function This, in turn, is equivalent to
approximating the next-step MSE as a quadratic
function of Under these assumptions, the optimal step-size
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of (12) is found by setting the (approximate) derivative
of to zero as

(25)

In order to see if (25) leads to aminimum (rather than a
maximum) of , we note from (22) that

(26)

Thus, is (predictably)decreasingat Therefore,
it is reasonable to assume that the quadratic approximation of

attains its globalminimumat some step-size
Using (24) in (25), we then obtain a closed-from, albeit
approximate, expression for the optimal step-size:

(27)

where, from (21)

(28)

is independent of and depends only on the signal statistics at
time We see from (27) that our remaining task is to evaluate

; this expression is derived in the Appendix and is given
by

(29)

We can now substitute (29) and (28) into (27) and obtain an
expression for the optimal step-size Note that (29) and
(28) involve statistical expectations These expectations
are difficult to obtain in an environment of unknown or
time-varying signal statistics. We therefore resort to using
instantaneous estimatesof these expectations, just as in the
derivation of the conventional (linear) LMS algorithm of
(1) or of the nonlinear LMS-type algorithm of (8). To this
end, removing the expectation operator in (29) and (28),
using the resulting expressions in (27), and performing some
straightforward simplifications, we obtain an expression for
the optimal step-size:

(30)

where

(31)

In order to obtain a more manageable and practically useful
expression for , we make the simplifying assumption that

(32)

This is a justifiable assumption for two reasons. First, we see
from (31) that is proportional to the filtering error
Since the error is continually reduced in magnitude by
the adaptive algorithm of (9), in turn becomes smaller
during succeeding iterations, making (32) a progressively
better approximation. Second, referring to the numerator of

in (31), we see that for mild nonlinearities in the filter, the
approximation in (32) amounts to neglecting the effects of
the second-ordercross-derivatives in relation to
the first-order derivatives Using the assumption of
(32) in (30), we finally obtain a simplified expression for the
optimal step-size:

(33)

After incorporating anauxiliary step-size , just as in
the conventional (linear) NLMS algorithm of (2), we can then
write the time-varying step-size to be used in the steepest-
descent algorithm of (9) as

(34)

Finally, on using instantaneous estimates by removing the
expectation operator in the steepest-descent algorithm of (9),
we obtain the following class ofnonlinear normalized LMS-
type adaptive filtering algorithms:

(35)

This algorithm has several advantages.

• It is applicable to a wide variety of nonlinear filters;
in fact, it applies to any nonlinear filter for which the
filter output is an analytic function of each of the filter
weights (so that derivatives of all orders exist).

• The auxiliary step-size is dimensionless, and the stabil-
ity region for is independent of the signal statistics. As a
result, the stability region could be determinedempirically
for any particular nonlinear filter of interest.
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• This algorithm has a potentially faster convergence than
its LMS-type counterpart of (8), as demonstrated by our
simulation results in Section V.

• It can also be interpreted as a modification of the LMS-
type algorithm of (8) in which the update term is divided
(normalized) by the Euclidean squared norm of the set of
values in order to ensure
algorithm stability when these values become large in
magnitude.

It is important to note the following two approximations used
in deriving the nonlinear NLMS-type algorithm of (35):

• Linearization of the function defined in (20) about
the point [see (23)]: This approximation holds
good for any nonlinear filter, as long as the time-varying
step-size is sufficiently small. Note that this is not,
at least directly, a restriction on theauxiliary step-size

• The assumption that [see (31) and (32)]:
Note that the validity of this approximation has to be
investigated on a case-by-case basis for each nonlinear
filter of interest.

Consider now the special case of the linear filter, for which
we have , leading to
It is then easily seen that (35) reduces predictably to the
(linear) NLMS algorithm of (2). A significant point to note
here is that we do not require any of the approximations [see
(23) and (32)] that were used to obtain (35); the derivation
in this case is exact. Indeed, when the filter is linear, the
function of (20) can be shown to belinear in ,
thus eliminating the need for the linearization approximation.
Further, the expressionof (31) is identically equal to zero for
the linear filter, making the approximation (32) unnecessary.

IV. NORMALIZED ADAPTIVE

VOLTERRA AND MYRIAD FILTERS

As mentioned in Section III, the NLMS-type adaptive algo-
rithm of (35) is applicable to any nonlinear filter for which the
filter output is an analytic function of the filter parameters
(weights) so that its derivatives of all
orders exist. In this section, we apply this normalized adaptive
algorithm to two specific types of nonlinear filter structures,
namely,Volterra and Myriad filters. The performance of the
resulting algorithms will be investigated through computer
simulation examples in Section V.

