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Fast Algorithms for Weighted Myriad Computation
by Fixed-Point Search

Sudhakar Kalluri, Member, IEEE,and Gonzalo R. Arce, Fellow, IEEE

Abstract—This paper develops fast algorithms to compute the
output of the weighted myriad filter. Myriad filters form a large
and important class of nonlinear filters for robust non-Gaussian
signal processing and communications in impulsive noise environ-
ments. Just as the weighted mean and the weighted median are op-
timized for the Gaussian and Laplacian distributions, respectively,
the weighted myriadis based on the class of -stable distributions,
which can accurately model impulsive processes.

The weighted myriad is an -estimator that is defined in an
implicit manner; no closed-form expression exists for it, and its di-
rect computation is a nontrivial and prohibitively expensive task.
In this paper, the weighted myriad is formulated asoneof the fixed
points of a certain mapping. An iterative algorithm is proposed to
compute these fixed points, and its convergence is proved rigor-
ously. Using thesefixed-point iterations, fast algorithms are devel-
oped for the weighted myriad. Numerical simulations demonstrate
that these algorithms compute the weighted myriad with a high de-
gree of accuracy at a relatively low computational cost.

Index Terms—Iterative methods, median filters, nonliear filters,
optmization.

I. INTRODUCTION

A LARGE number of real-world processes are impulsive in
nature, containing sharp spikes or occasional outliers. Ex-

amples of impulsive signals include low-frequency atmospheric
noise, underwater acoustic signals, radar clutter, and multiple-
access interference in wireless communication systems [1]–[3].
The performance of traditionallinear signal processing,which
is optimal under the Gaussian model for the signal statistics, is
inadequate in an impulsive environment. Impulsive signals are
more accurately modeled by distributions whose density func-
tions have heavier tails than the Gaussian distribution [4]. In
recent years, there has been considerable interest in the devel-
opment of robust techniques for signal processing and commu-
nications, based on heavy-tailed distributions for the signal sta-
tistics.

Weighted median filters, along with other filters based on
order statistics[5], [6], have been widely used for robust image
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processing due to their ability to reject outliers while preserving
edges and fine detail in images. These nonlinear filters are
optimal under the Laplacian noise model, whose distribution
is more heavy-tailed than the Gaussian distribution. However,
their applications have not spread significantly beyond the field
of image processing, largely because they are constrained to be
selection filters(the filter output is always, by definition, one
of the input samples). Although hybrid techniques combining
linear and median filtering have been developed, they tend to
bead hocin nature and prohibitively complex.

Weighted myriad filters(WMyF’s) have been proposed as a
class of nonlinear filters for robust non-Gaussian signal pro-
cessing in impulsive noise environments [7]–[10]. These filters
have been derived based on maximum likelihood location es-
timation from samples following the so-called-stable distri-
butions [3], [4]. The attractive features of-stable distributions
are that they include the Gaussian distribution as a special lim-
iting case while possessing heavier tails than the Gaussian as
well as Laplacian distributions. As a result, WMyF’s constitute
a robust generalization of linear filtering that is at the same time
inherently more powerful than weighted median filters. Myriad
filters have been successfully employed in robust communica-
tions and image processing applications [11]–[13].

The class of WMyF’s is derived from thesample myriad,
which is an -estimator of location [14] for the class of

-stable distributions. Given a set of samples , an -es-

timator of location is given by ,
where is called thecost functionof the -estimator.
Maximum likelihood location estimators are special cases of

-estimators with , where is the den-
sity function of the samples. Using the Gaussian and Laplacian
density functions, we obtain the cost functions for thesample
meanand thesample medianas and ,
respectively. The sample myriad is defined using the cost
function , where the so-calledlinearity
parameter controls the impulse-resistance (outlier-rejection
capability) of the estimator; a more detailed description is given
in Section II. Table I shows the cost functions and the outputs
for the linear (mean), median, and myriad filters. In each
row of the table, the filter output is the value that minimizes
the associated cost function. These filters are generalized to
their weighted versions by introducing non-negative weights

in the cost function expressions. The notations
(for the weighted median) and (for the weighted myriad),
shown in the last column of the table, reflect these weighting
operations. In the case of the weighted median withinteger
weights, the expression has the added significance of
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TABLE I
M -ESTIMATOR COST FUNCTIONS AND FILTER OUTPUTS FORVARIOUS FILTER FAMILIES

denoting thereplicationof the sample by the integer ; the
filter output is then the (unweighted) median of a modified set
of observations, where each sampleappears times.

