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A General Class of Nonlinear Normalized
Adaptive Filtering Algorithms
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Abstract—The normalized least mean square (NLMS) algo- by updating the weight vector, at each time instants
rithm is an important variant of the classical LMS algorithm
for adaptive linear filtering. It possesses many advantages over w(n + 1) =w(n) — pe(n)z(n) ()
the LMS algorithm, including having a faster convergence and

providing for an automatic time-varying choice of the LMS step- \here ;» > 0 is the so-calledstep-sizeof the update. The

size parametethat affects the stability, steady-state mean square : : - : :
error (MSE). and convergence speed of the algorithm. Arauxil- computational simplicity of the LMS algorithm has made it

iary fixed step-size that is often introduced in the NLMS algorithm @n attractive choice for several applications in linear signal

has the advantage that its stability region (step-size range for processing, including noise cancellation, channel equalization,

algorithm stability) is independentof the signal statistics. adaptive control, and system identification [1]. However, it
In this paper, we generalize the NLMS algorithm by de- gyffers from a slow rate of convergence. Further, its imple-

riving a class of nonlinear normalized LMS-type (NLMS-type) aniation requires the choice of an appropriate value for the
algorithmsthat are applicable to a wide variety of nonlinear filter

structures. We obtain a general nonlinear NLMS-type algorithm ~ SteP-Sizq: that affects the stability, steady-state MSE, and con-
by choosing an optimal time-varying step-size that minimizes vergence speed of the algorithm. The stability (convergence)
the next-step MSE at each iteration of the general nonlinear of the LMS algorithm has been extensively studied in the lit-

LMS-type algorithm. As in the linear case, we introduce a erature [1]. The stability region for mean-square convergence

dimensionless auxiliary step-size whose stability range is indepen- : e
dent of the signal statistics. The stability region could therefore of the LMS algorithm is given by0 < p < (2/traceR))

A . . .
be determined empirically for any given nonlinear filter type. [1], where R = E{z(n)z’ (n)} is the correlation matrix of

We present computer simulations of these algorithms for two the input vectorz(n). When the input signal statistics are
specific nonlinear filter structures: Volterra filtersand the recently  nknown or the environment is nonstationary, it is difficult to

roposed class ofMyriad filters. These simulations indicate that . . . . L
FhepNLMS-type algo)r/ithms, in general, converge faster than their choose a step-size that is guaranteed to lie within the stability

LMS-type counterparts. region. _ _
The so-called normalized LMS (NLMS) algorithm [1] ad-

dresses the problem of step-size design by choositime:
varying step-sizeu(n) in (1) such that the next-step MSE
Int1 2 E{e*(n + 1)} is minimized at each iteration. This
|. INTRODUCTION algorithm can be developed from several different points of
HE LEAST MEAN square (LMS) algorithm [1] is widely view; we shall focus on the criterion of minimization of the
used for adapting the weights of a linear FIR filter thatext-step MSE (see [1, Problem 14]) since this will be the
minimizes the mean square error (MSE) between the filtgrost convenient interpretation when we later consider the
output and a desired signal. Consider an input (observatimase of a general nonlinear filter. The step-size that minimizes

vector of N samplesz 2 [z1,72,...,zx]7 and a weight the next—ztep MSE is given by(n) ~ (1/[lz(n)||*), where
vector of N weights w 2 [wy,w,---,wy]?. Denote the |[&(n)||* = X1;27(n) is the squared Euclidean norm of the

linear filter output byy = y(w,z) = w’z. The filtering NPUt vectorz(n). After incorporating anauxiliary step-size

error, in estimating a desired signd) is thene 2 y—d. # > 0, the NLMS algorithm is written as

Under the mean square error (MSE) criterionA the optimal win+ 1) = w(n) — i e(n) 2(n) @
filter weights minimize the cost function(w) = E{c?}, N llz(n)|? ’

where E{-} denotes statistical expectation. In an environment ] - )

of unknown or time-varying signal statistics, the standarghe theoretical bounds on the stability of the NLMS algorithm

LMS algorithm [1] continually attempts to reduce the MSEXE given by < i <2[1]. A significant advantage here is that
unlike the LMS step-size of (1), the auxiliary step-sizg is
dimensionlessand the stability region fofi is independent of

. : . _ the signal statistics. This allows for an easier step-size design
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by the squared-norie(n)||* so that the update stays boundedthms to two specific nonlinear filter structures: the well-

even when the input vectar(n) becomes large in magnitude.known polynomial (Volterra) filters and the recently proposed
In this paper, we generalize the NLMS algorithm of (2) bglass ofMyriad filters. The performance of these algorithms

deriving a class of nonlinear normalized LMS-type (NLMSis demonstrated through computer simulations presented in

type) algorithms [3] that are applicable to a wide variety dbection V.

nonlinear filter structures. Although linear filters are useful in

a number of applications, several practical situations exist in ||, NONLINEAR LMS-TYPE ADAPTIVE ALGORITHMS

which nonlinear processing of the signals involved is essential

. o - In this section, we briefly review the derivation of nonlinear
in order to maintain an acceptable level of performance. Appli- . . )

. . o . LMS-type adaptive algorithms that have been used in the
cations of nonlinear models and filtering include polynomi |

