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1 IntroductionThe traditional approach to a statistical signal processing problem has been to derive the optimalsolution based on a particular signal and noise model for the problem at hand. This approachrelies on the belief that the optimal solution will be adequate under small deviations from thenominal statistical model. Classical statistical signal processing theory has been dominated bythe assumption of the Gaussian model for the statistical characteristics of the underlying processes.The Gaussian model is valid for some real-world processes and is justi�ed by the Central Limit The-orem. There are, however, many processes occurring in practice that are decidedly non-Gaussian.For instance, a large number of physical processes are impulsive in nature and are more accuratelymodelled by heavy-tailed non-Gaussian distributions. Impulsive signals and noise are characterizedby sharp spikes or occasional outliers in the data. Examples of impulsive processes include atmo-spheric noise in radio links, ocean acoustic noise, switching transients in telephone channels, andmultiple access interference in radio communication networks [1, 2, 3]. Systems optimized underthe Gaussian assumption can su�er severe performance degradation under non-Gaussian noise [4].It is well-known, for instance, that linear �lters perform poorly in the presence of outliers in thedata.Several techniques have been proposed to combat impulsive noise and, more generally, to dealwith uncertainties in the assumed statistical models. The presence of outliers can be viewed asarising from an uncertainty regarding the assumed model. Most of these methods are based on thetheory of robust statistics [5, 6]. Robust signal processing techniques [7] are designed to performwell under nominal conditions and still be adequate when the signal and noise statistics deviatefrom the nominal model. Median �lters, and their generalizations based on order statistics, havebeen widely used in image processing due to their ability to preserve edges and �ne detail whilerejecting outliers. Median and weighted median �lters (WMF) [8] are derived to be optimal underthe Laplacian noise distribution, which is more heavy-tailed than the Gaussian distribution and,therefore, more suited to model outliers. These �lters are limited by the fact that they are selection�lters (the output of a selection �lter is always, by de�nition, one of the input samples).In recent years, there has been considerable interest in signal processing based on �-stable dis-tributions, which have been shown to accurately model impulsive noise processes [9, 10]. These1



distributions have a parameter � (0 < � � 2), called the characteristic exponent, which controls theheaviness of their tails; a smaller � signi�es a heavier-tailed distribution. For 0 < � < 2, �-stablerandom variables have in�nite variance. The limiting case � = 2 leads to the Gaussian distribution,while the case � = 1 corresponds to the Cauchy distribution. The Gaussian and Cauchy distribu-tions are the only symmetric �-stable distributions having closed-form expressions for their densityfunctions. The use of the �-stable distribution as a statistical model is justi�ed theoretically bytwo properties [9]. The �rst is the stability property: the sum of two independent stable randomvariables with the same characteristic exponent is also stable with the same characteristic expo-nent. The second is the Generalized Central Limit Theorem: if the sum of an in�nite number ofindependent and identically distributed (i. i. d.) random variables (with �nite or in�nite variance)converges in distribution, the limiting distribution is �-stable. Thus, �-stable random variables canarise in the physical world as the e�ects of a large number of independent contributing factors, inthe same way as Gaussian random variables do. For example, �-stable distributions have been usedto model multiple access interference in radio networks where the independent interfering sourcesare modelled as a Poisson �eld in space and the superposition of the interfering electromagneticwaves follows an �-stable distribution [3, 11].Weighted Myriad Filters (WMyF) have been proposed recently as a class of robust, nonlinear�lters based on �-stable distributions [12, 13]. They have been used in robust communicationsand image processing applications [14, 15]. These �lters have been derived as extensions of thesample myriad, de�ned as the maximum likelihood estimate (MLE) of the location parameter ofthe Cauchy distribution (an �-stable distribution with � = 1) [13, 16]. The weighted myriad foran observation window of length N is described by non-negative weights fwigNi=1 and a linearityparameter K > 0. As K !1, the �lter reduces to the familiar weighted mean �lter (a normalizedFIR �lter whose weights sum to unity). The term myriad was coined because, for small K, the�lter tends to favor values near clusters of input samples. The case K ! 0 leads to a highly robustselection �lter called the weighted mode-myriad �lter. The sample myriad is intimately related tomaximum likelihood estimates (MLEs) of location of �-stable distributions; the MLE of location ofan �-stable distribution approaches the mean (the sample myriad with K ! 1) as � ! 2, whileit approaches the mode-myriad (the sample myriad with K ! 0) as �! 0.In this paper, we consider the problem of optimization of the parameters of weighted myriad2



