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Fast Algorithms for Weighted Myriad Computation
by Fixed-Point Search

Sudhakar KalluriMember, IEEEand Gonzalo R. Arcda-ellow, IEEE

Abstract—This paper develops fast algorithms to compute the processing due to their ability to reject outliers while preserving
output of the weighted myriad filter Myriad filters form a large  edges and fine detail in images. These nonlinear filters are
and important class of nonlinear filters for robust non-Gaussian optimal under the Laplacian noise model, whose distribution

signal processing and communications in impulsive noise environ- . . . R
ments. Just as the weighted mean and the weighted median are op-'S MOre heavy-tailed than the Gaussian distribution. However,

timized for the Gaussian and Laplacian distributions, respectively, their applications have not spread significantly beyond the field
the weighted myriads based on the class of-stable distributions, of image processing, largely because they are constrained to be

which can accurately model impulsive processes. selection filters(the filter output is always, by definition, one
The weighted myriad is an M -estimator that is defined in an of the input samples). Although hybrid techniques combining

implicit manner; no closed-form expression exists for it, and its di- i d dian filtering h b d | d. thev tend t
rect computation is a nontrivial and prohibitively expensive task. 'N€ar and median hitering have been developed, they tend to

In this paper, the weighted myriad is formulated asoneof the fixed b€ad hocin nature and prohibitively complex.

points of a certain mapping. An iterative algorithm is proposed to Weighted myriad filter§WMyF’'s) have been proposed as a
compute these fixed points, and its convergence is proved rigor- class of nonlinear filters for robust non-Gaussian signal pro-
ously. Using thesdixed-point iterations fast algorithms are devel- - ¢oqging jn impulsive noise environments [7]-[10]. These filters
oped for the weighted myriad. Numerical simulations demonstrate h b derived based . likelihood locati

that these algorithms compute the weighted myriad with a high de- 'ave. een derived base On_ maximum {IXelinoo OC? an es-
gree of accuracy ata re|ative|y low Computationa| cost. timation from Samples fO”OW|ng the SO'Ca”edStable d|Str|'
butions [3], [4]. The attractive features @fstable distributions

are that they include the Gaussian distribution as a special lim-
iting case while possessing heavier tails than the Gaussian as
well as Laplacian distributions. As a result, WMyF’s constitute

. INTRODUCTION a robust generalization of linear filtering that is at the same time

LARGE number of real-world processes are impulsive imherently more powerful than weighted median filters. Myriad
A nature, containing sharp spikes or occasional outliers. E3ters have been successfully employed in robust communica-
amples of impulsive signals include low-frequency atmosphef§ns and image processing applications [11]-[13].
noise, underwater acoustic signals, radar clutter, and multiple-The class of WMyF's is derived from theample myriad,
access interference in wireless communication systems [1]-[8fich is an M -estimator of location [14] for the class of
The performance of traditiondihear signal processingyhich <-Stable distributions. Given a set of samples}L,, anM-es-
is optimal under the Gaussian model for the signal statistics figator of location is given by 2 arg ming Zi\;l p(x; —6),
inadequate in an impulsive environment. Impulsive signals asere p(-) is called thecost functionof the M-estimator.
more accurately modeled by distributions whose density funiglaximum likelihood location estimators are special cases of
tions have heavier tails than the Gaussian distribution [4]. I -estimators withp(z) ~ —log f(x), wheref(z) is the den-
recent years, there has been considerable interest in the desig-function of the samples. Using the Gaussian and Laplacian
opment of robust techniques for signal processing and comnel@nsity functions, we obtain the cost functions for tzenple
nications, based on heavy-tailed distributions for the signal staeanand thesample mediams p(x) = z* and p(z) = |z],
tistics. respectively. The sample myriad is defined using the cost
Weighted median filters, along with other filters based ofunction p(z) = log(K? + 2), where the so-calletinearity
order statisticg5], [6], have been widely used for robust imageparameterK controls the impulse-resistance (outlier-rejection
capability) of the estimator; a more detailed description is given
in Section Il. Table | shows the cost functions and the outputs
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TABLE |
M -ESTIMATOR COST FUNCTIONS AND FILTER OUTPUTS FORVARIOUS FILTER FAMILIES
Filter Cost Function Filter Output
N N
Linear Z (z; — 0)> mean {z1,22,...,ZN} = Z z; /| N
i=1 i=1
Median Z |z; — 6| median {z1,z2,...,ZN§}
N =1
Myriad Z log [K2 + (m; — 9)2] myriad {z1,22,...,2n5; K}
i=1
N N N
Weighted Mean Z wi(z; — 6)2 Z wiz; /[ Z w;
i=1 i=1 i=1
N
Weighted Median Z w;|z; — 0] median {w; o z;}Y,
N i=1
Weighted Myriad z log [K2 + wi(z; — 0)2] myriad {w; o T1,wp 0 Tg,...,wy o xN; K}
i=1

denoting theeplicationof the samplex; by the integerw;; the distribution. Considelv independent and identically distributed

filter output is then the (unweighted) median of a modified séti.d.) random variable§X;}# ;, each following a Cauchy dis-

of observations, where each sampleappearsu; times. tribution with location parametet and scaling factoil > 0.
As Table | shows, it is trivial to compute the weighted mearthus,X; ~ Cauchy#, K) with the density function

The weighted median can also be determined directly; how-

ever, it requires sorting the input samples, making it a computa- Fx, (25 0, K) = K 1

tionally expensive task. There has, therefore, been considerable A 7 K2+ (x;—0)2

research to develop fast algorithms to compute the weighted 1 f <acZ — 9) )
median. The weighted myriad, on the other hand, is not even K K

available in explicit form. A direct computation of the weighted

myriad is therefore a nontrivial and prohibitively expensive ta%heref(v) 2 1/7-1/(1+4?) is the density function of atan-
since it involves the minimization of the associated cost fungayg cauchy random variabléX; — 6)/K ~ Cauchy0, 1).
tion shown in the last row of Table I. In this paper, we firsgjyen a set of observationgr;} ¥, the sample myriadix
define a certairmappinghaving severafixed pointsand show aximizes the likelihood funCtibﬁ[_iil fx,(zi; 6, K). Equiv-

that the weighted myriad is one of these fixed points. It is ”};ﬁently using (1) and some manipulation, we obtain
particular fixed point that minimizes the weighted myriad cost

function of Table I. We propose an iterative algorithm to com- . N 2 —0\?
pute these fixed points. We then develop fast algorithms, incor- O = arg n%in H 14+ < ZK ) ] . (2)
porating thesdixed point iterationdor the computation of the i=1

weighted myriad. The performance of these algorithms is ev. I-t biv. th | iad red toth | 5
uated using a numerical example. It is shown that these al ptably, the sample myriad reduces to the sample meanas

rithms achieve a high degree of accuracy in approximating tﬁ%EES]' L . iah he i |
weighted myriad at a relatively low cost of computation. Usin y assigning non-negative weights to the input samples

these algorithms, the full potential of the class of WMyF's ca bservations), based on their varying levels of reliability,

now be realized in robust signal processing and communicati&ng welghte_d myn_ao_l is derived as a generalization of '_[he
applications. sample myriad. This is done by assuming that the observations