(Volterra) filters used in nonlinear channel equalization ar}ﬁerature for the optimization of several types of nonlinear

system identification [4]-{6] and the class ofder statistic _ters. Consider a general nonlinear filter with the filtgr output
filters used in image processing [7], [8]. Seveeaaptive glr\lldenwt()e?/%t:vgéqtlc];r?,r\elz\l:eerg{icv;ndT'F]h:;t?rr:gﬁivlt;crmv?/elinﬂtj;
nonlinear filters have also been developed based on \olterra 9 ’ P y: 9

and order statistic filters [9]-[11]. Consider now the case of gpnmize the mean square error (MSE) cost function

arbitrary nonlinear f_ilte_r whose output is giyen e y(w, ). J(w) = E{?} = E{(y(w,x) — d)?} (4)
Under the MSE criterion, the LMS algorithm of (1) can be _ ) _ ) o
generalized to yield the class of nonlinear LMS-type adaptivéhered is the desired signal, and= y—d is the filtering error.

algorithms (see Section I1) The'necessar)cqnditions for filter optimality are obtained by
5 setting the gradient of the cost function equal to zero
Y
wi(n +1) = wi(n) — pe(n) (n)
Ow; a‘]_(“’)IQE{Cﬂ}:O7 i=1,2---,N. (5
i=1,2---,N. (3) dw; w;

Note that (3) can be applied to any nonlinear filter foPUe to the nonlinear nature g{w,z), and, consequently, of

which the derivative¢dy/dw; )(n) exist. The above algorithm the equations in (5), it is extremely difficult to solve for the
inherits the main problem of the LMS algorithm of (1)optimal weights in closed form. Theethod of steepest descent

namely, the difficulty in choosing the step-size> 0. Unlike 1S @ popular technique that addresses this problem by updating

the linear case, where step-size bounds are available, i filter weights using the following equation in an attempt
theoretical analysis of the LMS-type algorithm of (3) hal® continually reduce the MSE cost function:

been performed to derive the stability range far This is B 1 aJ
due to the mathematical complexity inherent in most nonlinear win +1) =wi(n) - 5 H o, (n)
filters. Consequently, there is a strong motivation (much more i=1,2,---,N (6)

than in the linear case) to develop automatic step-size choices

to guarantee stability of the LMS-type algorithm. The clasgherew;(n) is the ith weight at iterationn, x> 0 is the

of nonlinear normalized LMS-type algorithms developed iftep-sizeof the update, and the gradient at thth iteration
this paper addresses this problem of step-size design. J&sgiven from (5) as

as the linear NLMS algorithm of (2) is developed from the 47 Ay .

classical LMS algorithm of (1), we obtain a general nonlinear 7~ (n) = QE{C(”) E (”)}7 i=12-- N (7)
NLMS-type algorithm from the LMS-type algorithm of (3) ! !

by choosing a time-varying step-size that minimizes the nexg order to utilize (6), we require a knowledge of the sta-
step MSE at each iteration. As in the linear case, we introduigtics of the signals involved. When the signal statistics are
a dimensionless auxiliary step-size whose stability range Heigher unknown or rapidly changing (as in a nonstationary
the advantage of being independent of the signal statisti€§lvironment), we usistantaneous estimatésr the gradient
The stability region could therefore be determined empirically?-//9w;)(n). To this end, removing the expectation operator
for any given nonlinear filter. We show through computeh (7) and substituting into (6), we obtain the class of nonlinear
simulations that these NLMS-type algorithms have, in gener&f1S-type adaptive algorithms:

a faster convergence than their LMS-type counterparts. As one oy
of our anonymous reviewers pointed out, normalization has wi(n +1) =wi(n) — pe(n)7 = (n)
been employed as a heuristic method for stability in the areas i=1.9.... ]\Zf (8)

of numerical analysis and optimization. However, it In@ser

been used in the field afonlinear adaptive signal processing Note that for a linear filtefy = w’ z), we have(dy/ow;) =

We have introduced this valuable tool for the first time into the;, and (8) reduces, as expected, to the LMS algorithm of

area of nonlinear signal processing and provided a theoreti¢h). As mentioned in Section |, the mathematical complexity

basis for this technique as well. inherent in nonlinear filtering has prevented a theoretical
The paper is organized as follows. Section Il presents LM&nalysis of (8) in order to determine the bounds on the step-

type nonlinear adaptive algorithms. The class of nonlineaize . for stable operation of the algorithm. There is therefore

normalized LMS-type (NLMS-type) algorithms is derived ira strong motivation for the development of automatic step-size

Section Ill. In Section IV, we apply the NLMS-type algo-choices that guarantee the stability of the LMS-type algorithm.
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The normalized LMS-type algorithms derived in the followindgrhe other term in (13) can be written, using (14), as
section address this problem by choosing an optimal time-

. : , . g1 (4) 9
varying step-size:(n) at each iteration. ntl = J 1
ying step-sizgu(n) Fusn 4+ 1) = B T D) (w(n + 1))
aJ
[1l. N ONLINEAR NORMALIZED =50 (n+1)=-2A;(n+1). (17)
J