�lters for the case K > 0 [17, 18]. We design the �lter to optimally estimate a desired signalaccording to some statistical error criterion. Two popular criteria in this approach are the meansquare error (MSE) and the mean absolute error (MAE). We adopt the MAE criterion in thispaper due to its convenience and also because it is more robust against outliers. However, themodi�cations to our solutions are trivial if the MSE criterion is adopted.We derive necessary conditions for optimality of weighted myriad �lters. These conditions resultin a set of highly nonlinear equations that are di�cult to solve in closed-form for the optimal �lterparameters. The use of nonlinear optimization techniques here is hampered by the fact that wealso require knowledge of the statistics of the underlying signals, which enter into the equations ina nonlinear fashion. In applications where the signal statistics are unknown or insu�cient, or whenthe signals are non-stationary, adaptive signal processing algorithms have been used with great ad-vantage [19]. We follow this approach and derive stochastic gradient-based adaptive algorithms tooptimize the �lter parameters. In [20], robust adaptive linear �ltering algorithms, based on Frac-tional Lower Order Statistics, have been introduced for impulsive noise environments modelled by�-stable distributions. The present paper, on the other hand, deals with robust adaptive nonlinear�ltering algorithms for impulsive noise environments.For the case K > 0, we use an implicit formulation of the �lter output to �nd an expressionfor the gradient of the MAE cost function. We then derive an adaptive steepest-descent algorithm,using instantaneous gradient estimates, to optimize the weights. This algorithm involves a verysimple update term that is computationally comparable to the update in the classical LMS adapta-tion algorithm. For the special case K ! 0, we are faced with a cost function that is discontinuousin the �lter weights. The optimization for this case requires quite a di�erent approach and will beconsidered in future publications. In the present paper, we con�ne ourselves to the general caseK > 0.The paper is organized as follows. Section 2 introduces the class of weighted myriad �lters. InSection 3, we state the optimal �ltering problem and derive necessary conditions for optimality.Adaptive algorithms for learning the optimal �lter weights are derived in Section 4. In Section5, we present simulation results involving lowpass �ltering a one-dimensional chirp-type signal in�-stable noise. 3



2 Weighted Myriad FiltersJust as the weighted mean �lter and the weighted median �lter (WMF) are generalizations of thesample mean and the sample median, respectively, the class of weighted myriad �lters (WMyF) isdeveloped from the so-called sample myriad. In this section, we �rst give a brief introduction to thesample myriad (for a detailed treatment, see [12, 13]). We then de�ne weighted myriad �lters anddescribe some of their properties which will be useful in the later sections on �lter optimization.The sample mean and median arise out of maximum likelihood (ML) estimation of the locationparameters of the Gaussian and Laplacian distributions, respectively. Analogously, the samplemyriad is de�ned as the ML estimate of location of the Cauchy distribution. Consider a set of Nindependent and identically distributed (i.i.d.) observations, denoted fx1; x2; : : : ; xNg, drawn froma Cauchy distribution with location parameter � and scaling factor K > 0:f(x;�) = �K� � 1K2 + (x� �)2 : (1)The sample myriad is the value �̂K that maximizes the likelihood function L(x1; x2; : : : ; xN ;�) =QNi=1 f(xi;�) or, equivalently, minimizes the expression QNi=1[K2 + (xi � �)2]. Thus,�̂K 4= myriad(K;x1; x2; : : : ; xN )= argmin� NYi=1[K2 + (xi � �)2]= argmin� NXi=1 log[K2 + (xi � �)2] (2)where the last step is because the logarithm is an increasing function. De�ning �(x;�) 4= log[K2+(x� �)2]; we have �̂K = argmin�PNi=1 �(xi;�); which de�nes an M -estimator [5, 6]. For locationestimates, �(x;�) is usually of the type �(x� �), which is the case here. Interestingly, the myriadincludes the mean as a limiting case, converging to the sample mean as K !1 [13].In the following, the sample myriad is generalized to the weighted myriad. Two cases are treated:the general case, K > 0 and the special limiting case as K ! 0.2.1 The Weighted Myriad Filter (WMyF): K > 0Similar to the extension of the sample mean to the weighted mean, the weighted myriad is de�nedby assigning weights to the samples in the ML location estimation. The weights reect the di�erent4