As Table I shows, it is trivial to compute the weighted mean.
The weighted median can also be determined directly; how-
ever, it requires sorting the input samples, making it a computa-
tionally expensive task. There has, therefore, been considerable
research to develop fast algorithms to compute the weighted
median. The weighted myriad, on the other hand, is not even
available in explicit form. A direct computation of the weighted
myriad is therefore a nontrivial and prohibitively expensive task
since it involves the minimization of the associated cost func-
tion shown in the last row of Table I. In this paper, we first
define a certainmappinghaving severalfixed pointsand show
that the weighted myriad is one of these fixed points. It is the
particular fixed point that minimizes the weighted myriad cost
function of Table I. We propose an iterative algorithm to com-
pute these fixed points. We then develop fast algorithms, incor-
porating thesefixed point iterationsfor the computation of the
weighted myriad. The performance of these algorithms is eval-
uated using a numerical example. It is shown that these algo-
rithms achieve a high degree of accuracy in approximating the
weighted myriad at a relatively low cost of computation. Using
these algorithms, the full potential of the class of WMyF’s can
now be realized in robust signal processing and communications
applications.

The paper is organized as follows. Section II introduces the
weighted myriad. In Section III, we present iterative algorithms
for fixed-point computation, including a proof of their conver-
gence. Fast algorithms for weighted myriad computation are de-
veloped in Section IV. Computer simulations illustrating these
algorithms are presented in Section V.

II. THE WEIGHTED MYRIAD

This section briefly introduces theweighted myriadand de-
velops some of its properties that will be useful later in the paper.
For a more detailed treatment, see [7]–[9] and [11].

The class of WMyF’s is derived from the so-called sample
myriad, which is defined as the maximum likelihood estimate
(MLE) of the location parameter of data following the Cauchy

distribution. Consider independent and identically distributed
(i.i.d.) random variables , each following a Cauchy dis-
tribution with location parameter and scaling factor .
Thus, Cauchy with the density function

(1)

where is the density function of astan-
dard Cauchy random variable: Cauchy .
Given a set of observations , the sample myriad
maximizes the likelihood function . Equiv-
alently, using (1) and some manipulation, we obtain

(2)

Notably, the sample myriad reduces to the sample mean as
[8].

By assigning non-negative weights to the input samples
(observations), based on their varying levels of reliability,
the weighted myriad is derived as a generalization of the
sample myriad. This is done by assuming that the observations
are drawn from independent Cauchy distributed random
variables, all having the same location parameter but varying
scale factors. Given observations and weights

define the input vector

and the weight vector . For a given
nominal scale factor , the underlying random variables

are assumed to be Cauchy distributed with location
parameter and scale factors : Cauchy ,
where

(3)

Increasing the weight (thus decreasing the scale) causes
the distribution of to be more concentrated around, making
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a more reliable sample. Note that the sample myriad is in-
cluded as a special case: When all the weights are equal to unity,
the scale factors all reduce to , leading to the sample
myriad at the nominal scale factor.

The weighted myriad maximizes the likelihood
function . Using (1) for ,
the weighted myriad can be expressed as

(4)

By rewriting (4), the weighted myriad can also
be expressed as

(5)

since is a strictly increasing function. We refer to the func-
tion

(6)

as theweighted myriad objective functionsince it is minimized
by the weighted myriad. Note that when ( ), the
corresponding term in or drops out; the sample is
thus effectively ignored when its weight is zero.

The weighted myriad is an -estimator [14]. To see this,
introduce the function

(7)

We can then express the weighted myriad from
(5) as

(8)

which defines an -estimator of location from samples of
varying scale [14].

The computation of the weighted myriadis complicated
by the fact that the objective function can have several
local minima, as we shall see presently. To derive some basic
properties of , we examine further. First, use (6) to write
the derivative of as

(9)

Fig. 1. Sketch of a typical weighted myriad objective functionQ(�).

The following proposition brings together a few key properties
of and that will be used in the later sections on the com-
putation of . The properties described below are illustrated by
Fig. 1, which shows the form of a typical objective function

.
Proposition 2.1: Let signify the order statistics

(samples sorted in increasing order of amplitude) of the input
vector , with the smallest and the largest. The fol-
lowing statements hold:

a) The objective function has a finite number [at most
] of local extrema.

b) The weighted myriad is one of the local minima of :
.

c) [ strictly increasing] for , and
[ strictly decreasing] for .

d) All the local extrema of lie within the range
of the input samples.

e) The weighted myriad is in the range of input samples:
.

Proof:

a) We have from (6). The function ,
given from (4) by

(10)

is a polynomial in of degree with well-defined
derivatives of all orders. Its derivative is a poly-
nomial of degree with at most real
roots. Now, from (9), and it is clear
from (10) that for any . Hence, the roots of

and are identical. Therefore, also has
at most real roots, that is, has at most

local extrema.
b) From a), it is clear that is a sufficiently smooth func-

tion that is defined for all real and having derivatives
of all orders. In addition, from (6), . It
follows that the global minimum of (which is the
weighted myriad ) must occur at one of its local minima.

c) Let . Then, since
, we have

. Using this in (9), we
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obtain strictly. Similarly,
. Then, from

(9), strictly.
d) From c), we see that if or .

