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Abstract

Stochastic gradient-based adaptive algorithms are developed for the optimization of Weighted
Myriad Filters. Weighted Myriad Filters form a class of nonlinear filters, motivated by the
properties of a-stable distributions, that have been proposed for robust non-Gaussian signal
processing in impulsive noise environments. The weighted myriad for an N-long data window is
described by a set of non-negative weights {w;}¥ , and the so-called linearity parameter K > 0.
In the limit as K — oo, the filter reduces to the familiar weighted mean filter (a constrained
linear FIR filter).

In this paper, necessary conditions are obtained for optimality of the filter weights under
the mean absolute error criterion. An implicit formulation of the filter output is used to find
an expression for the gradient of the cost function. Using instantaneous gradient estimates, an
adaptive steepest-descent algorithm is then derived to optimize the weights. This algorithm
involves a very simple update term that is computationally comparable to the update in the
classical LMS algorithm. The robust performance of this adaptive algorithm is demonstrated
through a computer simulation example involving lowpass filtering of a one-dimensional chirp-

type signal in impulsive noise.
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1 Introduction

The traditional approach to a statistical signal processing problem has been to derive the optimal
solution based on a particular signal and noise model for the problem at hand. This approach
relies on the belief that the optimal solution will be adequate under small deviations from the
nominal statistical model. Classical statistical signal processing theory has been dominated by
the assumption of the Gaussian model for the statistical characteristics of the underlying processes.
The Gaussian model is valid for some real-world processes and is justified by the Central Limit The-
orem. There are, however, many processes occurring in practice that are decidedly non-Gaussian.
For instance, a large number of physical processes are impulsive in nature and are more accurately
modelled by heavy-tailed non-Gaussian distributions. Impulsive signals and noise are characterized
by sharp spikes or occasional outliers in the data. Examples of impulsive processes include atmo-
spheric noise in radio links, ocean acoustic noise, switching transients in telephone channels, and
multiple access interference in radio communication networks [1, 2, 3]. Systems optimized under
the Gaussian assumption can suffer severe performance degradation under non-Gaussian noise [4].
It is well-known, for instance, that linear filters perform poorly in the presence of outliers in the
data.

Several techniques have been proposed to combat impulsive noise and, more generally, to deal
with uncertainties in the assumed statistical models. The presence of outliers can be viewed as
arising from an uncertainty regarding the assumed model. Most of these methods are based on the
theory of robust statistics [5, 6]. Robust signal processing techniques [7] are designed to perform
well under nominal conditions and still be adequate when the signal and noise statistics deviate
from the nominal model. Median filters, and their generalizations based on order statistics, have
been widely used in image processing due to their ability to preserve edges and fine detail while
rejecting outliers. Median and weighted median filters (WMF) [8] are derived to be optimal under
the Laplacian noise distribution, which is more heavy-tailed than the Gaussian distribution and,
therefore, more suited to model outliers. These filters are limited by the fact that they are selection
filters (the output of a selection filter is always, by definition, one of the input samples).

In recent years, there has been considerable interest in signal processing based on a-stable dis-

tributions, which have been shown to accurately model impulsive noise processes [9, 10]. These



distributions have a parameter a (0 < o < 2), called the characteristic exponent, which controls the
heaviness of their tails; a smaller « signifies a heavier-tailed distribution. For 0 < a < 2, a-stable
random variables have infinite variance. The limiting case o = 2 leads to the Gaussian distribution,
while the case a = 1 corresponds to the Cauchy distribution. The Gaussian and Cauchy distribu-
tions are the only symmetric a-stable distributions having closed-form expressions for their density
functions. The use of the a-stable distribution as a statistical model is justified theoretically by
two properties [9]. The first is the stability property: the sum of two independent stable random
variables with the same characteristic exponent is also stable with the same characteristic expo-
nent. The second is the Generalized Central Limit Theorem: if the sum of an infinite number of
independent and identically distributed (i. i. d.) random variables (with finite or infinite variance)
converges in distribution, the limiting distribution is a-stable. Thus, a-stable random variables can
arise in the physical world as the effects of a large number of independent contributing factors, in
the same way as Gaussian random variables do. For example, a-stable distributions have been used
to model multiple access interference in radio networks where the independent interfering sources
are modelled as a Poisson field in space and the superposition of the interfering electromagnetic
waves follows an a-stable distribution [3, 11].

Weighted Myriad Filters (WMyF) have been proposed recently as a class of robust, nonlinear
filters based on a-stable distributions [12, 13]. They have been used in robust communications
and image processing applications [14, 15]. These filters have been derived as extensions of the
sample myriad, defined as the maximum likelihood estimate (MLE) of the location parameter of
the Cauchy distribution (an a-stable distribution with a = 1) [13, 16]. The weighted myriad for
an observation window of length N is described by non-negative weights {w;}.; and a linearity
parameter K > 0. As K — oo, the filter reduces to the familiar weighted mean filter (a normalized
FIR filter whose weights sum to unity). The term myriad was coined because, for small K, the
filter tends to favor values near clusters of input samples. The case K — 0 leads to a highly robust
selection filter called the weighted mode-myriad filter. The sample myriad is intimately related to
maximum likelihood estimates (MLEs) of location of a-stable distributions; the MLE of location of
an a-stable distribution approaches the mean (the sample myriad with K — oc) as a — 2, while
it approaches the mode-myriad (the sample myriad with K — 0) as a — 0.

In this paper, we consider the problem of optimization of the parameters of weighted myriad



filters for the case K > 0 [17, 18]. We design the filter to optimally estimate a desired signal
according to some statistical error criterion. Two popular criteria in this approach are the mean
square error (MSE) and the mean absolute error (MAE). We adopt the MAE criterion in this
paper due to its convenience and also because it is more robust against outliers. However, the
modifications to our solutions are trivial if the MSE criterion is adopted.