LMS-TYPE (NLMS-TYPE) ALGORITHMS

We derive the class of nonlinear normalized Lms-typgeturning_to the derivative_function in (13), we substitute (16)
(NLMS-type) algorithms by choosingtane-varyingstep-size and (17) into (13) to obtain
wu(n) > 0 in the LMS-type algorithm of (8). In order to do 5 ‘
this, we start by rewriting the steepest descent algorithm of 9 —_9 As(n+ DA (n). 18
(6), using (5) to obtain O e (i) Z i ;) (18)

wi(n +1) = wi(n) — uE{e(n) guy] (n)}_ (9) Before simplifying (18) further, we note from (15) that
p=0=wln+1)=wn). (19)

Now, at thenth iteration, thenext-stepMSE is defined by
This leads to the significant observation that= 0 corre-

Jng1 2 J(w(n+1)) = E{c*(n+ 1)} (10) sponds to quantities at time, whereasy, > 0 corresponds to
o o guantities at time(n + 1). Consequently, we notice in (18)
where the next-step filtering errefn + 1) is given by that A;(n + 1) depends oru, whereasA(n) does not. To

cn+1) =y(n+1) — din+1) emphasize this fact, we define the function

"y
Note thatJ,,+1 depends on the next-step weight veaign + j=1,2,---,N. ! (20)
1), which in turn is a function of: > 0. We obtain the NLMS-
type algorithm from (9) by determining thaptimal step-size, It follows that
which is denoted by:, (), that minimizes/,, 11 = J,11(p): oy
Fy0) =) = =B{ ey 3 ()]

A .
o = arg ]n . 12
fo(n) = arg min Jy () (12) i—lo. N 1)

As mentioned in Section |, the criterion of minimization ofUSlng (20) and (21), we have the following expression for the

the next-step MSE is one of the several interpretations of thg iyative of Tng1(p0):

normalized LMS algorithm of (2) (see [1, Problem 14]). We

use this criterion here since, out of all the interpretations, this 9

extends most easily to the case of a general nonlinear filter. o Jng1(p) = —22 Fi( (22)

To determineu, (n), we need an expression for the derivative
function (8/0u).J,,+1(1). Referring to (10) and (11), we can

. . Due to the nonlinearity of the quantities in the above equation
use the chain rule to write

[see (20) and (21)], it is generally very difficult to simplify
(22) further in closed form. We therefore resort to an approx-
imation by employing a first-order Taylor's series expansion
(linearization) of the functiond’; () about the point: = 0,
assuming a small step-size > 0:

a N 0Jngi() dwi(n+1)
Tnp Z dw;(n + 1) o ) (13)

To evaluate the expressions in (13), we first define the follow

ing functions for notational convenience [see (7)]: Fy(p) = F;(0) + pF(0)
/ 190J ay a
An)e -2 = —E Y _F 9
i(n) 2 9w, (n) {e(n) B (n)} Fi(0)+ ” Fi(1) H:o]' (23)

Using this approximation in (22), we obtain
We can then rewrite the update in (9) as

N
wi(n +1) = wi(n) + p - Ai(n), 1=1,2,---,N. (15) %Jrﬁl(u)%—Q [Z EjQ +u Z Fi(0 ] (24)

Using (15), we obtain one of the terms to be evaluated in (1&? _ ) o ) o )
as otice that this also implies a linearization of the deriva-

tive function (9/9p)J,+1(u). This, in turn, is equivalent to
dw;(n +1) = A;(n) i=1.2..... N (16) approximating the next-step MSH,,1(x:) as aquadratic
7 ? J 9= ’ . . . . .
I function of ;.. Under these assumptions, the optimal step-size
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wo(n) of (12) is found by setting the (approximate) derivativevhere
of J, to zero as r r
=0. (25) ca, =t k=1

e -

o(n): 8% T (1)

(31)

n=po(n) N ay 212
In order to see if (25) leads to minimum (rather than a ; <8—wj>
maximum) of .J,, 1 (¢), we note from (22) that

In order to obtain a more manageable and practically useful

K] expression fof:, (n), we make the simplifying assumption that

N
—.J, (u)‘ =-2% F?0)<o0. (26)
T 2:) ’ )] < 1. (32)

Thus,J,.,1(;) is (predictably)decreasingat ;. = 0. Therefore, This is a justifiable assumption for two reasons. First, we see
it is reasonable to assume that the quadratic approximationfigfn (31) that () is proportional to the filtering errot(n).
Jnt1 () attains its globaminimumat some step-sizg > 0. Since the errok(n) is continually reduced in magnitude by
Using (24) in (25), we then obtain a closed-from, albethe adaptive algorithm of (9)£(n)| in turn becomes smaller
approximate, expression for the optimal step-size: during succeeding iterations, making (32) a progressively
better approximation. Second, referring to the numerator of
N £ in (31), we see that for mild nonlinearities in the filter, the
Z Ff(O) approximation in (32) amounts to neglecting the effects of
Jo(n) ~ — j=1 27) the second-ordesross-derivative®?y /9w dw; in relation to
N the first-order derivative®y/dw;. Using the assumption of
Z F1(0) F;(0) (32) in (30), we finally obtain a simplified expression for the
j=1 optimal step-size:

where, from (21) Jo(n) ~ — 1 ' (33)
0 5 (52 <n>)2
F;(0)= —E{e(n)—y (n)}, j=12---,N (28) = Ow,