The paper is organized as follows. Section Il introduces e dbrlawn l;lrc;]mN mdhependentl Cal.JChy d'Str'bUte% random
weighted myriad. In Section Ill, we present iterative algorithm%arla es, all having the same location parameter but varying

. . N .
for fixed-point computation, including a proof of their converScale factors. Givenv observations{z;};_; and weights

gence. Fast algorithms for weighted myriad computation are dévi = 0}, define the input vectos 2 [21, @2, -+, an]"

veloped in Section IV. Computer simulations illustrating thesand the weight vectow 2 [wy, wa, -, wy]”. For a given

algorithms are presented in Section V. nominal scale factor K, the underlying random variables

{X;}X., are assumed to be Cauchy distributed with location
[l. THE WEIGHTED MYRIAD paramete® and scale factor$S;} Y : X; ~ Cauchyé, S;),
This section briefly introduces theeighted myriadand de- where
velops some of its properties that will be useful later in the paper. A K )
For a more detailed treatment, see [7]-[9] and [11]. Si = NG >0, =12 N 3)

The class of WMyF's is derived from the so-called sample
myriad, which is defined as the maximum likelihood estimaténcreasing the weight; (thus decreasing the scafe) causes
(MLE) of the location parameter of data following the Cauchthe distribution ofX; to be more concentrated arout\dnaking
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X; a more reliable sample. Note that the sample myriad is in 0(0)
cluded as a special case: When all the weights are equal to unit
the scale factors all reduce &) = K, leading to the sample
myriad at the nominal scale factés.

The weighted myriadx (w, ) maximizes the likelihood
function T[', fx,(xi; 6, S;). Using (1) for fx,(x:; 6, Si),
the weighted myriad can be expressed as

1+ .Ti—e 2 :
S; xé

O (w, z) = arg mein P(9)

N
A .
= arg meln H $ .
i;l 1) 6 Yy 0
T z; — 0
= arg meln H 1+w; < ZK ) ] . (4) Fig. 1. Sketch of a typical weighted myriad objective funct@).
i=1

The following proposition brings together a few key properties
of @(#) andd that will be used in the later sections on the com-
putation off. The properties described below are illustrated by

By rewriting (4), the weighted myriaéK (w, z) = 6 can also
be expressed as

R ) Fig. 1, which shows the form of a typical objective function

. A .
6 = arg min log(P(8)) = arg min Q) Q(8).
N _o\2 Proposition 2.1: Let {a:(J)} ", signify the order statistics
= arg min Z log |1+ < ) ] (5) (samples sorted in increasing order of amplitude) of the input
b g vectorz, with z(;) the smallest and the largest. The fol-

lowing statements hold:

a) The objective functiof)(6) has a finite number [at most
(2N — 1)] of local extrema.
i B\ 2 b) The weighted myriadis one of the local minima af(6):
1+< ZS4 ) ] (6) Q') = 0. o _
i c) Q'(0) > 0 [Q(0) strictly increasing] fol® > z(, and

. ) o S Q'(6) < 0[Q(8) strictly decreasing] fof < z(y).
as theweighted myriad objective functi@ince it is minimized d) All the local extrema ofQ(6) lie within the range

by the Weig_hted myr_iad. Note that when = 0 (S; = ~), the [(1), &) of the input samples.

corresponding term it () or Q(6¢) drops out; the sample; is e) The weighted myriad is in the range of input samples:

thus effectively ignored when its weight is zero. )
The weighted myriad is ai/-estimator [14]. To see this,

sincelog(-) is a strictly increasing function. We refer to the func-
tion

N
Q(6) =log(P(9)) = 3 log
=1

T <0 <z

introduce the function Proof:
a) We have)(d) = log(P(6)) from (6). The functionP(6),
p(v) = log (1+v7). @) given from (4) by
N 2
We can then express the weighted myriagw, z) = 6 from Po)=]] |1+ <xis— 9) 10
(5) as 1 :

9 is a polynomial in6 of degree2N with well-defined

6 = arg mm Q(F) = arg mm Z <ajz ) (8) derivatives of all orders. Its derivative’(8) is a poly-
nomial of degred2N — 1) with at most(2N — 1) real
roots. Now,()’(8) = P'(6)/P(9) from (9), and itis clear

which defines anM-estimator of location from samples of from (10) thatP(6) # 0 for any 6. Hence, the roots of
varying scale [14]. R @’ (6) and P’ (6) are identical. Therefore)’ (6) also has
The computation of the weighted myriagdis complicated at most(2N — 1) real roots, that isQ(6) has at most
by the fact that the objective functiof(¢) can have several (2N — 1) local extrema.
local minima, as we shall see presently. To derive some basi¢,)y From a), itis clear thap(6) is a sufficiently smooth func-
properties of), we examlneQ( ) further. First, use (6) to write tion that is defined for all rea# and having derivatives
the derivative of)(¢) as of all orders. In addition, from (6)(£oc) = +oc. It
follows that the global minimum of)(#) (which is the
~ <9 ;237’) weighted myriad)) must occur at one of its local minima.

—_— . 9) c) Letd > x(ny = (0 — x(x)) > 0. Then, sincer; <
zi — 0 rny Vi € {1,2,---, N}, we have() — x;) > (0 —
zvy) > 0Vi € {1,2,---, N}. Using this in (9), we
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obtainQ’(¢) > 0 strictly. Similarly,6 < zqy = (¢ — we see that each local extremum f(¢), including the

7)) < (0 —=2q) <0Vie{l, 2 ---, N}. Then, from weighted myriadd, can be written as aeighted mearf the

(9), @'(8) < 0 strictly. input samples;. Since the weighté;(#) are always positive,
d) From c), we see th&’ () # 0if 6 > z(ny orf < z(yy. the right-hand side of (16) is in the intervak(), z(n)),

Thus, for reald, Q'(6) = 0 = 6 € [z(1), z(x]. That confirming that all the local extrema lie within the range of the

is, the real roots of)’(#), which are the local extrema of input samples. By defining the mapping

Q(#), lie in the rangdz (1), x(x] of the input samples.