We derive necessary conditions for optimality of weighted myriad filters. These conditions result
in a set of highly nonlinear equations that are difficult to solve in closed-form for the optimal filter
parameters. The use of nonlinear optimization techniques here is hampered by the fact that we
also require knowledge of the statistics of the underlying signals, which enter into the equations in
a nonlinear fashion. In applications where the signal statistics are unknown or insufficient, or when
the signals are non-stationary, adaptive signal processing algorithms have been used with great ad-
vantage [19]. We follow this approach and derive stochastic gradient-based adaptive algorithms to
optimize the filter parameters. In [20], robust adaptive linear filtering algorithms, based on Frac-
tional Lower Order Statistics, have been introduced for impulsive noise environments modelled by
a-stable distributions. The present paper, on the other hand, deals with robust adaptive nonlinear
filtering algorithms for impulsive noise environments.

For the case K > 0, we use an implicit formulation of the filter output to find an expression
for the gradient of the MAE cost function. We then derive an adaptive steepest-descent algorithm,
using instantaneous gradient estimates, to optimize the weights. This algorithm involves a very
simple update term that is computationally comparable to the update in the classical LMS adapta-
tion algorithm. For the special case K — 0, we are faced with a cost function that is discontinuous
in the filter weights. The optimization for this case requires quite a different approach and will be
considered in future publications. In the present paper, we confine ourselves to the general case
K > 0.

The paper is organized as follows. Section 2 introduces the class of weighted myriad filters. In
Section 3, we state the optimal filtering problem and derive necessary conditions for optimality.
Adaptive algorithms for learning the optimal filter weights are derived in Section 4. In Section
5, we present simulation results involving lowpass filtering a one-dimensional chirp-type signal in

a-stable noise.



2 Weighted Myriad Filters

Just as the weighted mean filter and the weighted median filter (WMF) are generalizations of the
sample mean and the sample median, respectively, the class of weighted myriad filters (WMyF) is
developed from the so-called sample myriad. In this section, we first give a brief introduction to the
sample myriad (for a detailed treatment, see [12, 13]). We then define weighted myriad filters and
describe some of their properties which will be useful in the later sections on filter optimization.
The sample mean and median arise out of maximum likelihood (ML) estimation of the location
parameters of the Gaussian and Laplacian distributions, respectively. Analogously, the sample
myriad is defined as the ML estimate of location of the Cauchy distribution. Consider a set of NV
independent and identically distributed (i.i.d.) observations, denoted {z1,z9,...,zy}, drawn from
a Cauchy distribution with location parameter § and scaling factor K > 0:
K 1
w0 = (3) T s W
The sample myriad is the value fiK that maximizes the likelihood function L(z1,z9,...,xN;0) =

i]\il f(x; B) or, equivalently, minimizes the expression Hi]il[KQ + (z; — B)?]. Thus,

AN .
Ok = myriad(K;z1,z9,...,ZN)

N
= argmin J[J[K? + (0 = )"
=1

N
= argmin Y log[K? + (& — )" (2)
i=1

where the last step is because the logarithm is an increasing function. Defining p(x; 3) 2 log[ K2 +
(2 — )], we have B = arg ming Y1V | p(x;; B), which defines an M-estimator [5, 6]. For location
estimates, p(x; 3) is usually of the type p(z — ), which is the case here. Interestingly, the myriad
includes the mean as a limiting case, converging to the sample mean as K — oo [13].

In the following, the sample myriad is generalized to the weighted myriad. Two cases are treated:

the general case, K > 0 and the special limiting case as K — 0.
2.1 The Weighted Myriad Filter (WMyF): K > 0

Similar to the extension of the sample mean to the weighted mean, the weighted myriad is defined

by assigning weights to the samples in the ML location estimation. The weights reflect the different



levels of reliability of the observed samples. Consider a set of observations {z;}Y; and a set of
. . A .
filter weights {w;}Y ;. Define the observation vector x = [z1,%2,...,zy]! and the weight vector

w2 [wy,wa,. .., wy]T. For a given K > 0, the weighted myriad filter (WMyF) output is given by

,C;’K(w,x) 2 myriad(K;wy o x1,w9 0 T, ..., WN O LN)
= argmin G (5, w, %), (3)
where
AN
Gr(B,w,x) = [[[K*+wi(z; — B)] (4)
i=1

is called the weighted myriad objective function since it is minimized by the weighted myriad, and
w; o x; denotes the weighting operation in (4). When the context is clear, we shall refer to Bk (w, x)
as B, or just B. Likewise, we shall compress Gk (B, w,x) to Gk (f), or just G(f).

It should be pointed out that the formulation of the weighted myriad as a maximum likelihood
location estimate from samples of varying reliability constrains the weights to be non-negative.
Nevertheless, the weighted myriad could be defined using (3) and (4) with negative weights. How-
ever, this results in potential instability of the filter (the output can sometimes be 400 or —o0).
We restrict the weights to be non-negative in this paper: w; > 0,4 =1,2,..., N.

The weighted myriad filter output is the value of 8 at the global minimum of the weighted
myriad objective function G (). It is easily seen from (4) that, for non-negative weights and
K > 0, G(B) is positive for all 5 and goes to oo as f — +oo. Also, it is a well-behaved function
since it is in fact a polynomial of degree 2N. It follows that the filter output ﬁ occurs at one
of the local minima of G(f3). Fig. 1 shows typical plots of log(Gx(f)) for a data window of size
N =T (note that either G(3) or log(G()) could be used as an objective function for the weighted
myriad). Denote the derivative of G(3) as

gy & 0GB, W, x)

5 (5)

G(B) =0 (6)
From (4), we obtain
, N N
G(B) = D 2w(B—x;) [ [K*+wi(B— )’ (7)
j=1 I=1,1#j
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log [G (B)]

Figure 1: Weighted myriad objective function. Input samples x = [4.9,0.0,6.5,10.0,9.5,4.7,1.0],
weights w = [0.05,0.1,0.6,0.9, 0.6,0.1, 0.05].