A. Volterra Filters

The Volterra filter belongs to a particularly simple class of
nonlinear filters having the property thatthe filter output is
linear in the filter parameters (weights). Given an input
(observation) vector , the filter output in this class is given by

(36)

where is an vector of filter parameters, and
is a (generally nonlinear) mapping that transforms the

input vector into an modified observation
vector Included in this class are linear filters, filters
based on order statistics [12], [13], permutation filters (which

are generalizations of both linear and order statistic filters)
[14], and Volterra filters [4], among others. In order to obtain
the NLMS-type adaptive filtering algorithm for this class, we
first see from (36) that

(37)

Using this in (8), the LMS-type algorithm to update the
parameter vector can be written as

(38)

and the corresponding NLMS-type algorithm can be written
from (35) as

(39)

where Notice the simplicity of the
above two equations, which are similar to the (linear) LMS
and NLMS algorithms of (1) and (2), respectively. However,
unlike the linear case where there are filter parameters
(weights), the number of parameters for a nonlinear filter
in this class is typically significantly greater than the number
of input samples Consider now the special case of the
Volterra filter, which has found widespread use in nonlinear
signal processing [6], [9]. The output of this filter is given by

(40)

where

(41)

and

(42)

are the filter parameter vector and the modified observation
vector, respectively. Thus, the modified observation vector
contains all possible cross-products of the input samples
In practice, we use atruncated Volterra series, obtaining a
th-order Volterra filter by using terms in the series of (40),

with a parameter vector and a modified
observation vector The normalized
adaptive Volterra filtering algorithm is easily written down by
substituting (40)–(42) into (39), where the quantity
in (39) is given by

(43)

As noted before, the algorithm of (39) is similar to the linear
NLMS algorithm of (2) since the filter output is linear in
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the filter parameters. Therefore, it is reasonable to expect the
stability region for to be the same as in the linear case,
where it is [1]. Our simulations confirm this fact
for the case of the second-order Volterra filter (see Section V).

B. Myriad Filters

As a second example of nonlinear NLMS-type adaptive fil-
tering, we consider the class ofweighted myriad filters, which
have recently been developed for robust signal processing
in impulsive environments [15]–[18]. These filters have been
derived based on the properties of the heavy-tailed class of

-stable distributions [19], which accurately model impulsive
processes. Nonlinear LMS-type adaptive algorithms have also
been derived for the optimization of these filters [17]. Given
an input vector and a vector of real-valued weights, both
of length , the weighted myriad filter output is given by

sgn (44)

where sgn is thesign function, and is called thelinearity
parametersince reduces to the (linear)weighted meanof
the input samples as
For finite , however, the filter output depends only on the

-long filter parameter vector :

sgn (45)

The filter can therefore be adaptively optimized by updating
the parameter vector Now, it can be shown [18] that

(46)

where

and

with sgn Substituting (46)
into (8) and (35), we obtain the LMS-type weighted myriad
filtering algorithm:

(47)

Fig. 1. Clean sum of sinusoidss(n) (top) and desired highpass component
d(n) (bottom).

The corresponding normalized adaptive (NLMS-type) algo-
rithm is given by

(48)

V. SIMULATION RESULTS

The normalized adaptive algorithms of Section IV are in-
vestigated in this section through two computer simulation
examples. In the first example, the weighted myriad filter
is applied to the problem of adaptive highpass filtering of
a sum of sinusoids in an impulsive noise environment. The
second example involves identification of a nonlinear system
using measurements of its input and output in a noiseless
environment with the input–output relationship modeled by
a truncated Volterra series.

Example 1: The normalized adaptive weighted myriad fil-
tering algorithm of Section IV-B was used to extract the
high-frequency tone from a sum of three sinusoidal signals
corrupted by impulsive noise. The observed signal was given
by , where
is the clean sum of sinusoids. Fig. 1 shows a segment of
the signal consisting of sinusoids at digital frequencies

and , with amplitudes
The desired signal , which

is also shown in the figure, is the sinusoid at the highest
frequency The additive noise process was chosen
to have a zero-mean symmetric-stable distribution [19] with
a characteristic exponent and adispersion
Impulsive noise is well-modeled by the heavy-tailed class of

-stable distributions, which includes the Gaussian distribution
as the special case when The characteristic exponent

measures the heaviness of the tails (a smaller
indicates heavier tails), whereas the dispersiondecides the
spread of the distribution around the origin. These distributions
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Fig. 2. Additive �-stable noise signalv(n) (characteristic exponent
� = 1:6, dispersion
 = 0:02).

have infinite variance for The dispersion is
analogous to the variance of a distribution; when ,

is equal to half the variance of the Gaussian distribution.
Fig. 2 shows the additive -stable noise signal used in
our simulations. As the figure shows, the chosen noise process
simulates low-level Gaussian-type noise as well as impulsive
interference consisting of occasional spikes in the signal.