e) This follows from b) and d). This completes the proof of EJ\: hi(6) - z:
the proposition. A =1 ' Z
The weighted myriad is a solution of the equatiof}’(¢) = o) =—F—— 17)
0. Referring to (7), define Zhi(e)
A _ % 1=1
V() =p) = 1+ w2 (11) the local extrema of)(#), or the roots of)’(#), are seen to be

thefixed pointsof 7°(-)

which is called thenfluence functiorof an A -estimator. Then,
we can use (9) to write the following equation for the local ex- o* = T(6%). (18)
trema ofQ(6):
N We propose the followindixed-point iterationalgorithm to
0'(6) = — Z Si W <$ZS‘ 9) —o. (12) compute these fixed points:
i=1 3 3 N
As a final note, we can use (3) and (12) to show that wifen: Z hi(0m) - i
oo with the weightsw; held constant, there is gingle local Ormt1 2 T(0,) = ZZIN (29)
extremum, andx — 6., = S0, wizi/ S, w;, which is S i)
the (linear)weighted mearHence, we have the nantieearity pt e

parameterfor the nominal scale factak .
In the classical literature, this is also called thethod of suc-

IIl. FIXED POINT ITERATIONS FORWEIGHTED MYRIAD cessive approximatiofor the solution of the equatich= 7'(¢)
COMPUTATION [15]. In Section 11I-B, we prove that the iterative scheme of (19)

converges to a fixed point &f(-); thus
The weighted myriad is one of threal roots of the function g P )

)'(0) of (9). In this section, these roots are formulated as fixed lim 6,, = 6* = T(6*). (20)
points of a mapping, and an iterative algorithm is presented for meee
their computation. Note that there can be as many(a8’ — 1) fixed pointsg*; the
Referring to (12), introduce theositivefunctions initial value 8y chosen in (19) determines the particular fixed-
1 v — 0 point obtained.
hi(6) 2 p < ¢ ) > 0, i=1,2---,N (13) A different perspective on (19) can be obtained by using (15)

a St Si to rewrite the recursion as
where Q' (6:,)
Oprti1 = Oy — = 21
A P(v) 2 i H(b:n) &)
o(v) = o T 1xor (14)
where H(6,,) 2 Zf‘:l hi(8,,) > 0. To interpret (21), con-

We can then recast (12) as A

sider thetangentof Q(6) at§ = 6,,: Y(0) = Q(6,,) +
N Q' (0n)(6 — 0,,). Then, we haveY(0,,+1) = Q6,) —
Q0)==> hi(8)(x;—6) =0 (15) {[Q(6.:,)]/H(6.:)} < Q(6,). Thus, considering’(d) as a
i=1 linear approximation of)(#) around the poind,,,, the update
for the local extrema of)(#). This formulation implies that the attemptsto reduceQ(-): Q(fmi1) = Y(bmi1) < Q(6m)-
sum of weighted deviatiord the samples is zero with the (pos-1 i does not guarantee th@tf,,+1) < Q(6,,); however, it

itive) weights themselves being functionséof is shown in Section III-B that (21) does in fact decregg@)
at each iteration.
A. Fixed-Point Formulation We can contrast the recursion of (19) with the update
Rewriting (15) as in Newton’s method [15] for the solution of the equation
Q') =0
N
. s A Q/(enl)
; h; (9) €Lg H;n—i—l = b — Q//(9 ) (22)
0= = N (16) m
Z hi (6) which is interpreted by considering tkengentof Q' (6) até =
— Om: Z(8) 2 Q'(6) + Q"(6,,)(8 — 6,,). Here, Z(8) is used
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as a linear approximation af’'(#) around the poin#,,, and
6,11 is the point at which the tange#t(#) crosses thé axis:

Q' (Ory1) ~ Z(05,41) = 0.

Although Newton’s method can have fast (quadratic) conver-

163

Remarks:
i) If 6,41 = 6,,, the sequencéd,,, } evidently converges
since all subsequent valué,, .-, - - -} are also equal to
O

gence, the major disadvantage of this method is that it may con-ji) The condition6,, € [#(1), #(x)] in b) is not restric-

verge only if the initial value, is sufficiently close to the so-

lution 8* [15]. Thus, only local convergence is guaranteed. The
conditions for convergence [15] are also difficult to verify in

tive since even if the initial valué, is chosen outside
(1), £(a], (19) shows thab,,, m > 0 will all lie
within this interval.

practice, especially since they have to be determined for eachji) This theorem exploits parts of [14, Sec. 7.8], which deals

specific function(#). Further, Newton's method can converge

to either a local minimum or a local maximum 6f(6) (de-

pending on the initial valué,), whereas we need only the IocalvvhereQ*
minima in order to compute the weighted myriad. On the other

hand, as we shall prove in Section IlI-B, the fixed-point iteratio?hu

scheme of (19) decreases the objective func@igfi) continu-
ously at each step, leading ¢tobal convergencéconvergence
from an arbitrary starting point) to the locainimaof }(8).

B. Convergence of Fixed-Point Iterations

In this section, we prove that the sequetiég } of (19) con-
verges to one of the local extrema of the objective funafidf).

We show, in fact, that except for a degenerate case with zero
probability of occurrence{6,,} always converges to a local

minimum As a first step, we show in the following theore
(Theorem 3.1) that the recursion (IBcrease&)(8). The proof

of this theorem uses the following lemma, which reveals the up-
dated valud,,.1 as the solution to a weighted least-squares

problem at each iteration.
Lemma 3.1: The valued,,,+1 in (19) is the global minimizer
of the function

N
Bu(0) 2 3" hi(0m) - (25 — 0)*. (23)
=1

Proof: SinceB,,(#) is quadratic irg, its global minimizer
is the unique solution of the derivative equatif),(6) = 0.
From (23),B.,, (6ms1) = =230 hi(0m) - (i — Opmi1) = O;
the second equality is easily derived from the definitiol,f
in (19). Hence, we have the result.

Theorem 3.1:Consider the sequengé),,, 2 Q(6,,)}, with
{6,.} given by (19). LetR 2 x(y) — x(1) be the range of the
input samples. Then, we have the following.

a) Qi1 < Qnp strictly, if 0,41 # 0, If 6,41 = 6,5, then

Q' (6.m) = 0, andd,, is a local extremum of)(6).

b)

N

an - an-f—l 2 <% Z hz(ern)) : (ern-f—l - ern)Q

i=1

al 1
2 7. 4 N\ " ern - ern 2
<Zz_; S2 4+ (x; — 9m)2> (Bt )

N
<Z m) . (ern-f—l - ern)Q (24)
i=1 "% ‘

where the last inequality holdséf,, € [z(1), z(n)].
Proof: See Appendix A.

with the computation of regressiavl -estimates.