Note that G' () is a polynomial of degree (2N — 1) and can have as many as (2N — 1) real roots.

Using (4) again, we can write

'B) = ~__wiB )
GB) =260 X g e )

=1

(8)

Noting that G(8) > 0, we see that the filter output (3 satisfies the equation

i w;i(B — x;) _ 0 ()
=K+ w;i (B — ) '

A few simple properties can easily be inferred from (8) and (9). First, it is important to note that
the filter has only N independent parameters (even though there are N weights and the parameter
K). Using (3) and (4), we can infer that if we change the value of K, we can obtain the same filter

output provided the filter weights are appropriately scaled. Thus, we can write

Bre(w,x) = Bi(55:%) (10)
or
Bic,(W1,%x) = B, (wa,x) iff ;—% = ;—22 (11)

. Let {z(,)}}_; denote the order statistics (samples

Hence, the filter output depends only on
sorted in increasing order of magnitude) of x, with z(1) the smallest and z(y) the largest. By

examining the function G’ (f), it is easily shown [13] that G(8) has L local minima and (L — 1)



local maxima where 1 < L < N. Further, for non-negative weights, it can be proved (again, see
[13]) that all the local extrema occur within the interval [z (1), z(x)], the range of the input samples.
Thus, we have z(;) < ﬁ < 2(y). This is illustrated in Fig. 1 where the order statistics are shown on
the horizontal axis with the smallest z;) = 0.0 and the largest z () = 10.0.

The weighted myriad is not easy to compute since we have to find the roots of the polynomial
G'(B), choose the ones that are local minima of G(8) and test all the local minima to find the
global minimum. In [21], we describe a simple and fast algorithm, using a fixed point search, to
compute the filter output approximately.

As K gets larger, the number of local minima of G() decreases. In fact, it can be proved
(by examining the second derivative G (8)) that a sufficient (but not necessary) condition for
G(0) (and log(G(f))) to be convex and, therefore, have a unique local minimum, is that K >
\/m (z(vy — ®(1))- In the example of Fig. 1, this condition reduces to K > 9.49. As seen
from the figure however, this condition is not necessary; the onset of convexity could be at a much

lower K. Finally, letting K — oc in (9), while holding the weights finite, results in

N
W;T g
A i—1
foo = (12)
ij
7j=1
which is the limiting case of the weighted mean filter (3s = 8.07 in our example). Since the

weighted myriad approaches the (linear) weighted mean as K increases, K is referred to as the

linearity parameter.
2.2 The Weighted Mode-Myriad Filter (WMyF;): K — 0

When the linearity parameter K tends to zero, the weighted myriad reduces to a selection filter that
is highly resistant to outliers. As Fig. 1 shows, all the local minima are close to the input samples
for very low K (K = 0.01). The filter output moves from the weighted mean 8.07 (K — oc) to 7.77
(K = 1.5), 6.43 (K = 0.25) and finally to 4.71 (K = 0.01), which is near the cluster of samples
r(3) = 4.7 and z(4) = 4.9. Note that, for K = 0, the objective function Go(f) is zero whenever
is one of the input samples. In this case, there are N local minima, one at each input sample and

it would appear that any of the input samples could be the output (all of them minimize Gy(f3) to



zero). However, we obtain a meaningful result if we define the filter output to be the limit of the

WMyF output as K — 0. The weighted mode-myriad filter (WMyF() output is given by [12, 13]
Bo(w.x) £ lim B (w,x). (13)
K—=0

The mode-myriad filter is the special case when all the weights are unity. It can be shown that
the weighted mode-myriad is the most repeated input sample, if unique. Thus ﬁo is a mode-like
estimator, hence the term mode-myriad. When the most repeated sample is not unique, the filter

output reduces to [15]

N
) , )
- (i — x4 14
fo = arg min I wilzi— )2 (14)
z—l,a:i;émj

where M is the set of most repeated values among the input samples. Note that the weights
for the weighted mode-myriad have to be strictly positive, w; > 0. When the input samples are
distinct, the set M becomes the set of input samples {Tz}zl\;1 In this case, the weighted mode-
myriad filter output can be expressed, after a few simple manipulations, as WMyF,(w,x) =

arg ming; Go(7;, w,x), with the weighted mode-myriad objective function Go(z;, w,x) defined as

N
IT lzi— =l
=Lt
VT

From (15), we see that Gy(x;) is small if w; is large (which means that z; is being emphasized) or

A

Go(xj,w,x) = Go(ivj) (15)

if Hi]\ilyi# |z; — x| is small (which happens when many of the z; are close to x;). Since Go(x;) has
to be the smallest for the filter output to be x;, it is clearly seen that the filter favors input samples
(having significant weights) that are clustered together. For the example of Fig. 1, the WMyF

output is z(3) = 4.7, which is part of the cluster of samples z(3) and zy).
3 Filter Optimization

In this section, we address the problem of optimization of the filter parameters of weighted myriad
filters for the case when the linearity parameter K satisfies K > 0. The filters are designed to
optimally estimate a desired signal according to a statistical error criterion. Although we focus
on the mean absolute error (MAE) criterion, our solutions are applicable to the mean square error

(MSE) criterion with trivial modifications.