8wj

After incorporating anauxiliary step-sizeii > 0, just as in

i_s independent ok and depends only on t_he signa_ll stafistics #he conventional (linear) NLMS algorithm of (2), we can then
time n. We see from (27) that our remaining task is to evaluawrite the time-varying step-size to be used in the steepest-
F}(0); this expression is derived in the Appendix and is 9iVefascent algorithm of (9) as

by
u(n) = i po(n) = ——— NI
P = -3 1) Bletn) 2L () )
J o — k en Owidw; " Jz::l <8—wj (”))
15 15
+ L (n) —y (n) ¢ (29) Finally, on using instantaneous estimates by removing the
dwy, Ow;

expectation operator in the steepest-descent algorithm of (9),

We can now substitute (29) and (28) into (27) and obtain e obtain the following class afionlinear normalized LMS-

expression for the optimal step-size(n). Note that (29) and type adaptive filtering algorithms

(28) involve statistical expectation8{-}. These expectations _ i oy

are difficult to obtain in an environment of unknown or Wi(?+1) =wi(n) - — P 7 en) ow; (n)
time-varying signal statistics. We therefore resort to using Z <—y (n))

instantaneous estimatexf these expectations, just as in the j=1 Ow;

derivation of the conventional (linear) LMS algorithm of i=1,2,---,N. (35)

(1) or of the nonlinear LMS-type algorithm of (8). To this

end, removing the expectation operator in (29) and (28)his algorithm has several advantages.

using the resulting expressions in (27), and performing somes It is applicable to a wide variety of nonlinear filters;
straightforward simplifications, we obtain an expression for in fact, it applies to any nonlinear filter for which the

the optimal step-size: filter outputy is an analytic function of each of the filter
weightsw; (so that derivatives of all orders exist).
o) ~ < 1 ) . 1 (30)  * The auxiliary step-sizg is dimensionless, and the stabil-
1+ &(n) N Ay 2 ity region forjx is independent of the signal statistics. As a
> <£ (”)) result, the stability region could be determiredpirically
j=1 / for any particular nonlinear filter of interest.
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e This algorithm has a potentially faster convergence thame generalizations of both linear and order statistic filters)
its LMS-type counterpart of (8), as demonstrated by o(it4], and Volterra filters [4], among others. In order to obtain

simulation results in Section V. the NLMS-type adaptive filtering algorithm for this class, we
It can also be interpreted as a modification of the LMSirst see from (36) that

type algorithm of (8) in which the update term is divided oy .

(normalized by the Euclidean squared norm of the set of 3/;1 = %, i=1,2,---, M. (37)

values(dy/ow;)(n),¢ = 1,2,---, N in order to ensure o )
algorithm stability when these values become large WSIng this in (8), the LMS-type algorithm to update thex 1
magnitude. parameter vectok can be written as

It is important to note the following two approximations used h(n+ 1) = h(n) — pe(n)z(n) (38)
in deriving the nonlinear NLMS-type algorithm of (35):

* Linearization of the functiorF; () defined in (20) about
the pointy, = 0 [see (23)]: This approximation holds R
good f_or any ponlin(_aa_r filter, as long as the time—_varying h(n+1) = h(n) — M - e(n)z(n) (39)
step-sizeu(n) is sufficiently small. Note that this is not, llz(n)|l
at least directly, a restriction on ttaxiliary step-sizei. 0 A wm o i o

« The assumption thaf(n)| < 1 [see (31) and (32)]; where ||z(n)|| = Yin % _(n). Notice the simplicity of the
Note that the validity of this approximation has to p&bove two equations, which are similar to the (linear) LMS

investigated on a case-by-case basis for each nonlin@qu NLMS glgorithms of (1) and (2), resp_ectively. However,
filter of interest. unlike the linear case where there alé filter parameters

Consider now the special case of the linear filter, for WhiCWeights), the number of parameters for a nonlinear filter
we havey — w? IeadFi)n to( /0w = s i — 1.2 ' N in this class is typically significantly greater than the number

- havey = w” , 91(dy/Ow;) = wiyi =12, -, N. = input samplesN. Consider now the special case of the
It is then easily seen that (35) reduces predictably to tkva

. ) o ; Olterra filter, which has found widespread use in nonlinear
(linear) NLMS algorithm of (2). A significant point to note _. - e
here is that we do not require any of the approximations [Sggnal processing [6], [9]. The output of this filter is given by

and the corresponding NLMS-type algorithm can be written
from (35) as

(23) and (32)] that were used to obtain (35); the derivation A . NN o
in this case is exact. Indeed, when the filter is linear, the ¥ = Z wy (i) xi"‘z Z wa(i,J) @ @i+ -
function F;(u) of (20) can be shown to bédinear in g, i=1 =l g=1
thus eliminating the need for the linearization approximation. =hizi+hizo+---
Further, the expressiahof (31) is identically equal to zero for R (40)
the linear filter, making the approximation (32) unnecessary.
where
IV. NORMALIZED ADAPTIVE 2 YR T
VOLTERRA AND MYRIAD FILTERS = [wi(1),w(2),---, w1 (N)
As mentioned in Section Ill, the NLMS-type adaptive algo- wa(1,1), - -+, wo (N, N)|ws(1,1,1), - .]T (41)

rithm of (35) is applicable to any nonlinear filter for which the

filter outputy is an analytic function of the filter parameter&h

(weights) w;,¢ = 1,2,---, N so that its derivatives of all 22 (27122 |*
orders exist. In this section, we apply this normalized adaptive i (42)
algorithm to two specific types of nonlinear filter structures,

namely, Volterra and Myriad filters. The performance of the are the filter parameter vector and the modified observation
resulting algorithms will be investigated through computearector, respectively. Thus, the modified observation vegtor