Thus, for real , . That
is, the real roots of , which are the local extrema of

, lie in the range of the input samples.
e) This follows from b) and d). This completes the proof of

the proposition.
The weighted myriad is a solution of the equation

. Referring to (7), define

(11)

which is called theinfluence functionof an -estimator. Then,
we can use (9) to write the following equation for the local ex-
trema of :

(12)

As a final note, we can use (3) and (12) to show that when
with the weights held constant, there is asingle local

extremum, and , which is
the (linear)weighted mean. Hence, we have the namelinearity
parameterfor the nominal scale factor .

III. FIXED POINT ITERATIONS FORWEIGHTED MYRIAD

COMPUTATION

The weighted myriad is one of thereal roots of the function
of (9). In this section, these roots are formulated as fixed

points of a mapping, and an iterative algorithm is presented for
their computation.

Referring to (12), introduce thepositivefunctions

(13)

where

(14)

We can then recast (12) as

(15)

for the local extrema of . This formulation implies that the
sum of weighted deviationsof the samples is zero with the (pos-
itive) weights themselves being functions of.

A. Fixed-Point Formulation

Rewriting (15) as

(16)

we see that each local extremum of , including the
weighted myriad , can be written as aweighted meanof the
input samples . Since the weights are always positive,
the right-hand side of (16) is in the interval ,
confirming that all the local extrema lie within the range of the
input samples. By defining the mapping

(17)

the local extrema of , or the roots of , are seen to be
the fixed pointsof

(18)

We propose the followingfixed-point iterationalgorithm to
compute these fixed points:

(19)

In the classical literature, this is also called themethod of suc-
cessive approximationfor the solution of the equation
[15]. In Section III-B, we prove that the iterative scheme of (19)
converges to a fixed point of ; thus

(20)

Note that there can be as many as fixed points ; the
initial value chosen in (19) determines the particular fixed-
point obtained.

A different perspective on (19) can be obtained by using (15)
to rewrite the recursion as

(21)

where . To interpret (21), con-

sider thetangentof at :
. Then, we have

. Thus, considering as a
linear approximation of around the point , the update
attemptsto reduce : .
This does not guarantee that ; however, it
is shown in Section III-B that (21) does in fact decrease
at each iteration.

We can contrast the recursion of (19) with the update
in Newton’s method [15] for the solution of the equation

:

(22)

which is interpreted by considering thetangentof at

: . Here, is used
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as a linear approximation of around the point , and
is the point at which the tangent crosses the axis:

.
Although Newton’s method can have fast (quadratic) conver-

gence, the major disadvantage of this method is that it may con-
verge only if the initial value is sufficiently close to the so-
lution [15]. Thus, only local convergence is guaranteed. The
conditions for convergence [15] are also difficult to verify in
practice, especially since they have to be determined for each
specific function . Further, Newton’s method can converge
to either a local minimum or a local maximum of (de-
pending on the initial value ), whereas we need only the local
minima in order to compute the weighted myriad. On the other
hand, as we shall prove in Section III-B, the fixed-point iteration
scheme of (19) decreases the objective function continu-
ously at each step, leading toglobal convergence(convergence
from an arbitrary starting point) to the localminimaof .

B. Convergence of Fixed-Point Iterations

In this section, we prove that the sequence of (19) con-
verges to one of the local extrema of the objective function .
We show, in fact, that except for a degenerate case with zero
probability of occurrence, always converges to a local
minimum. As a first step, we show in the following theorem
(Theorem 3.1) that the recursion (19)decreases . The proof
of this theorem uses the following lemma, which reveals the up-
dated value as the solution to a weighted least-squares
problem at each iteration.

Lemma 3.1:The value in (19) is the global minimizer
of the function

(23)

Proof: Since is quadratic in , its global minimizer
is the unique solution of the derivative equation .
From (23), ;
the second equality is easily derived from the definition of
in (19). Hence, we have the result.

Theorem 3.1:Consider the sequence , with

given by (19). Let be the range of the
input samples. Then, we have the following.

a) strictly, if . If , then
, and is a local extremum of .

b)

(24)

where the last inequality holds if .
Proof: See Appendix A.

Remarks:

i) If , the sequence evidently converges
since all subsequent values are also equal to

.
ii) The condition in b) is not restric-

tive since even if the initial value is chosen outside
, (19) shows that will all lie

within this interval.
iii) This theorem exploits parts of [14, Sec. 7.8], which deals

with the computation of regression -estimates.

Corollary 3.1.1: The sequence converges; ,

where .
Proof: It is evident from the theorem that .