3.1 Problem Statement

. . . A . A
Given an input (observation) vector x = [z1,23,...,2x]", a weight vector w = [w1, ws, ..., wy]"

and linearity parameter K, denote the weighted myriad filter output as y = yx(w,x), sometimes
abbreviated as y(w,x). The filtering error, in estimating a desired signal d, is then defined as

e = y —d. Under the mean absolute error (MAE) criterion, we define the cost function

Tiw. K) £ B{lel} = E{lyx(w.x) ~d}. (16)
where E {-} represents statistical expectation. The mean square error (MSE) is defined as

hw K) & B{e} = E{(y(w.x) —d)*}. (17)

When the error criterion adopted is clear from the context, the cost function is written as J(w, K).
Further, we see from (10) and (11) that the optimal filtering action is independent of K (the filter
weights can be scaled to keep the output invariant to changes in K). The cost function is therefore
sometimes written simply as J(w), with an assumed arbitrary choice of K. With the constraint of

non-negative weights, the optimization problem is stated as follows:

minimize J(w, K)
subject tow; > 0,i=1,2,...,N.

This is a nonlinear optimization problem with inequality constraints. Obtaining conditions for
a global minimum that are both necessary and sufficient is quite a formidable task. We restrict

ourselves to finding only necessary conditions.
3.2 Conditions for Optimality

The cost functions defined in (16) and (17) appear to be non-convex in the weights and thus are
likely to have multiple local minima. Assuming that the optimal weights are at one of the local
minima, we derive necessary conditions for optimality by equating the gradient of the cost function,
with respect to the weights, to zero. Differentiating the MAE cost function in (16) with respect to

the weight w; results in

%‘Z;m B 8?uz~E{yK(W=X)_d}
= E{sgn(yd)aaugi.}’ 1s)



where

+1, >0
sgn(z) = 0, =0
-1, z>0

is the sign function. For the MSE cost function of (17), we obtain

%2;;1022]5{(3;(1);52}. (19)

The necessary conditions for filter optimality are then stated for the MAE as

E{sgn(y—d)aaj} =0,w; >0,i=12,...,N (20)
(2

and can similarly be written for the MSE. We therefore need an expression for %, the partial
derivative of the filter output yx(w,x) with respect to the weight w; while holding K, the rest of

the weights, and the input vector x, constant.
3.3 Optimal Weighted Myriad Filter

Referring to (5) and (6), the weighted myriad filter output for K > 0, y = yx (w, x), satisfies

' 0Gk (B, w,x)
Gy = ZEEEH] (21)
op B=y
From (8), we obtain
N
' wi(y — ;)
G(y) = 2Gk(y, w,x) . : (22)
jz_:l K? +wj(y — x;)*
In order to ﬁnd , for a given K, we hold the other weights and the input vector x, constant. To

emphasize this, rewrite (22), suppressing the quantities that are held constant, as follows:
G (y) = 2 G(ya U)i) H(ya “)’i)v (23)

where G(y, w;) 2 Gk (y,w,x) and

A z;)
H(y,w;) = Z_: —I—w] _x])Q. (24)

Using the above definitions in (21), the filter output satisfies
Gy, wi) H(y,w;) = 0 (25)

or, since G(y, w;) > 0,
H(y,w;) = 0. (26)

10



In (25) and (26), we have implicit formulations of the filter output y as a function of w; with the

other weights and x fixed. To obtain an expression for 86_131-’ we differentiate (26) implicitly with
OH oy oOH

— . = 0. 27

(dy) <3wz> - <3wz> (27)

()
dy _ \ow;

(oY
dy

We therefore need expressions for 88—[; and %. Before finding these, we digress briefly to investigate

respect to w;:

Thus,

(28)

the quantity %—Z; this will be useful later in the paper. Rewrite (23) using compressed notation as
G (y) = 2G(y) H(y, w;). (29)

Differentiating this with respect to y, we have

" ! 8H
G (y) = 2G(y)H(y,w;) + 2G(y)a—y
oH
dy

= 2G(y) (30)

where the second step is because G (y) = 0 from (21). Note that G (y) is defined as

" A O?Gi(B,w,x
6'(y & SEE (31)
B=y
From (30), we have
OH 1G'(y
- = - 32
9y 2 Gy (32

Note that, since y is a local minimum of G(-), the second derivative is non-negative: G (y) > 0.

~—

Further, G(y) > 0 always. Therefore,
%—ZI > 0, (33)
a fact of great significance that will be used later in Section 4.2.
Returning to our main task of finding E?—gi in (28), we evaluate g—i and %—Z using (24) as follows:

OH 0 i wi(y — ;)
ow; ow; o K* +wj(y — z;)?

_ (1 (y — )
_ <K2> (1+%(yxi)2>2 (34)




and

oH 0 N w;(y — xj)
dy dy i K% 4+ wj(y — z;)*
ws
N 1 — —L (y —
! K2 W~ ") (35)
— K? w; 9 2
= T+ 25 (y = 25)
Finally, using (34) and (35) in (28), we obtain the following expression for aag_:
— (y— =)
| Wi 12\’
Ay T2 (y — =)
— = (36)
ow; wj

] 2
ey iﬂ 1—ﬁ(y—x]‘)

— K° - 2
j=1 (1 v By x].)2>

K2
which we can now use in (20) to obtain the necessary conditions for the optimal weighted myriad

filter under the MAE criterion:

r 3\
(y — =)
w; 2
<1+ﬁ(y ;) )
E < sgn(y — d) =0, w; >0,i=1,2,...,N. (37)
ws

R

ij w, 2

=1 <1+K—JQ( —$J)> )

Note that the necessary conditions for the optimal filter under the MSE criterion can be easily
found by using (36) in (19); the only change we need to make in (37) is to replace sgn(y — d) by

(y — d). Note also that as K — oo in (37), while keeping the weights finite, we obtain

which can be shown to be the conditions for the optimal weighted mean filter under the MAE
criterion. This is consistent with the fact, as shown in (12), that the weighted myriad approaches

the weighted mean as K — oo.