2 2
$17$1$27...7$Ar .-

:[$17$27"'7$A’

simulation examples in Section V. contains all possible cross-products of the input samfales.
In practice, we use #@uncated Volterra serigsobtaining a
A. Volterra Filters pth-order \Volterra filter by using terms in the series of (40),
i o T r e T ifi
The Volterra filter belongs to a particularly simple class o\f"th a parameter vectdr = [hy |h, |---|h,]" and a modified

observation vectorz: = [z{|25]---|z.]". The normalized
adaptive Volterra filtering algorithm is easily written down by
substituting (40)—(42) into (39), where the quantity(n)]|?

in (39) is given by

nonlinear filters having the property thte filter output is
linear in the filter parameters (weightsgiven anN x 1 input
(observation) vectot, the filter output in this class is given by

3T _ 4T
y=hz=hf(z) B8 Jlz(m)ll? = za (I + llzalm)|” + -
whereh is anM x 1 vector of filter parameters, and R al 5 Al 9 9
RM is a (generally nonlinear) mapping that transforms the = Z ;i (n) +Z Z zi(n) xj(n) +--- (43)
=1 =1 j=1

N x 1 input vectorz into an M x 1 modified observation
vector z. Included in this class are linear filteré/ filters As noted before, the algorithm of (39) is similar to the linear
based on order statistics [12], [13], permutation filters (whidLMS algorithm of (2) since the filter output is linear in
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the filter parameters. Therefore, it is reasonable to expect the 1 , . . . ;
stability region forj to be the same as in the linear case,
where it is0 < & < 2 [1]. Our simulations confirm this fact

for the case of the second-order Volterra filter (see Section V)5 o

-0.5F B

B. Myriad Filters

As a second example of nonlinear NLMS-type adaptive fil-  ° 50 100 150 200 250 300
tering, we consider the class wkighted myriad filterswhich
have recently been developed for robust signal processing
in impulsive environments [15]-[18]. These filters have been 02
derived based on the properties of the heavy-tailed class of
a-stable distributions [19], which accurately model impulsive ©
processes. Nonlinear LMS-type adaptive algorithms have also %2
been derived for the optimization of these filters [17]. Given _;, . . . . .
an input vectoes and a vector of real-valued weighs both 0 50 100 1%0 200 20 800
of length N, the weighted myriad filter output is given by

0

Fig. 1. Clean sum of sinusoidgn) (top) and desired highpass component
d(n) (bottom).

N
y =yk (w,x) 2 arg min Z
P The c_orre;ponding normalized adaptive (NLMS-type) algo-
log[K? + |uwi| - (6 — sgr(w;) =;)?]  (44) Thm is given by
where sgf) is thesign function and X is called thdinearity hi(n +1) =hi(n) + i e(n) AA& 8 (n)
parametersinceyy reduces to the (lineawyeighted mearof : 52
the input samples a& — oo: yoo = LN, wjz; /X0 w;. z:l 5 ()
. . . ]:
For finite K, however, the filter output depends only on the i=1.2... N (48)

N-long filter parameter vectak 2 w/K?:

V. SIMULATION RESULTS

y=y(h,x) £ arg min Z The normalized adaptive algorithms of Section IV are in-
S vestigated in this section through two computer simulation
-log[1 + |h;] - (6 — sgn(h;) -xi)Q], (45) examples. In the first example, the weighted myriad filter

is applied to the problem of adaptive highpass filtering of
sum of sinusoids in an impulsive noise environment. The
cond example involves identification of a nonlinear system
using measurements of its input and output in a noiseless
environment with the input—output relationship modeled by

The filter can therefore be adaptively optimized by updatin?
the parameter vectdi. Now, it can be shown [18] that €

9y _ _ﬁ7 i=1,2-- N (46) a truncated Volterra series.
Oh; A Example 1: The normalized adaptive weighted myriad fil-
tering algorithm of Section IV-B was used to extract the
where high-frequency tone from a sum of three sinusoidal signals
w. corrupted by impulsive noise. The observed signal was given
b= o3 t1=1,2,--- N by z(n) = s(n) + v(n), wheres(n) = X2_, a sin(27 fin)
(14 i) is the clean sum of sinusoids. Fig. 1 shows a segment of
the signals(n) consisting of sinusoids at digital frequencies
and fo = 0.008, f; = 0.012, and f» = 0.2, with amplitudes
N 1= |hy|u2 (ag,a1,a2) = (0.4,0.3,0.3). The desired signaki(n), which
A= Z |71 4’2’2 is also shown in the figure, is the sinusoid at the highest
j=1 (L [Rjlu) frequency f». The additive noise process(n) was chosen