Thus, is a decreasing sequence, and it
is bounded below since from (6). Hence, the
sequence converges to its infimum: , where

.
Corollary 3.1.2: and the sequence of

derivatives .
Proof: Using (24), we can write

(25)

where

Since converges (Corollary 3.1.1), we have
. It then follows

from (25) that , proving the first part of the
corollary. Now, using (21), we have

(26)

which, together with (13), leads to

(27)

Since , it follows from (27) that .
This completes the proof.

Fig. 2 illustrates the behavior of the sequence by de-
picting the two possible scenarios that are described in Theorem
3.1. In the first case, we have a sequence of distinct elements
( for any ), which always decreases . We will
show later in this section that the sequence in this case converges
to a localminimum, which is shown as in the figure. The
second case in the figure depicts a situation where the sequence
terminates at a particular iteration when ,
where is a local extremum of (it happens to be a local
maximumin this figure). Note that in both cases, the sequence
stays within the range of the input samples. In addition, the se-
quence proceeds always in such a way that has the
same sign as the derivative at the current iteration.
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Corollary 3.1.2 is not enough to ensure the convergence of
the sequence to a solution of the equation . It
is instrumental, however, in establishing the next theorem (The-
orem 3.2), which states that after a finite number of iterations,
all subsequent values of are confined between the two local
maxima adjacent tooneof the local minima of . The choice
of the initial value will determine the particular local min-
imum around which the sequence is ultimately localized.

Theorem 3.2:For each iteration , let and
( ) be the two adjacent local maxima of such
that . Let denote the local minimum of

lying within this interval: . Assume that
is such that . Then, such that

.
Proof: First, since , Theorem 3.1 shows

that is not a local extremum for any ; thus, is within
the open interval . Now, from Corollary 3.1.2,

. Therefore, given any , such
that . In particular, choose

: ; then is
also the smallest distance betweenadjacentlocal extrema of

. Letting , it follows that

and (28)

Now, let . We shall show that
. Referring to Fig. 3, consider separately the following

two cases:
Case I— : Fig. 3(a) depicts this sit-

uation, where . Now, it is clear from Section II [in
particular, the proof of Proposition 2.1(a)] that is a suf-
ficiently smooth function, having continuous derivatives of all
orders. It easily follows that its derivative for be-
tween any local maximum and the local minimum immediately
to the right of it. In particular, we have . Referring
to (26) and knowing that , we then have

, as shown in the figure. Using this fact and (28),
we obtain ;
we do the final step because . This implies

. Together with the fact that , this shows that
.

Case II—( : This case is illustrated in
Fig. 3(b). Arguing as in Case I, we can show that
for . Using (26) again, we now have

. Note that in this case, we have shown in the figure to
be on the same side of as , unlike in Fig. 3(a). In fact, in
both cases I and II, either one of and
could be true. Now, using , together with (28),
leads to

, where the last step is due to . Thus,
. Combining this with , we obtain

.
We have thus shown that . This implies

that and , that is, is between

Fig. 2. Typical scenarios in the behavior of the sequencef� g of fixed-point
iterations.

the same adjacent local maxima, as is. We can continue this
process, using the same arguments as in Cases I and II above,
to show inductively that , where

. This completes the proof of the theorem.
Remark: The proof holds, with very trivial modifications, for

the cases where lies: i) between and the local maximum
immediately to the right of or ii) between and the local
maximum immediately to its left. These two situations can be
tackled by defining in i) and in ii).
This remark also applies when the same situations arise in other
theorems and proofs of this paper.

We have thus established that the sequence eventually
stays within the interval around the local minimum

. This is a key result that is used in the proof of the fol-
lowing theorem, which supplies the limit of the sequence of
values of the objective function.

Theorem 3.3:The limit of the sequence is
; , where is defined

in the proof of Theorem 3.2.
Proof: See Appendix B.

Using Theorem 3.3 and the smoothness properties of ,
the convergence of the sequence is finally established in
the following theorem.

Theorem 3.4:Consider the sequence of fixed-point it-
erations defined in (19). Then, we have the following.

a) If (and only if) for some , then
and is a local extremum of . The

sequence then terminates at , i.e.,
.

b) If is such that , then the se-
quence converges to a localminimum of :

, where is defined in the proof of Theorem
3.2.

Proof:

a) See Theorem 3.1 and Remark i), which follows it.
b) We shall prove the convergence of the subsequence:

, which implies the convergence of .
Let . Given any , define the quanti-
ties , such that
and . These are shown in Fig. 4,
which shows the objective function in the interval
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(a) (b)

Fig. 3. Two cases in the proof of Theorem 3.2: (i) Case I (� < � ) and (ii) Case II (� > � ).

within which the subsequence :
is confined. It is assumed (without prejudice to the ve-
racity of the theorem) that is small enough to ensure
that and fall within the interval .