12



4 Adaptive Filtering Algorithms

The necessary conditions for optimality, derived in Section 3 (see (37)), involve expressions that are
very complicated. In attempting to solve for the optimal weights, we encounter two problems. First,
we require knowledge of the joint statistics of all the signals involved. Even with this knowledge,
it is almost impossible to evaluate (in closed-form) the statistical expectations entering into the
optimality conditions. Second, even if we could write down the equations in closed-form, solving
the resulting highly nonlinear equations for the optimal weights would be a formidable task. We
therefore adopt the approach of adaptive optimization of the filter weights. In situations where the
statistics of the signals are unknown or time-varying, the use of adaptive algorithms is frequently

the only recourse available.
4.1 General Formulation

In order to find the optimal filter weights, we minimize the MAE cost function J(w) using the
steepest descent method. Noting that the weights are constrained to be non-negative, we obtain

the following algorithm to update the filter weights:

oJ
ow;

win+1) = P {wi(n) — i (n)} ,i1=1,2,...,N (38)

where w;(n) denotes the ith weight at the nth iteration, u > 0 is the step-size of the update, and
P[], defined by
A u, u>0
Plu) = { 0: u <0, (39)
projects the updated weight onto the constraint space of the weights. In practice, Plu] is set to a
small positive value € if u < 0. Note that the cost function J(w) could have many local minima and
the above algorithm does not guarantee convergence to the global minimum. One way to tackle

this problem is to run the algorithm with several different initial weight vectors w(0) and choose

the best final weights from the different runs. The gradient e?_zi(”) is given from (18) as

oJ
ow;

() = B {seuly() —diw) 20} (40)

Since the lack of knowledge of the signal statistics precludes the evaluation of the statistical expec-

tation in (40), we use instantaneous estimates for the gradient just as in the LMS algorithm [19].

13



To this end, removing the expectation operator in (40) and substituting into (38), we have

Jdy
ow;

wi(n+1) = P |wi(n) — u sgn(e(n)) 1,2,...,N (41)

()], i=
where e(n) = y(n) — d(n) is the error at the nth iteration.

4.2 Adaptive Weighted Myriad Filter Algorithms

For the weighted myriad filter, the expression for 88—1131(71) is given by (36). Using this in (41), we

obtain the following adaptive algorithm for updating the filter weight w;:

Adaptive Weighted Myriad Filter Algorithm I

( (y — z) (n) W
<1 + & (y 7)2')2>2
wi(n+1) = P |wi(n) + psgn(e(n)) K* " , o (42)
K?. a+§% 1_K_;(y_xj) 7 (1)
L j=1 (1 + % (y — :vj)2> J

where a > 0 (not present in (36)) is a stabilizing constant. In the following, we explain the rationale
behind the introduction of this constant. First, note that, for ¢ = 0, the update term in (42) is
proportional to an estimate of the gradient, g—i(n), of the MAE cost function. Recognizing that,
in a gradient descent algorithm, the direction of the gradient conveys most of the required update
information, we can modify the update term by scaling it by any positive factor that is common
to all the weights. This will change the magnitude of the update without affecting the direction of
the gradient estimate. Referring to (35), we see that the denominator of the update term in (42)
is equal (for a = 0) to the quantity K2%—Z(n) which, from (33), is non-negative and common to the
updates of all the weights. This term can lead to numerical problems in a practical implementation

oOH

of the algorithm. Specifically, when the term a—y(n) is very small, the weight update becomes very

large in magnitude. Adding a constant a > 0 to the term %—Z(n) ensures that it is bounded away

from zero. This operation preserves the direction of the current gradient estimate, leaving the final

values of the weights unchanged. To choose the value of the stabilizing constant a, note that the

1
T

OH

update denominator in (42) is K2(a + %—Z(n)) By setting a = we ensure that, as a_y(”) — 0,

Algorithm I reduces to Algorithm II, a simplified algorithm described later in this section.

14



We note from (10) and (11) that the optimal filtering action is independent of the choice of

K; the filter only depends on the value of 5. In this context, we might ask how the algorithm

scales as we change the value of K and how we should change the step-size p and the initial weight

. A . .
vector w(0) as we vary K. To answer this, let g, = w,; denote the optimal weight vector for

K = 1. Then, from (11), we have WI?QK = (%’2 org, = WI';’QK . Now consider two situations. In
the first, the algorithm in (42) is used with K = 1, step-size u = p1, weights denoted as g;(n)
and initial weight vector g(0). This is expected to converge to the weights g,. In the second, we

use the algorithm with a general value of K, step-size p = px and initial weight vector wg(0).

Wi

K2*

Rewrite (42) by dividing throughout by K2 and writing the algorithm in terms of an update of

This is expected to converge to —2X since (42) should converge to w, ;. Since = Yok we can
p g K2 g 0, K o K2

compare the above two situations and choose the initial weight vector wx (0) and the step-size px

such that the algorithms have the same behaviour in both cases and converge, as a result, to the

same filter. This means that g;(n) = w;‘(@ at each iteration n. It can be shown that this results in
px = K*pp and wi(0) = K2 wi(0). (43)

This also implies that if we change K from K; to K9, the new parameters should satisfy

iy = (%)4;% and wi, (0) = (%)wal(o» (44)

Considerable simplification of the algorithm in (42) can be achieved by just removing the de-

nominator from the update term; this does not change the direction of the gradient estimate or the

values of the final weights. This leads to the following computationally attractive algorithm:

Adaptive Weighted Myriad Filter Algorithm II

wi(n+1) = P |wi(n) + psgn(e(n)) k) 50 (n)|. (45)
W; 2
<1 + 2 (v — @) )
Note that, apart from the effort involved in computing the filter output y(n), the above algorithm
involves a very simple update that is computationally comparable to the update in the LMS al-
gorithm or its variant, the LMAD (least mean absolute deviation) algorithm (also called the sign
algorithm (SA)), which is written as w;(n +1) = wi(n) — wsgn(e(n)) z;(n) [22]. In our simula-

tions, the simplified algorithm of (45) converged significantly faster than the algorithm of (42). To
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Figure 2: (a) Operation of Adaptive Weighted Myriad Filter Algorithm II, (b) Update magnitude
function A(u; £).