Corollary 3.1.1: The sequencé®,,, } converges),, | Q*,
2 inf({Qum)3y).
Proof: Itis evident from the theorem th&,,,+1 < Q.
S, {Qm Q(6,.)} is a decreasing sequence, and it
is bounded below sincé)(¢) > 0 from (6). Hence, the
sequence converges to its infimunmy,, | @*, where
Q" 2 wf({Qn}z_y).

Corollary 3.1.2: |6,,41 — 6,»] — 0 and the sequence of
derivatives)’(6,,,) — 0.
Proof: Using (24), we can write

|1 = Ol <1V Qi = Q1 (25)
Mvhere
N -(1/2)
Since {Q,.} converges (Corollary 3.1.1), we have

(Qm — Qma1) = |Qmi1 — Qm| — 0. It then follows
from (25) that|6,,,+1 — 6,,] — 0, proving the first part of the

corollary. Now, using (21), we have

Q’(Gm) = — <Z h7(9m)> ) (9771,—1—1 - em) (26)

which, together with (13), leads to

N
2

|Q/(9"l)| S <Z ?) " |97n+1 - e'rn|-
=1 "t

Since|6,,,+1 — 8| — 0, it follows from (27) that)’(6,,,) — 0.
This completes the proof.

Fig. 2 illustrates the behavior of the sequerég,} by de-
picting the two possible scenarios that are described in Theorem
3.1. In the first case, we have a sequence of distinct elements
(Orm41 # B, for anym), which always decreaséx ). We will
show later in this section that the sequence in this case converges
to a localminimum which is shown a7 in the figure. The
second case in the figure depicts a situation where the sequence
terminates at a particular iteration whené,,; = 6,, = 65,
where#} is a local extremum of)(6) (it happens to be a local
maximumin this figure). Note that in both cases, the sequence
stays within the range of the input samples. In addition, the se-
guence proceeds always in such a way that— 0,,,+1) has the
same sign as the derivati#(6,,) at the current iteration.

(27)
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Corollary 3.1.2 is not enough to ensure the convergence ¢
the sequencgé,,, } to a solution of the equatio®’(¢) = 0. It
is instrumental, however, in establishing the next theorem (The
orem 3.2), which states that after a finite number of iterations
all subsequent values 8f, are confined between the two local
maxima adjacent toneof the local minima of(#). The choice
of the initial valuef, will determine the particular local min-

imum around which the sequen{g,, } is ultimately localized.
Theorem 3.2:For each iterationm, let a, and b,,
(am < by) be the two adjacent local maxima 6f(6) such

that6,, € [am, bn]. Let 8%, denote the local minimum of

Q(6) lying within this interval:6}, € (a,, b,,). Assume that

{6,,} is such thatv m, 041 # . Then,3M such that

Om € (ars, bpr) Vm > M.
Proof: First, sincef,,,+1

that |6, 41 — 0| < e Ym > M(e). In particular, choose
€ = ¢ 2 min{|6" — ¢*|: Q'(") = Q'(¢*) = 0}; theneg is
also the smallest distance betwesdjacentlocal extrema of
Q(0). Letting M 2 M (eo), it follows that

|97n,—|—1 - 9n1,| <e¢g S bl\/f - 97\4
and
|97n—|—1 - 9nl| < €p S 97\/] —ap.

Ym > M,

(28)

Now, letm = M 2 M (eo). We shall show thafy,; 41 €

Y

Fig. 2. Typical scenarios in the behavior of the sequdice} of fixed-point
# 0,,, Theorem 3.1 shows iterations.

thaté,, is not a local extremum for any; thus,8,,, is within
the open interval(a,,, b,). Now, from Corollary 3.1.2,
|0r+1 — €n] — 0. Therefore, given any > 0, 3M(¢) such

the same adjacent local maxima, a8jgs. We can continue this
process, using the same arguments as in Cases | and Il above,
to show inductively that,,, € (aps, bar) Vm > M, where
M2 M (eo). This completes the proof of the theorem.

Remark: The proof holds, with very trivial modifications, for
the cases whe,, lies: i) betweernr ;) and the local maximum
immediately to the right af ;) or ii) betweene -y and the local
maximum immediately to its left. These two situations can be
tackled by defininga,,, = z() ini) andb,, = z(yy inii).
This remark also applies when the same situations arise in other
theorems and proofs of this paper.

We have thus established that the sequdifge; eventually
stays within the intervala,;, bys) around the local minimum
63, This is a key result that is used in the proof of the fol-

(anr, bar). Referring to Fig. 3, consider separately the followingyying theorem, which supplies the limit of the sequence of

two cases:

Case l—ay < 0y < 63, < by Fig. 3(a) depicts this sit-
uation, wheredy; < 83,. Now, it is clear from Section Il [in
particular, the proof of Proposition 2.1(a)] th@(#) is a suf-

ficiently smooth function, having continuous derivatives of all

orders. It easily follows that its derivative’(#) < 0 for 8 be-

values{Q,, = Q(6,,)} of the objective function.

Theorem 3.3:The limit of the sequencé®),,, = Q(6,,)} is
Q63): Qm | Inf({Qm}2o_1) = Q(63,), whered;, is defined
in the proof of Theorem 3.2.

Proof: See Appendix B.

Using Theorem 3.3 and the smoothness propertieg(6f,

tween any local maximum and the local minimum immediatekye convergence of the sequer@e, } is finally established in

to the right of it. In particular, we hav@’(6,,) < 0. Referring
to (26) and knowing that>" | h;(6,,)) > 0, we then have

the following theorem.
Theorem 3.4:Consider the sequengé,, } of fixed-point it-

fr+1 > 0ar, @s shown in the figure. Using this fact and (28)erations defined in (19). Then, we have the following.

we obtaimdy 1 —0x = |01 —0m| < bar—63 < bar—6ar;
we do the final step becausg; < 63,. This impliesf; 1 <
bas. Together with the fact thaty; 1 > 65, this shows that
Oriy1 € (Onr, bar) C (an, bag).

Case ll—ys < 03 < 8y < by Thiscaseis illustrated in
Fig. 3(b). Arguing as in Case |, we can show thA{d,,) > 0
for 67, < 6 < bas. Using (26) again, we now havg,4; <
0. Note that in this case, we have shofa,, in the figure to
be on the same side 6§, asé,,, unlike in Fig. 3(a). In fact, in
both cases | and II, either one &i;,1 < 83, andfp, 1 > 03,
could be true. Now, using,;+1 < 6€h,, together with (28),
leads tof; — 9]\4+1 = |9]\4+1 - 9]\4| < 97\4 —ay < Oy —
anr, Where the last step is due €&, < €a. Thus,Op41 >
apr. Combining this withfy,11 < 6a7, we obtainfyr1 €
(an, Oar) C (anr, bar).