Let . Assume, without loss of
generality, that ; this is the situation represented
in the figure. Now, define such that

. Note that , as shown in
the figure. That is, , since

, and is a de-
creasing function ( ) for . Now,
we have from Theorem 3.3. Therefore, given
the value defined above,
such that ,

, ,
. Thus, we have shown that for any , such

that . Hence, ;
this completes the proof of the theorem.

Note that the degenerate case corresponding to Theorem
3.4(a) is an event that occurs with zero probability. Clearly
then, the sequence of fixed-point iterations defined in
(19) converges with probability one to a localminimumof
the objective function . Exploiting this property to find
algorithms to compute the weighted myriad is the subject of
the next section.

IV. FAST WEIGHTED MYRIAD COMPUTATION ALGORITHMS

The weighted myriad globally minimizes the objective
function or, equivalently, thepolynomial objective func-
tion , which is given from (4) by

(29)

For computational purposes, it is more economical to use the
polynomial version rather than using the function .
From Proposition 2.1, is oneof the local minima of or
one of thereal roots of the derivative function . Further, all
these roots lie within the range of the input samples.

Fig. 4. Depiction of the proof of Theorem 3.4.

The fixed-point iterations proposed in Section
III [see (19)] converge to the real roots of for any ini-
tial value . In fact, these recursions converge almost surely
to the localminimarather than the localmaximaof (see
Theorem 3.4). Based on these observations, we can use the fol-
lowing genericapproach to compute the weighted myriad:

Step 1) Choose a finite set of initial values with
.

Step 2) For each , implement the fixed point re-
cursion of (19) for a desired number of iterations:

, . This forms the
set of estimates of the local minima
of , where denotes the mapping ap-
plied times. The elements of are thecandidates
for the weighted myriad.

Step 3) The weighted myriad is then computed as the ele-
ment of that minimizes the polynomial objective
function : .

The choice of the set in Step 1) above leads to different
versions of the generic algorithm, with varying complexity and
accuracy, which also depends on the choice of the number of
iterations . Recall from Proposition 2.1 that there are at most

local extrema of with at most local minima.
One way of improving the accuracy of the algorithm could be
to choose a large number of values for the initial setby a fine
sampling of the interval of interest . This approach
might increase the likelihood that the final candidate set(of
Step 2) includesall the local minima of , although this is
not guaranteed to be the case. However, this is computationally
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TABLE II
COMPLEXITIES OFWEIGHTED MYRIAD ALGORITHMS (WINDOW SIZE N ,L FIXED—POINT ITERATIONS); �(m) IS THECOMPLEXITY IN FINDING THE ROOTS OF A

POLYNOMIAL OF DEGREEm AND VARIES WITH THE PARTICULAR ROOT FINDING METHOD USED

very expensive and involves finding the order statistics and
. As a tradeoff between the demands of speed and accuracy,

we propose the following algorithm, which choosesto be the
set of input samples .

Fixed-Point Search Weighted Myriad Algorithm I
(FPS–WMyI)

Step 1) Using each of the input samples as an ini-
tial value, perform iterations of the fixed-point recursion

of (19). Denote the resulting final values as
.

Step 2) The weighted myriad is chosen as the element of
that minimizes the polynomial objective function of
(29): – .

The algorithm can be described compactly as

– (30)

A much faster algorithm can be obtained by realizing that
most of the recursions in Step 1 above will converge to values

[local minima of ] that are far from the weighted myriad.
An input sample that is close to the weighted myriad is likely
to converge to the weighted myriad itself. Motivated by this fact,
we define theselection weighted myriad [16] as theinput
samplethat minimizes the weighted myriad objective function

or, equivalently, the polynomial objective function :

(31)

Using as an initial value in the fixed-point recursion of
(19), we obtain the following fast algorithm.

Fixed-Point Search Weighted Myriad Algorithm II
(FPS–WMyI)

Step 1) Compute the selection weighted myriad:
.

Step 2) Using as the initial value, perform iterations of
the fixed-point recursion of (19). The final
value of these iterations is then chosen as the weighted myriad

– .

This algorithm can be compactly written as

– (32)

Note that for the special case (meaning
that no fixed point iterations are performed), both the
above algorithms compute the selection weighted myriad

– – . Now, compare the two
algorithms for the same number of iterations . Suppose

happens to be the input sample. Then, Algorithm II
yields – . On the other
hand, from Step 1 of Algorithm I, ; in
particular, . Therefore, – . Now,
if is close to the weighted myriad, then will be
close to , and we will have –

– . In this case, both algorithms yield the same
result, with Algorithm II being much faster. Suppose, however,
that is close to a local minimum of that is different
from the weighted myriad . Then, will not be close to ,
and Algorithm I will choose some other . In this case,
Algorithm I will give a more accurate result than Algorithm II.