levels of reliability of the observed samples. Consider a set of observations fxigNi=1 and a set of�lter weights fwigNi=1. De�ne the observation vector x 4= [x1; x2; : : : ; xN ]T and the weight vectorw 4= [w1; w2; : : : ; wN ]T . For a given K > 0, the weighted myriad �lter (WMyF) output is given by�̂K(w;x) 4= myriad(K;w1 � x1; w2 � x2; : : : ; wN � xN )= argmin� GK(�;w;x); (3)where GK(�;w;x) 4= NYi=1[K2 + wi(xi � �)2] (4)is called the weighted myriad objective function since it is minimized by the weighted myriad, andwi �xi denotes the weighting operation in (4). When the context is clear, we shall refer to �̂K(w;x)as �̂K , or just �̂. Likewise, we shall compress GK(�;w;x) to GK(�), or just G(�).It should be pointed out that the formulation of the weighted myriad as a maximum likelihoodlocation estimate from samples of varying reliability constrains the weights to be non-negative.Nevertheless, the weighted myriad could be de�ned using (3) and (4) with negative weights. How-ever, this results in potential instability of the �lter (the output can sometimes be +1 or �1).We restrict the weights to be non-negative in this paper: wi � 0; i = 1; 2; : : : ; N .The weighted myriad �lter output is the value of � at the global minimum of the weightedmyriad objective function GK(�). It is easily seen from (4) that, for non-negative weights andK > 0, G(�) is positive for all � and goes to 1 as � ! �1. Also, it is a well-behaved functionsince it is in fact a polynomial of degree 2N . It follows that the �lter output �̂ occurs at oneof the local minima of G(�). Fig. 1 shows typical plots of log(GK(�)) for a data window of sizeN = 7 (note that either G(�) or log(G(�)) could be used as an objective function for the weightedmyriad). Denote the derivative of G(�) asG0(�) 4= @G(�;w;x)@� : (5)The �lter output �̂ is one of the roots of G0(�):G0(�̂) = 0: (6)From (4), we obtain G0(�) = NXj=1 2wj(� � xj) NYl=1;l 6=j[K2 + wl(� � xl)2]: (7)5
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Figure 1: Weighted myriad objective function. Input samples x = [4:9; 0:0; 6:5; 10:0; 9:5; 4:7; 1:0],weights w = [0:05; 0:1; 0:6; 0:9; 0:6; 0:1; 0:05].Note that G0(�) is a polynomial of degree (2N � 1) and can have as many as (2N � 1) real roots.Using (4) again, we can writeG0(�) = 2G(�) NXj=1 wj(� � xj)K2 + wj(� � xj)2 : (8)Noting that G(�) > 0, we see that the �lter output �̂ satis�es the equationNXj=1 wj(�̂ � xj)K2 + wj(�̂ � xj)2 = 0: (9)A few simple properties can easily be inferred from (8) and (9). First, it is important to note thatthe �lter has only N independent parameters (even though there are N weights and the parameterK). Using (3) and (4), we can infer that if we change the value of K, we can obtain the same �lteroutput provided the �lter weights are appropriately scaled. Thus, we can write�̂K(w;x) = �̂1( wK2 ;x) (10)or �̂K1(w1;x) = �̂K2(w2;x) i� w1K21 = w2K22 : (11)Hence, the �lter output depends only on wK2 . Let fx(m)gNm=1 denote the order statistics (samplessorted in increasing order of magnitude) of x, with x(1) the smallest and x(N) the largest. Byexamining the function G0(�), it is easily shown [13] that G(�) has L local minima and (L � 1)6



local maxima where 1 � L � N . Further, for non-negative weights, it can be proved (again, see[13]) that all the local extrema occur within the interval [x(1); x(N)], the range of the input samples.Thus, we have x(1) � �̂ � x(N): This is illustrated in Fig. 1 where the order statistics are shown onthe horizontal axis with the smallest x(1) = 0:0 and the largest x(N) = 10:0.The weighted myriad is not easy to compute since we have to �nd the roots of the polynomialG0(�), choose the ones that are local minima of G(�) and test all the local minima to �nd theglobal minimum. In [21], we describe a simple and fast algorithm, using a �xed point search, tocompute the �lter output approximately.As K gets larger, the number of local minima of G(�) decreases. In fact, it can be proved(by examining the second derivative G00(�)) that a su�cient (but not necessary) condition forG(�) (and log(G(�))) to be convex and, therefore, have a unique local minimum, is that K >qmaxfwjgNj=1 (x(N) � x(1)): In the example of Fig. 1, this condition reduces to K > 9:49. As seenfrom the �gure however, this condition is not necessary; the onset of convexity could be at a muchlower K. Finally, letting K !1 in (9), while holding the weights �nite, results in�̂1 = NXj=1wjxjNXj=1wj ; (12)which is the limiting case of the weighted mean �lter (�̂1 = 8:07 in our example). Since theweighted myriad approaches the (linear) weighted mean as K increases, K is referred to as thelinearity parameter.2.2 The Weighted Mode-Myriad Filter (WMyF0): K ! 0When the linearity parameter K tends to zero, the weighted myriad reduces to a selection �lter thatis highly resistant to outliers. As Fig. 1 shows, all the local minima are close to the input samplesfor very low K (K = 0:01). The �lter output moves from the weighted mean 8:07 (K !1) to 7:77(K = 1:5), 6:43 (K = 0:25) and �nally to 4:71 (K = 0:01), which is near the cluster of samplesx(3) = 4:7 and x(4) = 4:9. Note that, for K = 0, the objective function G0(�) is zero whenever �is one of the input samples. In this case, there are N local minima, one at each input sample andit would appear that any of the input samples could be the output (all of them minimize G0(�) to7



zero). However, we obtain a meaningful result if we de�ne the �lter output to be the limit of theWMyF output as K ! 0. The weighted mode-myriad �lter (WMyF0) output is given by [12, 13]�̂0(w;x) 4= limK! 0 �̂K(w;x): (13)The mode-myriad �lter is the special case when all the weights are unity. It can be shown thatthe weighted mode-myriad is the most repeated input sample, if unique. Thus �̂0 is a mode-likeestimator, hence the term mode-myriad. When the most repeated sample is not unique, the �lteroutput reduces to [15] �̂0 = arg minxj 2M NYi=1;xi 6=xj wi(xi � xj)2; (14)where M is the set of most repeated values among the input samples. Note that the weightsfor the weighted mode-myriad have to be strictly positive, wi > 0. When the input samples aredistinct, the set M becomes the set of input samples fxigNi=1. In this case, the weighted mode-myriad �lter output can be expressed, after a few simple manipulations, as WMyF0(w;x) =argminxj G0(xj;w;x); with the weighted mode-myriad objective function G0(xj ;w;x) de�ned asG0(xj;w;x) � G0(xj) 4= NYi=1;i6=j jxi � xjjpwj : (15)From (15), we see that G0(xj) is small if wj is large (which means that xj is being emphasized) orif QNi=1;i6=j jxi�xjj is small (which happens when many of the xi are close to xj). Since G0(xj) hasto be the smallest for the �lter output to be xj, it is clearly seen that the �lter favors input samples(having signi�cant weights) that are clustered together. For the example of Fig. 1, the WMyF0output is x(3) = 4:7, which is part of the cluster of samples x(3) and x(4).3 Filter OptimizationIn this section, we address the problem of optimization of the �lter parameters of weighted myriad�lters for the case when the linearity parameter K satis�es K > 0. The �lters are designed tooptimally estimate a desired signal according to a statistical error criterion. Although we focuson the mean absolute error (MAE) criterion, our solutions are applicable to the mean square error(MSE) criterion with trivial modi�cations. 8