We have thus shown th@lt,; 1 € (aas, bas). This implies
thata]\4+1 = ap aﬂdb]\4+1 = by, that iS,9]w+1 is between

a) If (and only if) ,,,4+1 = 6,, for somem mo, then
Q' (0m,) = 0 andé,,,, is a local extremum of)(#). The
sequence then terminatesay, , i.e.,8,, = 6,,, Vm >
mo.

b) If {6,,} is such that¥ m, 6,41 # 6., then the se-
quence converges to a loaalnimumé* of Q(6): 6,,, —
o 2 0%, wheredy, is defined in the proof of Theorem
3.2

Proof:

a) See Theorem 3.1 and Remark i), which follows it.

b) We shall prove the convergence of the subsequéfice
m > M}, which implies the convergence §f,,,}5°_,.
Let Q* 2 Q(63%,). Given anye > 0, define the quanti-
tieséy > 0, &2 > 0 such thatQ(8* — ¢) = Q* + 6
andQ(6* + ¢) = Q* + 6. These are shown in Fig. 4,
which shows the objective functiof}(#) in the interval
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@

(b)

[@ns, bas] Within which the subsequendd,,,: m > M}

is confined. It is assumed (without prejudice to the ve-
racity of the theorem) that is small enough to ensure
that6* — ¢ andé* + ¢ fall within the interval(aps, bas).

Let s = 6(e) 2 min{é;, 62}. Assume, without loss of
generality, thatt = 6,; this is the situation represented

in the figure. Now, defin€ > 0 such thatp(8* — ¢) =

Q0" + ¢) = Q" + 8. Note thate < ¢, as shown in
the figure. That isg* — ¢ < 6* — ¢, sinceQ(6* — ¢)
Q4+ 61 2 QF+ 62 = Q" — &), andQ(F) is a de-
creasing function®’(#) < 0) for ap; < 6 < 8*. Now,

we have@,, | Q* from Theorem 3.3. Therefore, given

the valueé = 6(¢) > 0 defined aboveldL = L(6(¢))
suchthatv m > L, |Q,, — Q| = Q,, — Q" < § =
Qm < Q*+6= 0, € (0*—¢,0%+¢) = 6, € (6 —c¢,
6" +¢). Thus, we have shown that for aay- 0, 3L such
thaty m > L, |6,, — 6*| < e. Hence®,, — 6* 2 O
this completes the proof of the theorem.

6+ b,

Fig. 4. Depiction of the proof of Theorem 3.4.

The fixed-point iteration$,,,.1 = 7°(¢,,,) proposed in Section

[l [see (19)] converge to the real roots &f(8) for any ini-

tial value 6y. In fact, these recursions converge almost surely
to the localminimarather than the locahaximaof P(#) (see
Theorem 3.4). Based on these observations, we can use the fol-

Note that the degenerate case corresponding to TheOIJang generlcapproa_ch_ to compL_lt(_a_the weighted _mynad:
3.4(a) is an event that occurs with zero probability. Clearly Stép1) Choose a finite sé of initial valuesf, with Co C

then, the sequencf,,,} of fixed-point iterations defined in
(19) converges with probability one to a locadinimum of
the objective function(#). Exploiting this property to find
algorithms to compute the weighted myriad is the subject
the next section.

IV. FAST WEIGHTED MYRIAD COMPUTATION ALGORITHMS

The weighted myriad§ globally minimizes the objective
function Q(8) or, equivalently, thepolynomial objective func-
tion P(#), which is given from (4) by

(29)

[), #(v)].

Step 2) For eacl®y € Cy, implement the fixed point re-
cursion of (19) for a desired number of iteratiahs
Omy1 =T(0),m=0,1, -, L—1.This forms the
setC* 2 T(E)(¢,) of estimated* of the local minima
of P(#), whereT%)(.) denotes the mappingj(-) ap-
plied L times. The elements @f* are thecandidates
for the weighted myriad.

Step 3) The weighted myriad is then computed as the ele-
ment of C* that minimizes the polynomial objective
function P(6): 6 ~ arg ming. .z, P(6*).

The choice of the seafy in Step 1) above leads to different

versions of the generic algorithm, with varying complexity and

accuracy, which also depends on the choice of the number of
iterationsL. Recall from Proposition 2.1 that there are at most

(2N — 1) local extrema ofP(#) with at mostN local minima.

One way of improving the accuracy of the algorithm could be

of

For computational purposes, it is more economical to use tteechoose a large number of values for the initiak&eby a fine

polynomial versionP(#) rather than using the functiof(6).
From Proposition 2.14 is oneof the local minima ofP(6) or
one of thereal roots of the derivative functio®”’(¢). Further, all
these roots lie within the range ), z(x] of the input samples.

sampling of the interval of interegt ), =(x)]. This approach
might increase the likelihood that the final candidatec§efof

Step 2) includesll the local minima ofP(#), although this is

not guaranteed to be the case. However, this is computationally
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TABLE I
COMPLEXITIES OFWEIGHTED MYRIAD ALGORITHMS (WINDOW SIZE N, L FIXED—POINT ITERATIONS); ©/(m) |S THE COMPLEXITY IN FINDING THE ROOTS OF A
POLYNOMIAL OF DEGREE AND VARIES WITH THE PARTICULAR ROOT FINDING METHOD USED

Algorithm Multiplications Additions Other Operations

Polynomial (ONZ+7N -T) (6N?+ 3N —6) v(2N = 1)
Root Finding +O2N -1)
Algorithm I | L{(4N? + N) + (3N%Z + 1) | L(4N? — 2N) + 2N? O(N)
Algorithm IT | L(4N +1) + BN?+1) | L(4N —2) + 2N? O(N)

very expensive and involves finding the order statistigs and This algorithm can be compactly written as
z (). As atradeoff between the demands of speed and accuracy,
we propose the following algorithm, which choogiggo be the

set of input sampleér; } 2, . HAFPS_W]\,MI =7 <arg min P(xz)> . (32)
Fixed-Point Search Weighted Myriad Algorithm | i
(FPS-WMyl) Note that for the special casd = 0 (meaning

that no fixed point iterations are performed), both the
above algorithms compute the selection weighted myriad
Orrs—wmyl = Orps—wmynn = 6s. Now, compare the two
algorithms for the same number of iteratiohs> 1. Suppose
Sés happens to be the input samplg. Then, Algorithm I