Computational Complexity:A direct computation of
the weighted myriad requires finding the real roots of the

-degree derivative polynomial (see Propo-
sition 2.1). It is easy to show that the coefficients of
can be found using multiplications and

additions. The weighted myriad is the real
root that minimizes the polynomial objective function of
(29). The computation of for any requires
multiplications and additions. Choosing the minimum
out of a set of values is an task. Each fixed-point
iteration step of (19) requires multiplications and

additions. Let denote the number of operations
(multiplications, additions, etc.) required to determine the real
roots of a polynomial of degree having real coefficients.
Based on these observations, we can derive expressions for
the complexities of the different algorithms; these are shown
in Table II. For large window sizes and a significant
number of fixed-point iterations , the number of required
operations is approximately for the
polynomial root finding (PRF) based algorithm:
for Algorithm I and for Algorithm II. The
complexity of the PRF-based method is typically dominated
by the term involving root finding; for example,
the EISPACK routines [17] for root finding have complexity
proportional to for a polynomial of degree , making

.
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V. NUMERICAL EXAMPLES

The fixed-point iterations of Section III and the fast weighted
myriad computation Algorithms I and II of Section IV are illus-
trated in this section with two examples. In the first example, a
single input vector is chosen, along with a weight vector
and linearity parameter . The fixed-point iteration sequences
of (19) are computed with several different initial values, and
their convergence is demonstrated. In the second example, a
long input signal is filtered with a sliding-window weighted
myriad filter using different algorithms, including the polyno-
mial root finding (PRF) based algorithm. The speed and accu-
racy of the algorithms are evaluated for several window sizes
and different values of . The PRF-based algorithm requires
finding the roots of the derivative of thepolynomial objec-
tive function (see Proposition 2.1). These roots are found
using a root finding algorithm described in [18], which is ap-
parently superior in speed and accuracy to the best previously
known root finding methods.

Example 1: In order to demonstrate the fixed-point iterations
of Section III, a single input vector of length was gen-
erated, with the samples chosen to be independent and uni-
formly distributed over [0, 1]. The weight vector was also gener-
ated randomly with the weights following a uniform distribution
over [0, 1]. The linearity parameter was chosen to be .
Fig. 5 shows the weighted myriad objective function of (6)
for this example. Recall from Proposition 2.1 that all the local
extrema of , including the weighted myriad, lie within
the range of the input samples. For our example, as the figure
shows, has four local minima and three local maxima, and
the input samples range from the smallest to the
largest . The four local minima, which are com-
puted using the root finding method of [18], are at 0.17, 0.27,
0.38, and 0.93, with the weighted myriad (the global minimum
point) being .

The fixed-point iteration scheme of (19) was implemented
with iterations for this example using different initial
values in order to compute all the local minima of . The ini-
tial values for these iterations were the set ofinput samples

. Fig. 6(a) shows the curves representing the
different fixed-point iteration sequences obtained. The figure
clearly demonstrates the convergence of the fixed-point itera-
tions. We see that the iteration sequences form four sets, each
set of curves converging to one of the four local minima of .
Although all the sequences happen to be monotonic in this ex-
ample, it should be mentioned that this may not always be the
case. The curve in the figure that starts at the selection weighted
myriad will correspond to the outputs of Algorithm II for dif-
ferent iterations. In this example, the selection weighted myriad
happens to be . This is quite close to the
weighted myriad , as expected, and Algorithm II thus
succeeds in converging to the right value of.

Fig. 6(b) shows the output of Algorithm I as a function of the
number of iterations. This is obtained by picking, at each itera-
tion, the value out of the curves of Fig. 6(a) that minimizes the
objective function . The initial value of the output of Algo-
rithm I is the same as the selection weighted myriad .
In addition, in the figure , we show (horizontal dashed line) the

Fig. 5. Weighted myriad objective functionQ(�) in Example 1. Input vector
xxx = [0:13; 0:86; 0:39; 0:99; 0:27; 0:95; 0:97; 0:16; 0:90], weight vector
www = [0:70; 0:36; 0:94; 0:22; 0:39; 0:04; 0:26; 0:60; 0:02], linearity
parameterK = 0:03.

weighted myriad . As seen from the figure, the output
of Algorithm I is very close to the weighted myriad after just
a few iterations. The corresponding curve for Algorithm II has
been omitted since it happens to be identical to that of Algo-
rithm I in this example.