3.1 Problem StatementGiven an input (observation) vector x 4= [x1; x2; : : : ; xN ]T , a weight vector w 4= [w1; w2; : : : ; wN ]Tand linearity parameter K, denote the weighted myriad �lter output as y � yK(w;x), sometimesabbreviated as y(w;x). The �ltering error, in estimating a desired signal d, is then de�ned ase = y � d. Under the mean absolute error (MAE) criterion, we de�ne the cost functionJ1(w;K) 4= E fjejg = E fjyK(w;x) � djg ; (16)where E f�g represents statistical expectation. The mean square error (MSE) is de�ned asJ2(w;K) 4= E ne2o = E n(yK(w;x)� d)2o : (17)When the error criterion adopted is clear from the context, the cost function is written as J(w;K).Further, we see from (10) and (11) that the optimal �ltering action is independent of K (the �lterweights can be scaled to keep the output invariant to changes in K). The cost function is thereforesometimes written simply as J(w), with an assumed arbitrary choice of K. With the constraint ofnon-negative weights, the optimization problem is stated as follows:minimize J(w;K)subject to wi � 0; i = 1; 2; : : : ; N:This is a nonlinear optimization problem with inequality constraints. Obtaining conditions fora global minimum that are both necessary and su�cient is quite a formidable task. We restrictourselves to �nding only necessary conditions.3.2 Conditions for OptimalityThe cost functions de�ned in (16) and (17) appear to be non-convex in the weights and thus arelikely to have multiple local minima. Assuming that the optimal weights are at one of the localminima, we derive necessary conditions for optimality by equating the gradient of the cost function,with respect to the weights, to zero. Di�erentiating the MAE cost function in (16) with respect tothe weight wi results in @J1(w;K)@wi = @@wiE fjyK(w;x)� djg= E �sgn(y � d) @y@wi� ; (18)9



where sgn(x) = 8><>: +1; x > 00; x = 0�1; x > 0is the sign function. For the MSE cost function of (17), we obtain@J2(w;K)@wi = 2 E �(y � d) @y@wi� : (19)The necessary conditions for �lter optimality are then stated for the MAE asE �sgn(y � d) @y@wi� = 0; wi � 0; i = 1; 2; : : : ; N (20)and can similarly be written for the MSE. We therefore need an expression for @y@wi , the partialderivative of the �lter output yK(w;x) with respect to the weight wi while holding K, the rest ofthe weights, and the input vector x, constant.3.3 Optimal Weighted Myriad FilterReferring to (5) and (6), the weighted myriad �lter output for K > 0, y � yK(w;x), satis�esG0(y) = @GK(�;w;x)@� ����� = y = 0: (21)From (8), we obtain G0(y) = 2GK(y;w;x) NXj=1 wj(y � xj)K2 + wj(y � xj)2 : (22)In order to �nd @y@wi , for a given K, we hold the other weights and the input vector x, constant. Toemphasize this, rewrite (22), suppressing the quantities that are held constant, as follows:G0(y) = 2G(y;wi)H(y;wi); (23)where G(y;wi) 4= GK(y;w;x) andH(y;wi) 4= NXj=1 wj(y � xj)K2 + wj(y � xj)2 : (24)Using the above de�nitions in (21), the �lter output satis�esG(y;wi)H(y;wi) = 0 (25)or, since G(y;wi) > 0, H(y;wi) = 0: (26)10



In (25) and (26), we have implicit formulations of the �lter output y as a function of wi with theother weights and x �xed. To obtain an expression for @y@wi , we di�erentiate (26) implicitly withrespect to wi: �@H@y � :� @y@wi�+ � @H@wi� = 0: (27)Thus, @y@wi = � � @H@wi��@H@y � : (28)We therefore need expressions for @H@y and @H@wi . Before �nding these, we digress briey to investigatethe quantity @H@y ; this will be useful later in the paper. Rewrite (23) using compressed notation asG0(y) = 2G(y)H(y;wi): (29)Di�erentiating this with respect to y, we haveG00(y) = 2G0(y)H(y;wi) + 2G(y) @H@y= 2G(y) @H@y (30)where the second step is because G0(y) = 0 from (21). Note that G00(y) is de�ned asG00(y) 4= @2GK(�;w;x)@�2 ������ = y : (31)From (30), we have @H@y = 12 G00(y)G(y) : (32)Note that, since y is a local minimum of G(�), the second derivative is non-negative: G00(y) � 0.Further, G(y) > 0 always. Therefore, @H@y � 0; (33)a fact of great signi�cance that will be used later in Section 4.2.Returning to our main task of �nding @y@wi in (28), we evaluate @H@wi and @H@y using (24) as follows:@H@wi = @@wi NXj=1 wj(y � xj)K2 + wj(y � xj)2= � 1K2� : 26664 (y � xi)�1 + wiK2 (y � xi)2�237775 (34)11