{yi = T (@) ML, : j
: K L ; ields frps—waiyr = T (6,) = T (xy). On the other
Step 2) The weighted myriad is chosen as the elemeft;df_; %an q frF;nSf] g,é\éy;l of Algo(ritizm o :(37%)@) ()} in

that minimizes the polynomial objective functidf(#) of particular, = T (). Therefore syt = k. NOW,

(29): Orps—wiyt = arg miny, P(y:). if 6. = x is close to the weighted myria#] theny;. will be
close tod, and we will haVEQFps—WMyI = arg minyi P(yz) =
Yp = éFps—VV]\qu. In this case, both algorithms yield the same
result, with Algorithm Il being much faster. Suppose, however,
that 6, is close to a local minimum oP(6) that is different
X from the weighted myriad. Then, ;. will not be close tod,
Orps—wiiyT = arg ngi(g_) P (T(L)(xi)) . (30)  and Algorithm | will choose some othey, i # k. In this case,
! Algorithm | will give a more accurate result than Algorithm .
. . . Computational ComplexityA direct computation of
A much faster algorithm can be obtained by realizing thgie weighted myriad requires finding the real roots of the
most of thelV recursions in Step 1 above will converge to values,p; _ 1)-degree derivative polynomial” () (see Propo-
yi [local minima of P(#)] that are far from the weighted myriad. gjtion, 2.1). It is easy to show that the coefficients ()
An input sampler; that is close to the weighted myriad is likely.a4 pe found using3N? + 11N — 9) multiplications and
to converge to the weighted myriad itself. Motivated by this facfy nr2 + 5N — 6) additions. The weighted myriad is the real
we define theselection weighted myriad, [16] as theinput 4ot that minimizes the polynomial objective functiét{6) of
samplethat minimizes the weighted myriad objective funcnong)_ The computation of(6) for any @ requires(3N — 1)
Q(6) or, equivalently, the polynomial objective functidf(é):  mytiplications and(2') additions. Choosing the minimum
out of a set ofm values is anO(m) task. Each fixed-point
iteration step of (19) require§tN + 1) multiplications and
6, = arg min Q(z;) = arg min P(x;). (31) (4N —2) additions. Let/(m) denote the number of operations
i i (multiplications, additions, etc.) required to determine the real
roots of a polynomial of degree: having real coefficients.
Using és as an initial value in the fixed-point recursion ofBased on these observations, we can derive expressions for

Step 1) Using each of the input samplgs;}Y, as an ini-
tial value, performL iterations of the fixed-point recursion
6m+1 = T(6,,) of (19). Denote the resulting final values a

The algorithm can be described compactly as

(19), we obtain the following fast algorithm. the complexities of the different algorithms; these are shown
Fixed-Point Search Weighted Myriad Algorithm 1l in Table Il. For large window sizesV and a significant
(FPS-WMyI) number of fixed-point iterationd., the number of required

operations is approximatelp(9N?) + v(2N — 1) for the
X polynomial root finding (PRF) based algorithn®(4N2L)
Step 1) Compute the selection weighted myrigd: = for Algorithm | and O(4N L + 3N?) for Algorithm Il. The
arg min,, P(z;). complexity of the PRF-based method is typically dominated
Step 2) Usingd, as the initial value, perfornk iterations of by the termw (2N — 1) involving root finding; for example,
the fixed-point recursio#,,..1 = T(6,,) of (19). The final the EISPACK routines [17] for root finding have complexity
value of these iterations is then chosen as the weighted myrg@dportional toO(m?) for a polynomial of degreen, making

Orps—wiyrr = T (65). V(2N — 1) ~ O(8N?).
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V. NUMERICAL EXAMPLES

The fixed-point iterations of Section Il and the fast weighte a1
myriad computation Algorithms | and Il of Section IV are illus-Q(06)
trated in this section with two examples. In the first example, sor

single input vectoe: is chosen, along with a weight vectar

and linearity parametds. The fixed-point iteration sequences
of (19) are computed with several different initial values, an
their convergence is demonstrated. In the second example

28

long input signal is filtered with a sliding-window weighted 27k

myriad filter using different algorithms, including the polyno-

mial root finding (PRF) based algorithm. The speed and acc 26

racy of the algorithms are evaluated for several window si¢es

and different values of{. The PRF-based algorithm requires B oz o3 07 o5 o8 o7 o8 o8 1
finding the roots of the derivativE’(#) of thepolynomial objec- 8

tive functionP(6) (see Proposition 2.1). These roots are found

using a root finding algorithm described in [18], which is aprig. 5. Weighted myriad objective functig@(6) in Example 1. Input vector

parently superior in speed and accuracy to the best prewouslyt [0 13[00 5560 %(?90 09_?900222 f0%350 %?002&60 06301) (\f;e]'th vecttor
= 7 inearity