Example 2: In this example, the speed and accuracy of Al-
gorithms I and II are investigated by filtering a long input signal
using several window sizes and different values of the lin-
earity parameter . The input signal consisted of 5000 ran-
domly generated samples following a uniform distribution over
[0, 1]. The window sizes used were 5, 7, 9, 11, 13, and
15. For each , the filter weights were generated randomly,
again following the uniform distribution over [0, 1]. The same
weight vector was used to filter the input signal with several
values of varying from to in steps of 0.05.
Three algorithms were used for the filtering: the PRF-based al-
gorithm using the root finding method of [18] and Algorithms
I and II. The fixed-point search Algorithms I and II were im-
plemented for iterations ranging from to . All the
computations were performed in C on a Sun Ultra2 Enterprise
workstation (SUN4U/170 Ultra-2/1170).

Fig. 7(a) shows the amount of CPU time (in seconds) that
is spent by the PRF-based algorithm in filtering the 5000-long
input signal for different values of and . The corresponding
CPU times used by Algorithm I (with iterations) are
shown for comparison. It is clear from the figure that Algo-
rithm I is consistently faster than the PRF-based algorithm; the
contrast in speeds becomes especially evident for smalland
large . The figure also shows that for a given, the CPU
time is largely independent of , provided is not too small.
The higher execution times for very low values of are due
to the typically larger number of local extrema of the weighted
myriad objective function for small . The PRF-based algo-
rithm, which involves finding and testing all these local extrema,
will therefore need more computations for very small. Fig.
7(b) shows the CPU times for Algorithms I and II. Note that
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(a) (b)

Fig. 6. (a) Fixed-point iteration sequences in Example 1 with initial values at the input samples and (b) weighted myriad (solid line) in Example 1 computed
using Algorithm I with different numbers of fixed-point iterations. The dashed line is the weighted myriad computed using root finding.

(a) (b)

Fig. 7. CPU times (in seconds) used by various algorithms for different window sizesN and linearity parametersK . (a) PRF-based algorithm (top surface) and
Algorithm I with L = 5 iterations (bottom mesh) and (b) Algorithms I (top surface) and II (bottom mesh) withL = 5.

although both algorithms have very low execution times, algo-
rithm II is faster for all values of and , whereas the CPU
times for Algorithm I increase much more rapidly with.

Fig. 8(a) shows the fractional absolute error (absolute error
divided by the PRF-based value) of Algorithm I for window
size . This is calculated as an average in filtering the
entire input signal and is plotted for different and different
numbers of iterations . The plot shows that the fractional error
decays rapidly to well below 0.02 (2%) for all after just a
few iterations. The corresponding plot for Algorithm II is not
shown since it turns out to be only marginally different from Fig.
8(a). The fractional absolute errors of Algorithms I and II are
averaged over all and and plotted in Fig. 8(b) as functions
of the number of iterations . This figure again confirms that
both algorithms converge rapidly to very low errors (less than
2%) after just two to three iterations, with Algorithm II having
only a slightly higher error. Note that the curves in the figure
have the same value for ; this is expected since both
algorithms compute the selection weighted myriad of (31) when

.
Finally, the execution times of the different algorithms, and

the fractional errors of Algorithms I and II with iterations,
are averaged over and shown in Table III for different window

sizes . Algorithm I is seen to be about 40–50 times faster
than the PRF-based algorithm for all values of. Algorithm
II is even faster; it varies from being faster than the PRF-based
algorithm by a factor of about 90 for to a factor of about
300 for . The average errors of the algorithms are not
more than 1% for most values of becoming slightly larger
(3%) only when . Algorithm II is recommended for use
in practical applications since it is the fastest algorithm while
also yielding accurate results.

VI. CONCLUSION

The problem of computation of the output of theweighted
myriad filter was addressed in this paper. The direct compu-
tation of the weighted myriad is a nontrivial and prohibitively
expensive task. Instead, this paper recast the computation
problem, formulating the weighted myriad asoneof the fixed
points of a certain mapping. An iterative algorithm was then
proposed to compute these fixed points, and the convergence
of thesefixed-point iterationswas rigorously established. Fast
iterative fixed-point searchalgorithms to compute the weighted
myriad were then derived, incorporating these fixed-point
iterations. Two numerical examples were presented, involving
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(a) (b)

Fig. 8. (a) Fractional absolute error of Algorithm I as a function of the number of iterationsL with window sizeN = 9 and varying linearity parameterK . (b)
Mean fractional absolute errors (fractional errors averaged overN andK) of Algorithms I (solid) and II (dashed) plotted against the number of iterationsL.