and @H@y = @@y NXj=1 wj(y � xj)K2 + wj(y � xj)2= NXj=1 wjK2 : 1� wjK2 (y � xj)2�1 + wjK2 (y � xj)2�2 : (35)Finally, using (34) and (35) in (28), we obtain the following expression for @y@wi :
@y@wi = 26664 � (y � xi)�1 + wiK2 (y � xi)2�237775K2 : 26664 NXj=1 wjK2 : 1� wjK2 (y � xj)2�1 + wjK2 (y � xj)2�237775 (36)

which we can now use in (20) to obtain the necessary conditions for the optimal weighted myriad�lter under the MAE criterion:
E8>>>>>>>>>>>><>>>>>>>>>>>>:sgn(y � d) 26664 (y � xi)�1 + wiK2 (y � xi)2�23777526664 NXj=1wj 1� wjK2 (y � xj)2�1 + wjK2 (y � xj)2�237775

9>>>>>>>>>>>>=>>>>>>>>>>>>; = 0; wi � 0; i = 1; 2; : : : ; N: (37)
Note that the necessary conditions for the optimal �lter under the MSE criterion can be easilyfound by using (36) in (19); the only change we need to make in (37) is to replace sgn(y � d) by(y � d). Note also that as K !1 in (37), while keeping the weights �nite, we obtainE8>>>>><>>>>>:sgn(y1 � d) (y1 � xi)NXj=1wj 9>>>>>=>>>>>; = 0; wi � 0; i = 1; 2; : : : ; N;which can be shown to be the conditions for the optimal weighted mean �lter under the MAEcriterion. This is consistent with the fact, as shown in (12), that the weighted myriad approachesthe weighted mean as K !1. 12



4 Adaptive Filtering AlgorithmsThe necessary conditions for optimality, derived in Section 3 (see (37)), involve expressions that arevery complicated. In attempting to solve for the optimal weights, we encounter two problems. First,we require knowledge of the joint statistics of all the signals involved. Even with this knowledge,it is almost impossible to evaluate (in closed-form) the statistical expectations entering into theoptimality conditions. Second, even if we could write down the equations in closed-form, solvingthe resulting highly nonlinear equations for the optimal weights would be a formidable task. Wetherefore adopt the approach of adaptive optimization of the �lter weights. In situations where thestatistics of the signals are unknown or time-varying, the use of adaptive algorithms is frequentlythe only recourse available.4.1 General FormulationIn order to �nd the optimal �lter weights, we minimize the MAE cost function J(w) using thesteepest descent method. Noting that the weights are constrained to be non-negative, we obtainthe following algorithm to update the �lter weights:wi(n+ 1) = P �wi(n)� � @J@wi (n)� ; i = 1; 2; : : : ; N (38)where wi(n) denotes the ith weight at the nth iteration, � > 0 is the step-size of the update, andP [�], de�ned by P [u] 4= ( u; u > 00; u � 0; (39)projects the updated weight onto the constraint space of the weights. In practice, P [u] is set to asmall positive value � if u � 0. Note that the cost function J(w) could have many local minima andthe above algorithm does not guarantee convergence to the global minimum. One way to tacklethis problem is to run the algorithm with several di�erent initial weight vectors w(0) and choosethe best �nal weights from the di�erent runs. The gradient @J@wi (n) is given from (18) as@J@wi (n) = E �sgn(y(n)� d(n)) @y@wi (n)� : (40)Since the lack of knowledge of the signal statistics precludes the evaluation of the statistical expec-tation in (40), we use instantaneous estimates for the gradient just as in the LMS algorithm [19].13



To this end, removing the expectation operator in (40) and substituting into (38), we havewi(n+ 1) = P �wi(n) � � sgn(e(n)) @y@wi (n)� ; i = 1; 2; : : : ; N (41)where e(n) = y(n)� d(n) is the error at the nth iteration.4.2 Adaptive Weighted Myriad Filter AlgorithmsFor the weighted myriad �lter, the expression for @y@wi (n) is given by (36). Using this in (41), weobtain the following adaptive algorithm for updating the �lter weight wi:Adaptive Weighted Myriad Filter Algorithm I
wi(n+ 1) = P 26666666666664wi(n) + � sgn(e(n)) 8>>><>>>: (y � xi)�1 + wiK2 (y � xi)2�29>>>=>>>; (n)K2 : 8>>><>>>:a + NXj=1 wjK2 : 1� wjK2 (y � xj)2�1 + wjK2 (y � xj)2�29>>>=>>>; (n)