known root finding methods. parametem =003,

Example 1: In order to demonstrate the fixed-point iterations

of Section Ill, a single input vector of length = 9 was gen-
erated, with theV samples chosen to be independent and uni-
formly distributed over [0, 1]. The weight vector was also geneiveighted myriad§ = 0.93. As seen from the figure, the output
ated randomly with the weights following a uniform distributiorof Algorithm | is very close to the weighted myriad after just
over [0, 1]. The linearity parameter was chosen tdbe- 0.03.  a few iterations. The corresponding curve for Algorithm 1l has
Fig. 5 shows the weighted myriad objective funct®@(®) of (6) been omitted since it happens to be identical to that of Algo-
for this example. Recall from Proposition 2.1 that all the locaithm | in this example.
extrema ofQ(#), including the weighted myriad, lie within  Example 2: In this example, the speed and accuracy of Al-
the range of the input samples. For our example, as the figgerithms | and Il are investigated by filtering a long input signal
shows Q(#) has four local minima and three local maxima, andsing several window size¥ and different values of the lin-
the input samples range from the smallegty = 0.13 to the earity parametefs’. The input signal consisted of 5000 ran-
largestz(ny = 0.99. The four local minima, which are com-domly generated samples following a uniform distribution over
puted using the root finding method of [18], are at 0.17, 0.2, 1]. The window sizes used weré =5, 7, 9, 11, 13, and
0.38, and 0.93, with the weighted myriad (the global minimurns, For eachV, the N filter weights were generated randomly,
point) bemge = 0.93. again following the uniform distribution over [0, 1]. The same
The fixed-point iteration scheme of (19) was implementegeight vector was used to filter the input signal with several
with L = 10 iterations for this example using different initialvalues ofi” varying fromk = 0.05to K = 1.0in steps of 0.05.
values in order to compute all the local minimag(f?). The ini-  Three algorithms were used for the filtering: the PRF-based al-
tial values for these iterations were the sef\dinput samples gorithm using the root finding method of [18] and Algorithms
{;}IL,. Fig. 6(a) shows theV = 9 curves representing the| and II. The fixed-point search Algorithms | and Il were im-
different fixed-point iteration sequences obtained. The figufgemented for iterations ranging from= 0to L = 5. All the
clearly demonstrates the convergence of the fixed-point itei@mputations were performed in C on a Sun Ultra2 Enterprise
tions. We see that the iteration sequences form four sets, eagltkstation (SUN4U/170 Ultra-2/1170).
set of curves converging to one of the four local minim&of). Fig. 7(a) shows the amount of CPU time (in seconds) that
Although all the sequences happen to be monotonic in this ég-spent by the PRF-based algorithm in filtering the 5000-long
ample, it should be mentioned that this may not always be thgut signal for different values g¥ andk . The corresponding
case. The curve in the figure that starts at the selection weighte|U times used by Algorithm | (wit. = 5 iterations) are
myr|ad9 will correspond to the outputs of Algorithm Il for dif- shown for comparison. It is clear from the figure that Algo-
ferentiterations. In this example, the selection weighted myrigighm | is consistently faster than the PRF-based algorithm; the
happens to bé, = z¢ = 2(7) = 0.95. This is quite close to the contrast in speeds becomes especially evident for skhalhd
weighted myrlad9 = 0.93, as expected, and Algorithm Il thuslarge V. The figure also shows that for a givew, the CPU
succeeds in converging to the right valugiof time is largely independent df, providedK is not too small.
Fig. 6(b) shows the output of Algorithm | as a function of th&he higher execution times for very low values fgf are due
number of iterations. This is obtained by picking, at each iterts the typically larger number of local extrema of the weighted
tion, the value out of th&/ curves of Fig. 6(a) that minimizes themyriad objective function for smalk’. The PRF-based algo-
objective functior(¢). The initial value of the output of Algo- rithm, which involves finding and testing all these local extrema,
rithm | is the same as the selection weighted myflaek 0.95.  will therefore need more computations for very sn¥sll Fig.
In addition, in the figure , we show (horizontal dashed line) th&b) shows the CPU times for Algorithms | and Il. Note that
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Fig. 6. (a) Fixed-point iteration sequences in Example 1 with initial values at the input samples and (b) weighted myriad (solid line) in Exampleed comp
using Algorithm | with different numbers of fixed-point iterations. The dashed line is the weighted myriad computed using root finding.

CPU TIMES (SECONDS)
CPU TIMES (SECONDS)

BT —— S
e e
——— =
N 10 ====o 04 06

(@) (b)

Fig. 7. CPU times (in seconds) used by various algorithms for different window 8izesd linearity parameter&’. (a) PRF-based algorithm (top surface) and
Algorithm | with L = 5 iterations (bottom mesh) and (b) Algorithms | (top surface) and Il (bottom mesh)/with5.

although both algorithms have very low execution times, algeizes N. Algorithm | is seen to be about 40-50 times faster
rithm Il is faster for all values ofV and K, whereas the CPU than the PRF-based algorithm for all values/éf Algorithm
times for Algorithm | increase much more rapidly with. Il is even faster; it varies from being faster than the PRF-based
Fig. 8(a) shows the fractional absolute error (absolute erraigorithm by a factor of about 90 fd¥ = 5 to a factor of about
divided by the PRF-based value) of Algorithm I for window300 for N = 15. The average errors of the algorithms are not
size N = 9. This is calculated as an average in filtering thenore than 1% for most values @f becoming slightly larger
entire input signal and is plotted for differeif and different (3%) only whenV = 15. Algorithm Il is recommended for use
numbers of iteration&. The plot shows that the fractional errorin practical applications since it is the fastest algorithm while
decays rapidly to well below 0.02 (2%) for & after just a also yielding accurate results.
few iterations. The corresponding plot for Algorithm Il is not
shown since it turns out to be only marginally different from Fig.
8(a). The fractional absolute errors of Algorithms | and Il are
averaged over alv and K and plotted in Fig. 8(b) as functions The problem of computation of the output of theighted
of the number of iterationd. This figure again confirms that myriad filter was addressed in this paper. The direct compu-
both algorithms converge rapidly to very low errors (less thaation of the weighted myriad is a nontrivial and prohibitively
2%) after just two to three iterations, with Algorithm Il havingexpensive task. Instead, this paper recast the computation
only a slightly higher error. Note that the curves in the figurproblem, formulating the weighted myriad ase of the fixed
have the same value fdr = 0; this is expected since bothpoints of a certain mapping. An iterative algorithm was then
algorithms compute the selection weighted myriad of (31) whemoposed to compute these fixed points, and the convergence
L=0. of thesefixed-point iterationsvas rigorously established. Fast
Finally, the execution times of the different algorithms, anierative fixed-point searchlgorithms to compute the weighted
the fractional errors of Algorithms | and Il with = 5 iterations, myriad were then derived, incorporating these fixed-point
are averaged ovéf and shown in Table Ill for different window iterations. Two numerical examples were presented, involving

VI. CONCLUSION
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Fig. 8. (a) Fractional absolute error of Algorithm | as a function of the number of iterafiomish window sizeN = 9 and varying linearity parametés . (b)
Mean fractional absolute errors (fractional errors averaged Svand K') of Algorithms | (solid) and Il (dashed) plotted against the number of iteratians

TABLE Il are to be chosen so th@at¢) is quadratic inf and satisfies the
CPU TIMES IN SECONDS(AVERAGED OVER /') FOR DIFFERENTALGORITHMS, it
; conditions
AND FRACTIONAL ERRORS ASPERCENTAGES(AVERAGED OVER K') FOR
ALGORITHMS | AND Il WITH L = 5 ITERATIONS

Window Size CPU Times (secs.) Fractional Errors (%) )y CH)=Q) Vo
N PRF | Algo. I | Algo. IT | Algo. I Algo. II i O = 0
5 9572 | 0284 | 0.10 | 0.145 0.309 ) ,( ) Q(, m)
7 14862 | 0476 | 0.143 | 0.145 0.241 i) C'(6m) = @' (6m)
9 28735 | 0.714 | 0.178 | 0.188 0.252 and
11 43.926 | 1.024 | 0.216 | 0.733 0.779 - :
v = arg . 4
13 58.285 | 1.381 | 0.258 | 0.984 1.040 ) Oy = ax e o) (34)
15 94200 | 1.749 | 0.295 | 3.270 3.285