TABLE III
CPU TIMES IN SECONDS(AVERAGED OVERK) FORDIFFERENTALGORITHMS,

AND FRACTIONAL ERRORS ASPERCENTAGES(AVERAGED OVERK) FOR

ALGORITHMS I AND II WITH L = 5 ITERATIONS

filtering randomly generated input signals with a weighted
myriad filter, with the weighted myriad computed using dif-
ferent algorithms. The convergence of the fixed-point iterations
was demonstrated through the first example. The speed and ac-
curacy of the different algorithms were statistically analyzed in
the second example. These fixed-point search algorithms were
shown to compute the weighted myriad with a very high degree
of accuracy at a relatively low computational cost. With the
computational bottleneck of weighted myriad filters removed
as a result of this paper, the full potential of this important class
of nonlinear filters can now be realized in several applications
in robust signal processing and communications.

APPENDIX A
PROOF OFTHEOREM 3.1

We will prove the theorem using aquadratic comparison
function , which is defined at each iteration of the
sequence , and satisfying a set of conditions in relation to
the objective function . Let

(33)

where thescale-normalized deviations are given by
, . The functions

are to be chosen so that is quadratic in and satisfies the
conditions

i)

ii)

iii)

and

iv) (34)

Note from (8) that the objective function can be written as

(35)

where is defined in (7); compare (35) with (33). In order to
achieve the desired properties for , we choose the functions

to be quadratic as in

(36)

with and chosen, at each iteration, so that the following
holds:

i)

ii)

and

iii) (37)

where the values are the scale-normalized deviations
at the current iteration

(38)
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and is defined in (11). Note that we have two parameters
( and ), whereas there are three conditions in (37). We de-
termine the values satisfying the conditions ii) and iii) in (37);
these can easily be derived to be

and

(39)

where and are defined in (13) and (14), respectively.
It turns out that the resulting functions satisfy condition
i) of (37) automatically; the proof of this fact is relegated to the
end of this Appendix. Using (36) and (39) in (33), we obtain the
following expression for the comparison function:

(40)

which is evidently quadratic in, as required. Now, with condi-
tions i)–iii) of (37) satisfied, it immediately follows from (33)
and (35) that satisfies conditions i)–iii) of (34). Further,
referring to (23) of Lemma 3.1, we see that can also be
written as . From Lemma
3.1, the updated value is theuniqueglobal minimizer of

. It evidently follows that satisfies condition iv) of
(34); in addition,

(41)

We finally have the quadratic comparison function with
the desired properties; we use this in proving the two parts a)
and b) of Theorem 3.1:

a) From (34), using (in order) condition i) with ,
condition iv) with , and, finally, condition ii), we
obtain

(42)

Thus, . Further,
if , then [using (41)];
hence, strictly. On the other hand, (18) and
(19) imply that is a local extremum of the objective
function if (and only if) .

b) From (42), we have

(43)

Now, from condition iv) of (34), is the
global minimizer of the quadratic function ,
which can therefore be expressed in the form

. To determine
, note that it is simply the coefficient of in . This

is readily obtained by examining the expression for
in (40); thus, . Substituting the
value of and setting , we can write

. Using
this in (43), we finally obtain

(44)

Suppose now that . Then, we have
, where . Using this fact and

the definition of in (13), we can easily show that

(45)

and the truth of (24) follows. This completes the proof of
Theorem 3.1.

Remark: Parts of our proof use ideas from [14, Sec. 7.8] on
the computation of joint regression-estimates of location and
scale.

As promised earlier, we now verify that the functions
of (36) satisfy condition i) of (37): .

For a given , define the difference func-

tion , where
from (7). We need to show that . Using

(39) and letting for convenience, we can write
, where

from (14). Substituting for and ,
we obtain

(46)

Using the transformation , we can
write . The problem is now
reduced to showing that over . It is a simple
exercise to verify that has a unique minimum at .
Consequently, , and
the proof is complete.

APPENDIX B
PROOF OFTHEOREM 3.3

From Corollary 3.1.1 and Theorem 3.2, it is evident that
, being the minimum value

of in . We will prove the theorem by contra-

diction. Suppose then that .
This situation is shown in Fig. 9. Now, define and

such that . Since
, it is evident from the figure that for any

. Further, considering only and using the arguments
employed in Cases I and II of the proof of Theorem 3.2, we
can show that when and

when . This means that
succeeding values of the sequence move further away
from the endpoints and . Consequently, the subsequence

is bounded away from and . Therefore,



KALLURI AND ARCE: FAST ALGORITHMS FOR WEIGHTED MYRIAD COMPUTATION BY FIXED POINT SEARCH 171

Fig. 9. Illustration of the proof of Theorem 3.3.

we can find values and with and
such that , either or

. This is illustrated in the figure, with bold lines
showing the intervals and , which are the re-
gions within which the subsequence is confined.
A consequence of this is that
is bounded away from , and , which are the only
points in at which the derivative function .
We can then conclude, using the continuity of , that the
subsequence is bounded away from 0. As a
result, , which contradicts Corollary 3.1.2. Hence,
the assumption that is false. Thus,

, and the theorem is proved.
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