The LMS-type algorithm of (47) and the normalized LMS-
type algorithm of (48) in Section IV-B were used to train a
weighted myriad filter to extract the desired highpass signal

from the noisy observed signal The filter window
length was chosen to be In all cases, the initial weights
in the adaptive algorithms were all identical and normalized
to sum to unity:
The linearity parameter was arbitrarily chosen to be ;
recall from Section IV-B that the filter output depends only
on A step-size of was used in the
LMS-type algorithm; this pushed the algorithm fairly close
to its stability limits while maintaining an acceptable final
MSE. The normalized LMS-type algorithm was used with
an auxiliary step-size , which is its default value,
corresponding to the optimal step-size at each iteration step.
Note that this implies anautomatic step-size choice in the
NLMS-type algorithm, without a need for step-size design. In
our simulations, we also investigated other choices forand
their effect on the final MSE. The final MSE increased with

, as expected. Further, it was found that the MSE increased
much more rapidly with when , compared with its
behavior for It is recommended that be chosen
nearer to 1.0 in practice to ensure a reliable performance of
the algorithm.

Table I shows the final weights obtained by the two algo-
rithms (with and ) using 1000 samples of
the noisy observed signal The final trained filters, using
both the adaptive algorithms, were successful in accurately
extracting the high-frequency sinusoidal component. We do
not show the filter outputs (using the trained filter weights)
here since they are very close to the desired signal. The

TABLE I
FINAL WEIGHTS OBTAINED BY THE ADAPTIVE

WEIGHTED MYRIAD FILTERING ALGORITHMS

Fig. 3. MSE learning curves for adaptive weighted myriad filtering,
LMS-type (top), and NLMS-type (bottom).

MSE’s achieved by the trained filters, using both the LMS-
type and the NLMS-type algorithms, were almost the same
(around 0.0022). This allows for a meaningful comparison of
the convergence speeds of the two algorithms. Fig. 3 shows
the learning curves (MSE as a function of algorithm iterations)
for the LMS-type as well as the NLMS-type algorithms.
The LMS-type algorithm converges in about 100 iterations
to an MSE below 0.02. On the other hand, the NLMS-type
algorithm is aboutten times faster, converging to the same
MSE in just ten iterations. The figure clearly indicates the
dramatic improvement in convergence speed when employing
the NLMS-type algorithm. Notice the values of the MSE’s
in these curves; the NLMS-type algorithm has a lower MSE
at each iteration step. This is expected since the NLMS-type
algorithm was derived to minimize the next-step MSE at each
iteration of the LMS-type algorithm.

Example 2: We apply the normalized adaptive Volterra
filtering algorithm of (39) to the problem of adaptive iden-
tification of an unknown nonlinear system in a noiseless
environment. Fig. 4 shows the block diagram representing
our simulation experiment. It is assumed that the unknown
system can be adequately modeled using a Volterra filter.
A known commoninput signal is applied both to the
unknown nonlinear system and to the adaptive Volterra filter.
The desired signal is the output of the unknown system.
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Fig. 4. Nonlinear system identification using a Volterra filter model.

TABLE II
FILTER TAP INPUTS AND CORRESPONDINGTAP WEIGHTS

OF THE SECOND-ORDER VOLTERRA NONLINEAR SYSTEM TO BE

IDENTIFIED, WITH THE INPUT VECTOR x = [x1; x2; x3; x4; x5]T

The objective of the adaptive algorithms is to minimize the
mean squared value of theerror between thedesired
signal and the output (estimate) of the adaptive
Volterra filter.

In our simulation example, both the unknown system and
the adaptive filter were chosen to be second-order (quadratic)
Volterra filters with the observation window size
For an -long observation vector , the outputs of these
systems are given by and , where the
modified observation vector is given by (42).
Table II shows the parameters (weights) of the system to
be identified, along with the corresponding tap inputs for an
observation vector The linear and
quadratic parts of the system together constitute a parameter
vector of length For the input signal , we
chose a zero-mean white Gaussian process (i.i.d. samples)
with unit variance. The objective of the adaptive algorithms
is to train the adaptive Volterra filter of Fig. 4 such that its
parameter vector converges to the vector of Table II.