. ) _ to have a zero-mean symmetriestable distribution [19] with
with w; = sgr(f;) -y — a;,i = 1,2,---, N. Substituting (46) 5 characteristic exponent = 1.6 and adispersiony = 0.02.
into (8) and (35), we obtain the LMS-type weighted myriag o isive noise is well-modeled by the heavy-tailed class of
filtering algorithm: a-stable distributions, which includes the Gaussian distribution
6.n) as the special case when= 2. The characteristic exponent
‘ g i\ (0 < « < 2) measures the heaviness of the tails (a smaller
hin + 1) = hi(n) + e e(n) A(n) indicates heavier tails), whereas the dispersjodecides the
1=1,2,--- N. (47) spread of the distribution around the origin. These distributions
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1 y T T T TABLE |
FINAL WEIGHTS OBTAINED BY THE ADAPTIVE
WEIGHTED MYRIAD FILTERING ALGORITHMS

Weights | Weighted Myriad (K = 1.0)
w; LMS-type NLMS-type
wy 0.0249 0.0084
Wy -0.0945 -0.2118
w3 -0.1119 -0.2429
wy 0.0306 0.0151
ws 0.3427 0.9579
We 0.0179 0.0049
Wy -0.1225 -0.1773
[ -0.1011 -0.2284
Wy 0.0220 0.0099

0.8

0 200 400 600 800 1000
n 0.6

Fig. 2. Additive a-stable noise signalv(n) (characteristic exponent

¢ ) o4t
a = 1.6, dispersiony = 0.02). -

0.2

have infinite variance fof < « < 2. The dispersiony is 100

analogous to the variance of a distribution; when= 2,
~ is equal to half the variance of the Gaussian distribution.
Fig. 2 shows the additiver-stable noise signak(n) used in
our simulations. As the figure shows, the chosen noise processo-15y
simulates low-level Gaussian-type noise as well as impulsive® o.1}

0.25

0.2

interference consisting of occasional spikes in the signal. 0.05}
The LMS-type algorithm of (47) and the normalized LMS- ol ‘ . . ‘ ;
type algorithm of (48) in Section IV-B were used to train a &2 o4 6 B 002461820

weighted my”ad.fllter to eXtraC.t the desired _hlghpr_:lss S'gn%. 3. MSE learning curves for adaptive weighted myriad filtering,
d(n) from the noisy observed signaln). The filter window | Ms_type (top), and NLMS-type (bottom).

length was chosen to b€ = 9. In all cases, the initial weights
in the adaptive algorithms were all identical and normalized
to sum to unity:w;(0) = (1/N) = 0.11,7 = 1,2,---,N.  MSE’s achieved by the trained filters, using both the LMS-
The linearity parameter was arbitrarily chosen tobe= 1.0;  type and the NLMS-type algorithms, were almost the same
recall from Section IV-B that the filter output depends onlyaround 0.0022). This allows for a meaningful comparison of
on (w/K?). A step-size ofu = 0.05 was used in the the convergence speeds of the two algorithms. Fig. 3 shows
LMS-type algorithm; this pushed the algorithm fairly closenhe learning curves (MSE as a function of algorithm iterations)
to its stability limits while maintaining an acceptable finator the LMS-type as well as the NLMS-type algorithms.
MSE. The normalized LMS-type algorithm was used witlThe LMS-type algorithm converges in about 100 iterations
an auxiliary step-sizg: = 1.0, which is its default value, to an MSE below 0.02. On the other hand, the NLMS-type
corresponding to the optimal step-size at each iteration stefgorithm is aboutten times faster, converging to the same
Note that this implies arautomatic step-size choice in the MSE in just ten iterations. The figure clearly indicates the
NLMS-type algorithm, without a need for step-size design. lgramatic improvement in convergence speed when employing
our simulations, we also investigated other choicesjf@and the NLMS-type algorithm. Notice the values of the MSE'’s
their effect on the final MSE. The final MSE increased witin these curves; the NLMS-type algorithm has a lower MSE
i, as expected. Further, it was found that the MSE increas&deach iteration step. This is expected since the NLMS-type
much more rapidly withyz when g > 1.8, compared with its algorithm was derived to minimize the next-step MSE at each
behavior fori < 1.8. It is recommended that be chosen iteration of the LMS-type algorithm.
nearer to 1.0 in practice to ensure a reliable performance ofExample 2: We apply the normalized adaptive Volterra
the algorithm. filtering algorithm of (39) to the problem of adaptive iden-
Table | shows the final weights obtained by the two algaification of an unknown nonlinear system in a noiseless
rithms (with ;o = 0.05 and iz = 1.0) using 1000 samples of environment. Fig. 4 shows the block diagram representing
the noisy observed signaln). The final trained filters, using our simulation experiment. It is assumed that the unknown
both the adaptive algorithms, were successful in accuratalystem can be adequately modeled using a Volterra filter.
extracting the high-frequency sinusoidal component. We doknown commoninput signal z(n) is applied both to the
not show the filter outputs (using the trained filter weights)nknown nonlinear system and to the adaptive Volterra filter.
here since they are very close to the desired signal. Thke desired signak(n) is the output of the unknown system.
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filter weights chosen to be all zerb(0) = 0. This experiment

was repeated for 100 independent trials, using a different
estimate realization of the input signat(n) for each trial, in order to
obtain the average convergence behavior of the algorithms.
For the NLMS-type algorithm, the auxiliary step-size used
was its default valug: = 1.0, corresponding to the optimal
(automatic) step-size choice at each iteration step. The step-
size for the LMS-type algorithnx = 1.0 x 10~% was chosen
such that the final ensemble-averaged mean square error
(MSE) was comparable with that of the NLMS-type algorithm.
As a secondary experiment, we also determined the stability
Fig. 4. Nonlinear system identification using a Volterra filter model. region of the NLMS-type algorithm for second-order Volterra
filtering. This was done by increasifiguntil the onset of algo-
rithm instability. The step-size bounds turned out to be around