Note from (8) that the objective functiag@(#) can be written as

filtering randomly generated input signals with a weighted N

myriad filter, with the weighted myriad computed using dif- Q(6) = Z p(v;) (35)
ferent algorithms. The convergence of the fixed-point iterations

was demonstrated through the first example. The speed and ac-

curacy of the different algorithms were statistically analyzed iwherep(-) is defined in (7); compare (35) with (33). In order to
the second example. These fixed-point search algorithms wardhieve the desired properties {f6), we choose the functions
shown to compute the weighted myriad with a very high degré&(-) to be quadratic as in

of accuracy at a relatively low computational cost. With the
computational bottleneck of weighted myriad filters removed

A .
as a result of this paper, the full potential of this important class Ci(v) = ¢ + 3din?, i=1,2---, N (36)
of nonlinear filters can now be realized in several applications
in robust signa| processing and communications. with C; and d; chosen, at each iteration, so that the fO”OWing
holds:
APPENDIX A
PROOF OFTHEOREM 3.1 ) Ci(v) > p(v) Y
We will prove the theorem using quadratic comparison iy © (U(nz)) —p (U(m))
function Ct™(#), which is defined at each iteration of the ! !
sequencd®,, }, and satisfying a set of conditions in relation tnd
the objective functior)(). Let i) C; (vi(m)) =y (vi(m)) =1 (vE’”)) (37)
N , . . L
() = C(6) A Z Ci(wr) (33) where the vaIue$v§m)}£\‘:1 are the scale-normalized deviations
- o at the current iteration

i=1

rq — ern

where thescale-normalized deviations are given byy; = (m) A
v; = Ui(ern) = S,

vi(8) 2 (z; — 6)/8;,i = 1,2, ---, N. The functionsC;(-) i (38)
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andt(-) is defined in (11). Note that we have two parameters  C(6,,11) +((1/2) Zf;l hi(0,)) - (g1 — 6 )?. Using
(¢; andd;), whereas there are three conditions in (37). We de-  this in (43), we finally obtain
termine the values satisfying the conditions ii) and iii) in (37);

these can easily be derived to be
y Q(ern) rn—l—l < Z h rn ) rn—l—l ) (44)

= (1) = 1l (o)

Suppose now tha,, € [z(1), z(n)]. Then, we havér; —

and y (U(m)> 6m)? < R?, whereR = z(yy — x(1). Using this fact and
d = (Ugrn)) _ (i = S2hi(6) (39) the definition ofh;(-) in (13), we can easily show that
Y
whereh; () andp(-) are defined in (13) and (14), respectively. 2 Z hi(6im) Z 52 — 6,,)?
It turns out that the resulting functiors;(-) satisfy condition =1
i) of (37) automatically; the proof of this fact is relegated to the Z (45)
end of this Appendix. Using (36) and (39) in (33), we obtain the - 52 + R2

following expression for the comparison function:
and the truth of (24) follows. This completes the proof of
L ) Theorem 3.1.
- Z ity Z hi(Om) (i — 6) (40) Remark: Parts of our proof use ideas from [14, Sec. 7.8] on
the computation of joint regressidd -estimates of location and
which is evidently quadratic ié, as required. Now, with condi- scale.
tions i)iii) of (37) satisfied, it immediately follows from (33) As promised earlier, we now verify that the functions
and (35) thatC(6) satisfies conditions i)—iii) of (34). Further, C;(-) of (36) satisfy condition i) of (37)C;(v) > p(v) Vw.
referring to (23) of Lemma 3.1, we see th@t6) can also be For a giveni € {1,2, ---, N}, define the difference func-
written asC(8) = Ef\ 16+ (1/2)B,,(6). From Lemma tion A(v) 2 Ci(v) — p(v), where p(v) = log(1l + v?)
3.1, the updated valug,,., is theuniqueglobal minimizer of from (7). We need to show thaf\(v) > 0 Vw. Using
By, (6). It evidently follows thatC'(9) satisfies condition iv) of (39) and lettingug E Ugm) for convenience, we can write

(34); in addition, A@) = Jplw) = p(v)] + (1/2(wo)le? — 5], where
o(v) = 2/(1 + v*) from (14). Substituting fop(-) and¢(-),
C(0)=Clpmy1) = 0 = 0,p11- (41)  \we obtain
We finally have the quadratic comparison functioif¢) with A(v) = log 1+ 03 v? — 2 (46)
the desired properties; we use this in proving the two parts a) B 14+v3 "

and b) of Theorem 3.1:
a) From (34), using (in order) condition i) with= 6,,,,, Using the transformation 2 (1 +2%)/(1+ %) > 0, we can
condition iv) with# = 6,,,, and, finally, condition ii), we write A(v) = Q(2) 2 _ log(z) + =z — 1. The problem is now
obtain reduced to showing th&(>) > 0 over(0, +oc). Itis a simple

exercise to verify thaf2(>) has a unique minimum at = 1.
Qmi1) < C0my1) < C(Om) = Q(Om)- (42)  Consequently(;(v) — p(v) = A(v) = Q(z) > Q(1) =0, and

the proof is complete.
ThUS an-l—l - Q( nl—l—l) < Q( ) = in Further

if Omy1 # Om, thenC(y,,11) # C(6y,) [using (41)]; APPENDIX B
hencg,QmH < Q,,% strictly. On the other hand, (1.8) a}nd PROOF OFTHEOREM 3.3
(29) imply thaté,,, is a local extremum of the objective o )
function Q(6) if (and only if) 6,41 = O, From Corollary 3.1.1 and Theorem 3.2, it is evident that
b) From (42), we have inf({Qm}=1) = Q(f3), Q(},) being the minimum value
of Q(8) in (aar, bar). We will prove the theorem by contra-
Qb)) — Qbmt1) =C(6m) — Q(0my1) diction. Suppose then th&}* £ inf({Qm =) > Q(6%,).

> C(0) — COpgr)- (43) This situation is shown in Fig. 9. Now, defife < 67, and
& > 0}, such that)(¢1) = Q(&) = Q*. SinceQ(6,,) > Q*

Now, from condition iv) of (34), 8,41 is the Vm, itis evident from the figure thad,, & (&1, &) for any
global minimizer of the quadratic functiorC(6), m. Further, considering: > M only and using the arguments
which can therefore be expressed in the forramployed in Cases | and Il of the proof of Theorem 3.2, we
C0) = Clpy1) + MO — 0,,41)% To determine can show thab,, < 6,41 < byr Whenay, < 6, < 63, and

A, note that it is simply the coefficient 6F in C(6). This  ay < 6,41 < 6, Whené, < 6, < bys. This means that
is readily obtained by examining the expressiondgf) succeeding values of the sequerd@g,} move further away

in (40); thus,A = (1/2) Zf;l h;(6,,). Substituting the from the endpoints,,, andb,,. Consequently, the subsequence
value of A and setting = 6,,,, we can writeC(6,,) = {6,,,: m > M} is bounded away from,; andby,. Therefore,
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