The LMS-type algorithm of (38) and the NLMS-type algo-
rithm of (39) were applied to train the adaptive Volterra filter.
Each algorithm was run for 5000 iterations, with the initial

filter weights chosen to be all zero: This experiment
was repeated for 100 independent trials, using a different
realization of the input signal for each trial, in order to
obtain the average convergence behavior of the algorithms.
For the NLMS-type algorithm, the auxiliary step-size used
was its default value , corresponding to the optimal
(automatic) step-size choice at each iteration step. The step-
size for the LMS-type algorithm was chosen
such that the final ensemble-averaged mean square error
(MSE) was comparable with that of the NLMS-type algorithm.
As a secondary experiment, we also determined the stability
region of the NLMS-type algorithm for second-order Volterra
filtering. This was done by increasinguntil the onset of algo-
rithm instability. The step-size bounds turned out to be around

, confirming our prediction in Section IV-A.
Fig. 5 shows the trajectories of some of the filter weights,

averaged over all the 100 independent trials, for both the
algorithms. In all cases, the algorithms converged to values
that were very close to the weights of the unknown system
given in Table II. As the figure shows, the filter weights
converge in about 400–500 iterations using the LMS-type
algorithm, whereas the convergence is much faster (in about
50–60 iterations) with the normalized LMS-type algorithm.
This amounts to about a ten-fold increase in speed for most
of the weights. Note that the step-size parameters were chosen
so that the final MSE’s of the two algorithms are of the same
order ; this allows for a fair comparison of their
convergence speeds from the weight trajectories.

The ensemble-averaged MSE learning curves of the two
algorithms are shown in Fig. 6. These curves plot the squared
error, averaged over all the trials, as a function of algorithm
iterations. As these curves indicate, the NLMS-type algorithm
converges in about 60 iterations, whereas the LMS-type algo-
rithm appears to converge in about 300 iterations. In fact, the
LMS-type algorithm takes much longer than this to converge;
the MSE’s of the two algorithms approach the same order of
magnitude only after 5000 iterations. As mentioned
previously, a meaningful comparison of the two algorithms
is possible from these curves since their final MSE’s are
of the same order. Thus, the NLMS-type algorithm is seen
to converge much faster than the LMS-type algorithm at
comparable steady-state MSE’s.

VI. CONCLUSION

In this paper, we generalized the normalized LMS algorithm
(proposed for linear adaptive filtering) by developing a new
class ofnonlinear normalized LMS-type (NLMS-type)adaptive
algorithms that are applicable to a wide variety of nonlinear fil-
ter structures. These algorithms were derived from the class of
nonlinear stochastic gradient (LMS-type) algorithms by choos-
ing an optimal time-varying step-size parameter that minimizes
the next-step mean square error (MSE) at each iteration of the
adaptive algorithm. By providing for an automatic choice for
the step-size, the NLMS-type algorithms eliminate the difficult
problem of step-size design that is inherent in all LMS-type
algorithms. We illustrated the application of these algorithms
through two computer simulation examples: adaptive nonlinear
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(a) (b)

(c) (d)

Fig. 5. Ensemble-averaged tap weight trajectorieshi(n) for adaptive Volterra system identification using LMS-type (dashed) and NLMS-type (solid)
algorithms. (a)h1(n) and h3(n). (b) h4(n) and h7(n). (c) h10(n) and h13(n). (d) h17(n) and h20(n):

Fig. 6. Ensemble-averaged MSE learning curves for adaptive Volterra sys-
tem identification using LMS-type (dashed) and NLMS-type (solid) algo-
rithms.

highpass filtering of a sum of sinusoids in impulsive noise
using a weighted myriad filter and adaptive identification of
a nonlinear system modeled as a second-order Volterra filter.

Our experimental results, including ensemble-averaged MSE
learning curves and filter weight trajectories, indicate that the
NLMS-type algorithms, in general, converge faster than their
LMS-type counterparts at comparable steady-state MSE’s.
These normalized algorithms need to be investigated further
by applying them to various nonlinear filters and studying the
convergence behavior as well as the steady-state performance
in each case.

APPENDIX

DERIVATION OF

In this Appendix, we derive the expression for given
in (29), that is, we show that

(49)
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From (20), we have

(50)

Using in (50), we can write

(51)

where we have introduced the two terms and for
convenience. Note that , and

is in turn a function of , whereas the desired signal
is independent of We can use the chain rule of

differentiation to expand the first term in (51) as

(52)

where we have used (16) and (21) and introduced a new
function for convenience.
Similarly, we can expand the second term in (51) as follows:

(53)

where we have introduced another new function
for convenience. Referring to (51), we

see that the quantity desired is

(54)

Recall from (19) that corresponds to
Using this fact in the definition of given in (52), we
can write

(55)

Now, noting that is a deterministic quantity in the steep-
est descent algorithm of (9) and assuming that the processes

and are strictly stationary, we conclude that

(56)

Notice that the right-hand side in the above equation involves
quantities at time only. Using (56) in (55) and the definition
of given in (52), we finally obtain

(57)

Following a similar procedure to derive the quantity from
(53), we obtain

(58)

Using (57) and (58) in (54), we finally have the desired
expression for :

(59)
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