understand the operation of Algorithm II, rewrite (45) as
wi(n+1) = Plwi(n) + pwe(n)d(n)] (46)

where e(n) 2 sgn(e(n)) = sgn (y(n) — d(n)) and

with

_ 48
(1 + €u?)? (48)

The operation of the algorithm is illustrated in Fig. 2(a). Referring to (46), assume that e(n) > 0,
ie. d(n) < y(n) at the current iteration, so that e(n) = +1. Since u > 0, we see from (47) and
(48) that the weights are increased (positive update: d(n) > 0) for those ¢ for which z;(n) < y(n).
The remaining weights are reduced. In Fig. 2(a), for example, the weights are increased for i = i3
and 7 = ip while the weight w;, is decreased. Considering the case e(n) < 0 also, we can conclude
that the filter weights w; are increased for those samples x; that are on the same side of the current
output estimate as the desired signal. The effect of increasing a weight w; is to move the filter
output towards z;. Therefore, referring again to Fig. 2(a), we see that the algorithm mowves the
filter output towards the samples that are closer to the desired signal.

The magnitude of the update is determined by the term d(n) = A(u;(n); &(n)) with u;(n) =
y(n) — z;(n) and &(n) = % Fig. 2(b) shows the function A(u; &). This is an odd function

of u that is approximately linear for small v and goes to zero for large u. It attains a maximum
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Figure 3: Training system for adaptive filter optimization.

at U = Upge = \/;15 and the peak value is a constant times w,,q,. The value of u,,, is a rough
measure of the outlier rejection ability of the function; values much larger than u,,,, are attenuated.

Based on the properties of A(u; &), we can describe the behaviour of the update magnitude
as follows. For samples z;(n) near the output y(n) (Jui(n)| < Umes), the update of w;(n) is
approximately linear in u;(n). Samples far from the current estimate y(n) are treated as outliers
and have a negligible effect on the corresponding weights (the update tends to zero for large |u;(n)|).
The location of the peak w; 44 (n) is inversely related to &;(n) = % When the weights w;(n)
are small in relation to K2, the & (n) are small and the Ui maz(n) are large. As a result, most of
the weights tend to be updated (being in the near-linear portion of A(u; £)). When the weights
are large, the u; yq.(n) are small. This leads to negligible updates. Thus, the algorithm is robust
to outliers and also allows the weights to settle down. It is interesting to note that the function
A(u; &) is related to the influence function of the myriad estimator (see [5, 6] for discussions on

the influence function of an M-estimator). The influence function determines the robustness of an

estimator; this is precisely what we see in the operation of the above adaptive algorithm.
5 Simulation Results

The adaptive algorithms developed in Section 4.2 were evaluated through a computer simulation
example involving lowpass filtering of a one-dimensional chirp-type signal corrupted by a-stable

noise. Fig. 3 shows the block diagram representing our simulation example. The desired signal d(n)
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is obtained by filtering the clean signal s(n) using a linear FIR lowpass filter obtained using standard
FIR filter design techniques for a chosen cutoff frequency. The signal s(n) is then corrupted by
an additive noise process v(n) to yield the input or observed signal x(n). The objective of the
adaptive filtering algorithms is to train the linear FIR, weighted median and weighted myriad
filters to converge to filter parameters (weights) so as to minimize the absolute value of the error
signal e(n) between the filter output signal y(n) and the desired signal d(n). In this section, we
present the results of this training process, using learning curves and filter weight trajectories to
demonstrate the convergence of the various adaptive algorithms. We also compare the performance
of the trained filters by applying them to a noisy test signal.

In our simulation example, the clean signal s(n) was chosen to be a chirp-type signal, a digital
sinusoid with quadratically increasing instantaneous frequency. Specifically, the signal, of length
L = 256, is given by s(n) = sin(w(n)n),n = 0,1,...,L — 1, where the radian frequency is

x| _L

2
wn) = 3 - = (%) . The desired signal d(n) was obtained by passing s(n) through an FIR

lowpass filter of window length N = 11, designed for a cutoff frequency w, = £5. The weights of
the designed filter are shown in Table 1, in the column entitled ‘Lowpass FIR’. Fig. 4(a) shows the
chirp-type signal s(n) and the desired signal d(n) is shown in Fig. 4(b). The signal s(n) is corrupted
by adding a realization of symmetric zero-mean «-stable noise, yielding the noisy observed signal
x(n) shown in Fig. 4(c). The additive a-stable noise process simulates low-level Gaussian-type
noise along with impulsive interference. The result of lowpass filtering z(n) with the previously
designed FIR filter is shown as the signal y,ir(n) in Fig. 4(d). Clearly, the performance of the
FIR lowpass filter is severely affected by the impulses in z(n) and the output i, (n) is far from
the desired signal d(n) of Fig. 4(b).