37777777777775 ; (42)
where a > 0 (not present in (36)) is a stabilizing constant. In the following, we explain the rationalebehind the introduction of this constant. First, note that, for a = 0, the update term in (42) isproportional to an estimate of the gradient, @J@wi (n), of the MAE cost function. Recognizing that,in a gradient descent algorithm, the direction of the gradient conveys most of the required updateinformation, we can modify the update term by scaling it by any positive factor that is commonto all the weights. This will change the magnitude of the update without a�ecting the direction ofthe gradient estimate. Referring to (35), we see that the denominator of the update term in (42)is equal (for a = 0) to the quantity K2 @H@y (n) which, from (33), is non-negative and common to theupdates of all the weights. This term can lead to numerical problems in a practical implementationof the algorithm. Speci�cally, when the term @H@y (n) is very small, the weight update becomes verylarge in magnitude. Adding a constant a > 0 to the term @H@y (n) ensures that it is bounded awayfrom zero. This operation preserves the direction of the current gradient estimate, leaving the �nalvalues of the weights unchanged. To choose the value of the stabilizing constant a, note that theupdate denominator in (42) is K2(a+ @H@y (n)). By setting a = 1K2 , we ensure that, as @H@y (n)! 0,Algorithm I reduces to Algorithm II, a simpli�ed algorithm described later in this section.14