Volterta Filter |

o

x(n) Unknown

input Nonlinear System " desired

TABLE I N e o X
FILTER TAP INPUTS AND CORRESPONDINGTAP WEIGHTS 0 < 1 < 2.0, confirming our prediction in Section IV-A.
OF THE SECOND-ORDER VOLTERRA NONLINEAR SYSTEM TO BE Fig. 5 shows the trajectories of some of the filter weights,
IDENTIFIED, WITH THE 'NPUTVECT°317 = lon, w2, 23, 24, 2] averaged over all the 100 independent trials, for both the
vafé’ctlgf‘z“ Tap VHV‘?‘ghts Unknown System algorithms. In all cases, the algorithms converged to values
o T, 030 that were very close to the weights of the unknown system
7y H, -0.50 given in Table Il. As the figure shows, the filter weights
Linear 3 H, 0.70 converge in about 400-500 iterations using the LMS-type
ig g‘: ggg algorithm, whereas the convergence is much faster (in about
P e 0.10 50-60 iterations) with the normalized LMS-type algorithm.
T H, 0.25 This amounts to about a ten-fold increase in speed for most
ns 58 ggg of the weights. Note that the step-size parameters were chosen
I:x“ H190 0.03 so that the final MSE’s of the two algorithms are of the same
k% Hy 0.40 order (~10731); this allows for a fair comparison of their
drat 27 Zﬂ 8?8 convergence speeds from the weight trajectories.
Quadiatic | 222 o 006 The ensemble-averaged MSE learning curves of the two
22 Hy 0.65 algorithms are shown in Fig. 6. These curves plot the squared
T3T4 Hg -0.35 error, averaged over all the trials, as a function of algorithm
s M ol iterations. As these curves indicate, the NLMS-type algorithm
F 18 . . . .
14;5 Hig 0.20 converges in about 60 |ter§t|ons, wherea§ the_ LMS-type algo-
73 Hay 0.15 rithm appears to converge in about 300 iterations. In fact, the

LMS-type algorithm takes much longer than this to converge;

the MSE's of the two algorithms approach the same order of
The objective of the adaptive algorithms is to minimize thﬁa]agnitude(,vlof?)l) only after 5000 iterations. As mentioned
mean squared value of tharror e(n) between thedesired previously, a meaningful comparison of the two algorithms
signal d(n) and the outputdstimatg y(n) of the adaptive js possible from these curves since their final MSE’s are
\olterra filter. of the same order. Thus, the NLMS-type algorithm is seen

In our simulation example, both the unknown system ang converge much faster than the LMS-type algorithm at
the adaptive filter were chosen to be second-order (quadratjg}nparame steady-state MSE'’s.

Volterra filters with the observation window siz& = 5.
For an N-long observation vector, the outputs of these
systems are given by = H”z andy = h”z, where the VI. CONCLUSION

modified observation vector = [2{ |23]" is given by (42).  |n this paper, we generalized the normalized LMS algorithm
Table Il shows the parameters (weights) of the system to (proposed for linear adaptive filtering) by developing a new
be identified, along with the corresponding tap inputs for aflass ofnonlinear normalized LMS-type (NLMS-tygajaptive
observation vector = [x1,x2,23,24,25]". The linear and algorithms that are applicable to a wide variety of nonlinear fil-
quadratic parts of the system together constitute a parametgrstructures. These algorithms were derived from the class of
vector H of length M = 20. For theinput signalz(n), we nonlinear stochastic gradient (LMS-type) algorithms by choos-
chose a zero-mean white Gaussian process (i.i.d. sampl@g)an optimal time-varying step-size parameter that minimizes
with unit variance. The objective of the adaptive algorithmge next-step mean square error (MSE) at each iteration of the
is to train the adaptive Volterra filter of Fig. 4 such that itadaptive algorithm. By providing for an automatic choice for
parameter vectoh converges to the vectdd of Table II. the step-size, the NLMS-type algorithms eliminate the difficult
The LMS-type algorithm of (38) and the NLMS-type algoproblem of step-size design that is inherent in all LMS-type
rithm of (39) were applied to train the adaptive Volterra filteralgorithms. We illustrated the application of these algorithms
Each algorithm was run for 5000 iterations, with the initialhrough two computer simulation examples: adaptive nonlinear