The linear, weighted median and weighted myriad filters were trained using the training signal
x(n) and the desired signal d(n), each of length L = 256. In all cases, the filter window length was
chosen to be N = 11 in order to ensure a fair comparison with the designed lowpass FIR filter. Since
the number of iterations required for convergence was more than L = 256, the adaptive algorithms
were implemented by multiple passes (140 loops) through the signals, for a total of 34440 iterations.
For the linear filter, the following least mean absolute deviation (LMAD) algorithm, also called the
sign algorithm (SA) [22], was used: w;(n+ 1) = w;(n) — psgn(e(n)) zi(n), i =1,2,..., N, where

we use the notation of Section 4. The adaptation of the weighted median filter utilized an adaptive
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Figure 4: (a) s(n): clean chirp-type signal, (b) d(n): desired signal (lowpass FIR filtering of

s(n)), (¢) z(n): noisy chirp-type signal (additive a-stable noise: characteristic exponent o = 1.4,
dispersion v = 0.1), (d) yipfir(n): lowpass FIR filtering of z(n).

weighted order statistic (WOS) algorithm from [23]. The parameters of the WOS filter are a set

of N non-negative filter weights w;, + = 1,2,..., N and a non-negative threshold wy which, for
N
the weighted median filter, is simply a function of the weights: wg = M The adaptive

algorithm updates the filter weights as wi(n + 1) = Pwi(n) — 2.0 pe(n) U(zi(n) —y(n))], i =
1,2,..., N, where U(-) is the unit step function and P[-] is the projection operator defined in (39).
For the weighted myriad filter, Algorithms I and IT ((42) and (45)) of Section 4.2 were implemented.
The linearity parameter was chosen as K = 1.0; recall from (10) and (11) that, in optimizing the
filter weights, the choice of K is arbitrary. Algorithm I was implemented both without the so-called

-1, = 1.0 as recommended in Section 4.2). The

stabilization constant (i.e., a = 0) and with it (a = 7= =

weighted myriad filter output in all cases was computed using the fixed point search algorithm
described in [21].

The initial weights for the linear filter were all chosen to be zero: w(0) = 0. For all the other
algorithms, the initial filter was chosen to be the identity filter with all the weights set to zero except
the center weight which was set to 10.0: w(0) = [0,0,0,0,0,10.0,0,0,0,0,0]. The step-sizes of the
algorithms were chosen as follows. Among the weighted myriad filter algorithms, the step-sizes

were chosen to achieve approximately the same final mean absolute error (MAE). The step-sizes
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Weights | Lowpass | Linear | Weighted Weighted Myriad (K = 1.0)
wj FIR LMAD | Median | Algo. I (a=0) | Algo. I (a =1.0) | Algo. II
w 0.0144 | 0.0299 6.4630 0.2997 0.1855 0.2886
wo 0.0304 | 0.0338 7.1727 0.2594 0.2768 0.4154
w3 0.0724 | 0.0638 7.7844 0.5495 0.4413 0.5227
wy 0.1245 | 0.0962 | 10.9985 0.5031 0.5198 0.6397
ws 0.1668 | 0.1356 | 13.6322 0.7577 0.7152 0.9361
we 0.1830 | 0.1571 | 14.5779 0.7964 0.7575 0.8760
wy 0.1668 | 0.1283 | 12.3102 0.7960 0.7413 0.9562
ws 0.1245 | 0.1145 | 11.2896 0.5698 0.5511 0.6250
wo 0.0724 | 0.0540 7.4682 0.4111 0.3723 0.4537
wig 0.0304 | 0.0259 7.2095 0.3106 0.2777 0.3902
w11 0.0144 | 0.0071 5.8129 0.3095 0.2084 0.2818

Table 1: Filter weights obtained by the adaptive algorithms.

were 1 = 1.0 x 10~! for Algorithm I (both a = 0 and a = 1.0) and p = 5.0 x 10~? for Algorithm II.
The step-sizes for the linear filter (1 = 1.0 x 10~%) and the weighted median filter (u = 5.0 x 10~3)
were chosen so that these algorithms converged in approximately the same number of iterations as
the fastest weighted myriad filter algorithm (which was Algorithm IT).

The final filter weights obtained by the various algorithms are shown in Table 1. The three
weighted myriad filter algorithms converged to approximately the same weight vectors. Hence, they
achieved almost the same final MAEs (the step-sizes were chosen to ensure this). This permits a
meaningful comparison of their convergence speeds, all other factors being equal.

The trajectories of the filter weights for the various weighted myriad filter algorithms are shown
in Fig. 5. Out of the N = 11 filter weights, we have chosen the weights w;, i = 2,5,6 and 8
to illustrate the weight trajectories for all the algorithms. Note that, in all cases, our choice of
initial weights implies wy(0) = ws(0) = wg(0) = 0.0 and the center weight wg(0) = 10.0. We
see from Fig. 5 that, in all three algorithms, the weight curves wy(n), ws(n) and wg(n) are non-
monotonic, while the weight wg(n) is monotonically decreasing. The reason for this behaviour is the
initial large value wg(0) = 10.0 of the center weight, which pulls the other weights up from their
initial zero values. The off-center weights continue to increase until the center weight decreases
sufficiently; after that, the off-center weights also decrease monotonically (except for the isolated
jumps, explained later, in the case of Fig. 5(A)). If all the weights were initialized to zero, the
weight curves would all be monotonically increasing.

Referring to Fig. 5(A) (Algorithm I, ¢ = 0), notice the jumps in the weight trajectories around
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Figure 5: Weight trajectories w;(n) for Adaptive Weighted Myriad Filter Algorithms ((A): Algo-
rithm I (a = 0), (B) Algorithms I (a = 1.0) and II): (i) wa(n), (ii) ws(n), (iii) we(n), (iv) ws(n).
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Figure 6: Time-averaged MAE learning curves.

iteration 13000. As mentioned in Section 4.2, the jumps are due to the very small value of the
denominator of the update term in (42). A closer investigation reveals that this iteration step
corresponds to an observation window in the signal that contained an impulse. The jumps in the
weight curves occur due to a combination of two factors: the very small magnitude of the update
denominator, and the occurrence of the impulse. Note that without the impulse, the denominator
term could become very small, but not abruptly; there would be no jumps in the weight curves in
such a case. In practice, the presence of the stabilizing constant a > 0 is essential, in order to avoid
the occurrence of these jumps. As Fig. 5(B) shows, Algorithm I (¢ = 1.0) completely eliminates the
jumps in the weight curves, while converging at a slightly slower rate (24000 iterations, compared
to 20000 for Algorithm I (@ = 0)). We also see from Fig. 5(B) that Algorithm II converges in
about 10000 iterations, significantly faster than Algorithm I. Algorithm II also has no jumps in
the weight curves. From the above results, we see that Algorithm 11, which is computationally the
most efficient among the three algorithms, also has superior convergence at comparable MAEs.
Fig. 6 shows time-averaged learning curves in terms of the MAE for the different adaptive algo-
rithms. The MAE learning curve of an adaptive algorithm is a plot of the evolution of the absolute

value of the filtering error as a function of the training iterations. Usually, ensemble-averaged
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MAE MSE