We note from (10) and (11) that the optimal �ltering action is independent of the choice ofK; the �lter only depends on the value of wK2 . In this context, we might ask how the algorithmscales as we change the value of K and how we should change the step-size � and the initial weightvector w(0) as we vary K. To answer this, let go 4= wo;1 denote the optimal weight vector forK = 1. Then, from (11), we have wo;KK2 = go(1)2 or go = wo;KK2 . Now consider two situations. Inthe �rst, the algorithm in (42) is used with K = 1, step-size � = �1, weights denoted as gi(n)and initial weight vector g(0). This is expected to converge to the weights go. In the second, weuse the algorithm with a general value of K, step-size � = �K and initial weight vector wK(0).Rewrite (42) by dividing throughout by K2 and writing the algorithm in terms of an update of wiK2 .This is expected to converge to wo;KK2 since (42) should converge to wo;K . Since go = wo;KK2 , we cancompare the above two situations and choose the initial weight vector wK(0) and the step-size �Ksuch that the algorithms have the same behaviour in both cases and converge, as a result, to thesame �lter. This means that gi(n) = wi(n)K2 at each iteration n. It can be shown that this results in�K = K4 �1 and wK(0) = K2 w1(0): (43)This also implies that if we change K from K1 to K2, the new parameters should satisfy�K2 = �K2K1�4 �K1 and wK2(0) = �K2K1�2wK1(0): (44)Considerable simpli�cation of the algorithm in (42) can be achieved by just removing the de-nominator from the update term; this does not change the direction of the gradient estimate or thevalues of the �nal weights. This leads to the following computationally attractive algorithm:Adaptive Weighted Myriad Filter Algorithm IIwi(n+ 1) = P 26664wi(n) + � sgn(e(n)) 8>>><>>>: (y � xi)�1 + wiK2 (y � xi)2�29>>>=>>>; (n)37775 : (45)Note that, apart from the e�ort involved in computing the �lter output y(n), the above algorithminvolves a very simple update that is computationally comparable to the update in the LMS al-gorithm or its variant, the LMAD (least mean absolute deviation) algorithm (also called the signalgorithm (SA)), which is written as wi(n + 1) = wi(n) � � sgn(e(n)) xi(n) [22]. In our simula-tions, the simpli�ed algorithm of (45) converged signi�cantly faster than the algorithm of (42). To15
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is obtained by �ltering the clean signal s(n) using a linear FIR lowpass �lter obtained using standardFIR �lter design techniques for a chosen cuto� frequency. The signal s(n) is then corrupted byan additive noise process v(n) to yield the input or observed signal x(n). The objective of theadaptive �ltering algorithms is to train the linear FIR, weighted median and weighted myriad�lters to converge to �lter parameters (weights) so as to minimize the absolute value of the errorsignal e(n) between the �lter output signal y(n) and the desired signal d(n). In this section, wepresent the results of this training process, using learning curves and �lter weight trajectories todemonstrate the convergence of the various adaptive algorithms. We also compare the performanceof the trained �lters by applying them to a noisy test signal.In our simulation example, the clean signal s(n) was chosen to be a chirp-type signal, a digitalsinusoid with quadratically increasing instantaneous frequency. Speci�cally, the signal, of lengthL = 256, is given by s(n) = sin(!(n) n); n = 0; 1; : : : ; L � 1, where the radian frequency is!(n) = �3 � LL�1 � nL�1�2. The desired signal d(n) was obtained by passing s(n) through an FIRlowpass �lter of window length N = 11, designed for a cuto� frequency !c = �50 . The weights ofthe designed �lter are shown in Table 1, in the column entitled `Lowpass FIR'. Fig. 4(a) shows thechirp-type signal s(n) and the desired signal d(n) is shown in Fig. 4(b). The signal s(n) is corruptedby adding a realization of symmetric zero-mean �-stable noise, yielding the noisy observed signalx(n) shown in Fig. 4(c). The additive �-stable noise process simulates low-level Gaussian-typenoise along with impulsive interference. The result of lowpass �ltering x(n) with the previouslydesigned FIR �lter is shown as the signal ylpfir(n) in Fig. 4(d). Clearly, the performance of theFIR lowpass �lter is severely a�ected by the impulses in x(n) and the output ylpfir(n) is far fromthe desired signal d(n) of Fig. 4(b).The linear, weighted median and weighted myriad �lters were trained using the training signalx(n) and the desired signal d(n), each of length L = 256. In all cases, the �lter window length waschosen to be N = 11 in order to ensure a fair comparison with the designed lowpass FIR �lter. Sincethe number of iterations required for convergence was more than L = 256, the adaptive algorithmswere implemented by multiple passes (140 loops) through the signals, for a total of 34440 iterations.For the linear �lter, the following least mean absolute deviation (LMAD) algorithm, also called thesign algorithm (SA) [22], was used: wi(n+ 1) = wi(n) � � sgn(e(n)) xi(n); i = 1; 2; : : : ; N; wherewe use the notation of Section 4. The adaptation of the weighted median �lter utilized an adaptive18
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Weights Lowpass Linear Weighted Weighted Myriad (K = 1:0)wi FIR LMAD Median Algo. I (a = 0) Algo. I (a = 1.0) Algo. IIw1 0.0144 0.0299 6.4630 0.2997 0.1855 0.2886w2 0.0304 0.0338 7.1727 0.2594 0.2768 0.4154w3 0.0724 0.0638 7.7844 0.5495 0.4413 0.5227w4 0.1245 0.0962 10.9985 0.5031 0.5198 0.6397w5 0.1668 0.1356 13.6322 0.7577 0.7152 0.9361w6 0.1830 0.1571 14.5779 0.7964 0.7575 0.8760w7 0.1668 0.1283 12.3102 0.7960 0.7413 0.9562w8 0.1245 0.1145 11.2896 0.5698 0.5511 0.6250w9 0.0724 0.0540 7.4682 0.4111 0.3723 0.4537w10 0.0304 0.0259 7.2095 0.3106 0.2777 0.3902w11 0.0144 0.0071 5.8129 0.3095 0.2084 0.2818Table 1: Filter weights obtained by the adaptive algorithms.were � = 1:0� 10�1 for Algorithm I (both a = 0 and a = 1:0) and � = 5:0� 10�2 for Algorithm II.The step-sizes for the linear �lter (� = 1:0� 10�4) and the weighted median �lter (� = 5:0� 10�3)were chosen so that these algorithms converged in approximately the same number of iterations asthe fastest weighted myriad �lter algorithm (which was Algorithm II).The �nal �lter weights obtained by the various algorithms are shown in Table 1. The threeweighted myriad �lter algorithms converged to approximately the same weight vectors. Hence, theyachieved almost the same �nal MAEs (the step-sizes were chosen to ensure this). This permits ameaningful comparison of their convergence speeds, all other factors being equal.The trajectories of the �lter weights for the various weighted myriad �lter algorithms are shownin Fig. 5. Out of the N = 11 �lter weights, we have chosen the weights wi; i = 2; 5; 6 and 8to illustrate the weight trajectories for all the algorithms. Note that, in all cases, our choice ofinitial weights implies w2(0) = w5(0) = w8(0) = 0:0 and the center weight w6(0) = 10:0. Wesee from Fig. 5 that, in all three algorithms, the weight curves w2(n), w5(n) and w8(n) are non-monotonic, while the weight w6(n) is monotonically decreasing. The reason for this behaviour is theinitial large value w6(0) = 10:0 of the center weight, which pulls the other weights up from theirinitial zero values. The o�-center weights continue to increase until the center weight decreasessu�ciently; after that, the o�-center weights also decrease monotonically (except for the isolatedjumps, explained later, in the case of Fig. 5(A)). If all the weights were initialized to zero, theweight curves would all be monotonically increasing.Referring to Fig. 5(A) (Algorithm I, a = 0), notice the jumps in the weight trajectories around20
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Figure 6: Time-averaged MAE learning curves.iteration 13000. As mentioned in Section 4.2, the jumps are due to the very small value of thedenominator of the update term in (42). A closer investigation reveals that this iteration stepcorresponds to an observation window in the signal that contained an impulse. The jumps in theweight curves occur due to a combination of two factors: the very small magnitude of the updatedenominator, and the occurrence of the impulse. Note that without the impulse, the denominatorterm could become very small, but not abruptly; there would be no jumps in the weight curves insuch a case. In practice, the presence of the stabilizing constant a > 0 is essential, in order to avoidthe occurrence of these jumps. As Fig. 5(B) shows, Algorithm I (a = 1:0) completely eliminates thejumps in the weight curves, while converging at a slightly slower rate (24000 iterations, comparedto 20000 for Algorithm I (a = 0)). We also see from Fig. 5(B) that Algorithm II converges inabout 10000 iterations, signi�cantly faster than Algorithm I. Algorithm II also has no jumps inthe weight curves. From the above results, we see that Algorithm II, which is computationally themost e�cient among the three algorithms, also has superior convergence at comparable MAEs.Fig. 6 shows time-averaged learning curves in terms of the MAE for the di�erent adaptive algo-rithms. The MAE learning curve of an adaptive algorithm is a plot of the evolution of the absolutevalue of the �ltering error as a function of the training iterations. Usually, ensemble-averaged22