2270 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 8, AUGUST 1999

0.4 T T T T T T 0 T T T T v T
N
\
~03f ——— = ~-0.2 1
£ P < N
- - - ~
= P = Ny
0.2f e 4 —_0.4F ~. ]
s’ ~ .
” Tee o - —
o1y E -0.6F EE—
’
‘
0 L L . . . . 08 L L L . L L
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
iteration, n iteration, n
0.8 T T T T T T 0.4 T T T T T T
~0.6f LT ] _oal ]
= e c
‘-:'«’-7 7 ;r\ -~
0.4l L 1 0.2r T 1
, -
’ -,
o2y / 1 01 - 1
/ v -
O 4 1 1 1 1 1 1 G / 1 1 1 1 i 1
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
iteration, n iteration, n
(@ (b)
0.02 T T T ¥ T T 0 T T T T T T
N Ay
’:\70'1 A N 4
= "
<02 A 4
: 03} e
_0.06 L L L L L N _04 . : L " " L
[ 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
iteration, n iteration, n
08 T T T T ¥ T 04 T T T T T T
EO.G r 1 1
© ===
o041 LemT ] ]
. , -~ - -
02/ 7 p
’
7
0 . ) L L L L 0 . L . L L L
[ 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
iteration, n iteration, n
(c) (d)

Fig. 5. Ensemble-averaged tap weight trajectosigén) for adaptive Volterra system identification using LMS-type (dashed) and NLMS-type (solid)
algorithms. (a)h1(n) and h3(n). (b) ha(n) and h7(n). () hio(n) and hi3(n). (d) hi7(n) and hoo(n).

6 ; : . . . Our experimental results, including ensemble-averaged MSE
' learning curves and filter weight trajectories, indicate that the
5 1 NLMS-type algorithms, in general, converge faster than their

IS

l’ LMS-type counterparts at comparable steady-state MSE's.
These normalized algorithms need to be investigated further
by applying them to various nonlinear filters and studying the

% 8 | convergence behavior as well as the steady-state performance
& in each case.
=2 1
; Y I.’ "I\V"‘l)lI :‘| f;\ \ 1
VU g
. APPENDIX
or I e e s e . DERIVATION OF F7(0)
» . . ‘ . ‘ In this Appendix, we derive the expression f(0) given
0 0 0 a0 200 250 800 in (29), that is, we show that

Fig. 6. Ensemble-averaged MSE learning curves for adaptive Volterra sys-
tem identification using LMS-type (dashed) and NLMS-type (solid) algo-

rithms. FJ/(O)

112

7]
55

:_Z Fr(0

F;

pn=0

highpass filtering of a sum of sinusoids in impulsive noise { n) 4+ ﬂ (n) dy (n)}'
using a weighted myriad filter and adaptive identification of 3wkawj dwy,

a nonlinear system modeled as a second-order \olterra filter. (49)
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From (20), we have Recall from (19) that: = 0 corresponds taw(n + 1) = w(n).
P Using this fact in the definition ofA(x:) given in (52), we
Fi(p) = — E{e(nJr 1) Y (ot 1)} can write
an' N
j=12-N (50)  A(0) = =Y E{Gi(w(n +1),2(n +1),d(n +1))},=0
k=1
Usinge(n+ 1) = y(n+1) —d(n +1) in (50), we can write - Fi(0)
3] :
Fi(p)=—F;
J(N) o 5 (1) = — Z E{Gi(w(n),z(n+1),d(n + 1))} - F;(0).
g | oy k=1
dy(n+1) 9y Now, noting thatw(r) is a deterministic quantity in the steep-
- E{ Em ) awj (n+ 1)} est descent algorithm of (9) and assuming that the processes
A z(n+1) andd(n +1) are strictly stationary, we conclude that
= A(p) + B(p) (51)
. E{Gi(w(n),z(n +1),d(n+ 1))}
where we have introduced the two term$;.) and B() for _ BiG d 56
convenience. Note thain +1) = y(w(n+1),z(n+1)), and = E{G1(w(n), =(n), d(n))}- (56)

w(n 4 1) is in turn a function ofu, whereas the desired signalNotice that the right-hand side in the above equation involves
d(n + 1) is independent of.. We can use the chain rule ofgquantities at time: only. Using (56) in (55) and the definition

differentiation to expand the first term in (51) as of G1(-,-,-) given in (52), we finally obtain
a [ oy N
Ap) = —E{ (n+1)- o [aw, (n+ 1)}} A(0) = = B{Gi(w(n).=(n),d(n))} - Fx(0)
N k=1
a ay N 2
:—E{ (n+1) 27[—(71—1—1)} Py
. = — (0 - FE . (57
dwi(n+1) 0 2_)1 W(0) - Eqeln) 5o (mg- (B7)
) dwy(n + 1) Following a similar procedure to derive the quantity0) from
an (53), we obtain
o2 =
_ - z cn+1) =LY el ) BO) ==Y E{Ga(w(n +1),x(n +1),d(n + 1))},
8wk8wj k=1
- F,(0)
= 3 B{Gywlnt 1)+ 1), dn+ 1)
= - Z E{G2(w(n), z(n),d(n))} - F1(0)

- 13.(0) (52)
where we have used (16) and (21) and introduced a new Oy Ay
function G (w(n + 1),z(n + 1),d(n + 1)) for convenience. - Z £i(0 Swy, (n) dw; ) - (58)
Similarly, we can expand the second term in (51) as foIIowEJSIng (57) and (58) in (54), we finally have the desired

B(p) = — E{L(g"' D 9y (n+ 1)} expression for”}(0):
poo Ow; N
B zj\: dy(n+1) duwp(n+1) —Z F.(0)
o Owr(n +1) au k=1 )
%y Ay Ay
-E — (p) == .
g {etm) gt 3 () (o)
= - Z n+1)- Gy (n41) ¢ - Ar(n) REFERENCES
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