Filter Type Training | Test | Training | Test
Lowpass FIR 0.1380 | 0.1993 | 0.0971 | 0.1547
Linear LMAD 0.1282 | 0.1813 | 0.0668 | 0.1141
Weighted Median 0.1593 | 0.1625 | 0.0541 | 0.0554

Weighted | Algo. I (a = 0) 0.0968 | 0.0962 | 0.0194 | 0.0193
Myriad Algo. I (a =1.0) | 0.0910 | 0.0903 | 0.0162 | 0.0160
Algo. 11 0.0959 | 0.0947 | 0.0187 | 0.0185

Table 2: Mean absolute error (MAE) and mean square error (MSE) incurred in filtering the training
and test signals.

learning curves are plotted by averaging the learning curves of a large number of independent trials
of the adaptation experiment. We have chosen to time-average and further smooth the learning
curves of a single trial in order to obtain the learning trends. Thus, in Fig. 6, each iteration index
corresponds to averaging (and further smoothing) the absolute error over 400 iterations. We see
that the weighted median algorithm has the highest final MAE. The weighted median filter, being
a selection filter, is not well-suited to the present application; the linear filter has a better perfor-
mance, as the figure shows. The weighted myriad filter algorithms I (¢ = 1.0) and II achieve almost
the same, and the smallest, final MAEs, demonstrating the robustness of this filter in impulsive
noise. The figure also shows that the linear, weighted median and weighted myriad filter algorithm
I, all converge in about the same time (recall that the step-sizes were chosen to ensure this). Thus,
Algorithm IT (the simplest, fastest and most practical weighted myriad filter algorithm) achieves a
lower MAE than the linear and weighted median algorithms, at comparable convergence speeds.

Table 2 shows the mean absolute errors (MAEs) and mean square errors (MSEs) incurred in
filtering the noisy chirp-type training signal z(n) of Fig. 4(c) with the various trained filters (see
the columns labelled ‘Training’). The weighted myriad filters (from all three algorithms) have the
best performance in terms of the MAE as well as the MSE. The linear filter, trained on the noisy
signal, has a lower MAE and MSE than the designed lowpass FIR filter. The trained weighted
median filter has a higher MAE than even the lowpass FIR filter, but achieves a slightly lower MSE
than the linear LM AD-trained filter.

In order to test the performance of the various trained filters, they were applied to another noisy
chirp-type signal, different from the training signal z(n) of Fig. 4(c). This test signal z' (n), shown

in Fig. 7(a), was obtained by adding a different realization of noise to the clean chirp-type signal of
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Fig. 4(a). The MAE and MSE values, incurred in filtering the test signal ' (n), are listed in Table
2 in the columns labelled ‘Test’. The mean errors for the linear (lowpass FIR as well as LMAD-
trained) filters increase significantly from the training to the test signal. On the other hand, the
weighted median and weighted myriad filters are hardly affected by the change in the additive noise.
Fig. 7 shows the results of applying the various filters to the test signal z (n); the desired signal
d(n) of Fig. 4(b) is reproduced in Fig. 7(c) for reference. The output of the designed lowpass FIR
filter is shown in Fig. 7(b) and the output of the linear LMAD-trained filter is shown in Fig. 7(d). It
is evident that these outputs are quite different from the desired signal; the linear filters are greatly
affected by the impulsive nature of the noise. The weighted median filter output of Fig. 7(e) is
less affected by the impulses. However, the output is quite distorted, partly because the filter is
constrained to be a selection filter. The weighted median filter is also unable to completely remove
the high-frequency portions of the chirp-type signal. The outputs of the weighted myriad filters,
trained using Algorithm I (@ = 1.0) and Algorithm II, are shown in Figs. 7(f) and 7(g), respectively.
These outputs are visually the closest to the desired signal, especially in the low-frequency portions
of the chirp-type signal. The weighted myriad filters have the best outputs and lowest mean errors,

while being highly robust to changes in the noise environment.
6 Conclusion

The optimization of Weighted Myriad Filters was considered in this paper. Necessary conditions
were derived for optimality under the mean absolute error criterion. A stochastic gradient-based
adaptive algorithm was developed for learning the optimal filter weights. This was further modified
to yield an adaptive algorithm involving a very simple update equation. The performance of the
adaptive filters in impulsive environments was investigated through a simulation example involving
lowpass filtering a chirp-type signal in a-stable noise. Learning curves and filter weight trajectories
served to demonstrate the convergence of the adaptive algorithms. The trained weighted myriad fil-
ters achieved lower mean absolute errors than the adaptive linear and weighted median filters, while
being highly robust to changes in the noise environment. Theoretical analysis of the convergence of
the adaptive weighted myriad filter algorithms is the subject of current research. The optimization

of the special case of the weighted mode-myriad filter is considered in future publications.
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Figure 7: (a) & (n): noisy chirp-type test signal, (b) yzpfir(n): lowpass FIR filtering of z (n), (c)
d(n): desired signal, (d) y,,, .4(n): linear (LMAD) filter output, () ,,,(n): weighted median
filter output, (f) y;umyl(n): weighted myriad filter output (algorithm I (a = 1.0)), (g) yiumyn(n):
weighted myriad filter output (algorithm IT).
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