MAE MSEFilter Type Training Test Training TestLowpass FIR 0.1380 0.1993 0.0971 0.1547Linear LMAD 0.1282 0.1813 0.0668 0.1141Weighted Median 0.1593 0.1625 0.0541 0.0554Weighted Algo. I (a = 0) 0.0968 0.0962 0.0194 0.0193Myriad Algo. I (a = 1.0) 0.0910 0.0903 0.0162 0.0160Algo. II 0.0959 0.0947 0.0187 0.0185Table 2: Mean absolute error (MAE) and mean square error (MSE) incurred in �ltering the trainingand test signals.learning curves are plotted by averaging the learning curves of a large number of independent trialsof the adaptation experiment. We have chosen to time-average and further smooth the learningcurves of a single trial in order to obtain the learning trends. Thus, in Fig. 6, each iteration indexcorresponds to averaging (and further smoothing) the absolute error over 400 iterations. We seethat the weighted median algorithm has the highest �nal MAE. The weighted median �lter, beinga selection �lter, is not well-suited to the present application; the linear �lter has a better perfor-mance, as the �gure shows. The weighted myriad �lter algorithms I (a = 1:0) and II achieve almostthe same, and the smallest, �nal MAEs, demonstrating the robustness of this �lter in impulsivenoise. The �gure also shows that the linear, weighted median and weighted myriad �lter algorithmII, all converge in about the same time (recall that the step-sizes were chosen to ensure this). Thus,Algorithm II (the simplest, fastest and most practical weighted myriad �lter algorithm) achieves alower MAE than the linear and weighted median algorithms, at comparable convergence speeds.Table 2 shows the mean absolute errors (MAEs) and mean square errors (MSEs) incurred in�ltering the noisy chirp-type training signal x(n) of Fig. 4(c) with the various trained �lters (seethe columns labelled `Training'). The weighted myriad �lters (from all three algorithms) have thebest performance in terms of the MAE as well as the MSE. The linear �lter, trained on the noisysignal, has a lower MAE and MSE than the designed lowpass FIR �lter. The trained weightedmedian �lter has a higher MAE than even the lowpass FIR �lter, but achieves a slightly lower MSEthan the linear LMAD-trained �lter.In order to test the performance of the various trained �lters, they were applied to another noisychirp-type signal, di�erent from the training signal x(n) of Fig. 4(c). This test signal x0(n), shownin Fig. 7(a), was obtained by adding a di�erent realization of noise to the clean chirp-type signal of23



Fig. 4(a). The MAE and MSE values, incurred in �ltering the test signal x0(n), are listed in Table2 in the columns labelled `Test'. The mean errors for the linear (lowpass FIR as well as LMAD-trained) �lters increase signi�cantly from the training to the test signal. On the other hand, theweighted median and weighted myriad �lters are hardly a�ected by the change in the additive noise.Fig. 7 shows the results of applying the various �lters to the test signal x0(n); the desired signald(n) of Fig. 4(b) is reproduced in Fig. 7(c) for reference. The output of the designed lowpass FIR�lter is shown in Fig. 7(b) and the output of the linear LMAD-trained �lter is shown in Fig. 7(d). Itis evident that these outputs are quite di�erent from the desired signal; the linear �lters are greatlya�ected by the impulsive nature of the noise. The weighted median �lter output of Fig. 7(e) isless a�ected by the impulses. However, the output is quite distorted, partly because the �lter isconstrained to be a selection �lter. The weighted median �lter is also unable to completely removethe high-frequency portions of the chirp-type signal. The outputs of the weighted myriad �lters,trained using Algorithm I (a = 1:0) and Algorithm II, are shown in Figs. 7(f) and 7(g), respectively.These outputs are visually the closest to the desired signal, especially in the low-frequency portionsof the chirp-type signal. The weighted myriad �lters have the best outputs and lowest mean errors,while being highly robust to changes in the noise environment.6 ConclusionThe optimization of Weighted Myriad Filters was considered in this paper. Necessary conditionswere derived for optimality under the mean absolute error criterion. A stochastic gradient-basedadaptive algorithm was developed for learning the optimal �lter weights. This was further modi�edto yield an adaptive algorithm involving a very simple update equation. The performance of theadaptive �lters in impulsive environments was investigated through a simulation example involvinglowpass �ltering a chirp-type signal in �-stable noise. Learning curves and �lter weight trajectoriesserved to demonstrate the convergence of the adaptive algorithms. The trained weighted myriad �l-ters achieved lower mean absolute errors than the adaptive linear and weighted median �lters, whilebeing highly robust to changes in the noise environment. Theoretical analysis of the convergence ofthe adaptive weighted myriad �lter algorithms is the subject of current research. The optimizationof the special case of the weighted mode-myriad �lter is considered in future publications.24
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(g)Figure 7: (a) x0(n): noisy chirp-type test signal, (b) y0lpfir(n): lowpass FIR �ltering of x0(n), (c)d(n): desired signal, (d) y0lmad(n): linear (LMAD) �lter output, (e) y0wm(n): weighted median�lter output, (f) y0wmyI(n): weighted myriad �lter output (algorithm I (a = 1.0)), (g) y0wmyII(n):weighted myriad �lter output (algorithm II).
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