

FSAN/ELEG815: Statistical Learning

Gonzalo R. Arce

Department of Electrical and Computer Engineering University of Delaware

2b. Matrix Completion

Outline

Matrix Completion

Introduction
Problem Formulation
Optimization Problem
Algorithms
Image Inpainting

Additive Matrix Decomposition

Matrix Approximations and Completion

Given an $m \times n$ matrix $\mathbf{Z} = \{z_{ij}\}$, find a matrix $\hat{\mathbf{Z}}$ that approximates \mathbf{Z} .

- Ž may have simpler structure.
- ▶ Missing entries in **Z**, a problem known as *matrix completion*.

Approach based on optimization:

$$\hat{\mathbf{Z}} = \arg \min_{\mathbf{M} \in \mathbb{R}^{m \times n}} ||\mathbf{Z} - \mathbf{M}||_F^2 \text{ subject to } \Phi(\mathbf{M}) \le c$$
 (1)

where $||\mathbf{A}||_F^2 = \sum \sum_{i,j} |a_{ij}|^2$ is the Frobenius Norm, and $\Phi(\cdot)$ is a constraint function that encourages $\hat{\mathbf{Z}}$ to be sparse in some sense.

Constraint $\Phi(\mathbf{Z})$	Resulting method		
(a) $ \hat{\mathbf{Z}} _{\ell_1} \leq c$	Sparse matrix approximation		
(b) $\operatorname{rank}(\hat{\mathbf{Z}}) \leq k$	Singular value decomposition		
$ \hat{\mathbf{c}} \hat{\mathbf{z}} _* \le c$	Convex matrix approximation		

- ▶ (a) ℓ_1 -norm of all entries of $\hat{\mathbf{Z}}$. Leads to a soft-thresholding $\hat{z}_{ij} = \operatorname{sign}(z_{ij})(|z_{ij}| \gamma)_+$, where $\gamma > 0$ is such that $\sum_{i=1}^m \sum_{j=1}^n |z_{ij}| = c$.
- **b** (b) Bounds the rank of $\hat{\mathbf{Z}}$, or the number of nonzero singular values in $\hat{\mathbf{Z}}$. Approximation is non-convex, but solution found by computing the SVD and truncating it to its top k components.
- (c) Relaxes the rank constraint to a *nuclear norm* ($||\mathbf{A}||_* = \sum_{i=1}^{min\{m,n\}} \sigma_i$). Solved by computing the SVD and soft-thresholding its singular values.

Motivation: Image Reconstruction from Incomplete Data

Reconstructed image

Incomplete image 50% of the pixels

Matrices with missing elements can be solved exactly using method (c), whereas methods based on (b) are more difficult to solve in general.

Constraint	Resulting method		
$\hat{\mathbf{Z}} = \mathbf{L} + \mathbf{S}, \; \Phi_1(\mathbf{L}) \leq c_1, \; \Phi_2(\mathbf{S}) \leq c_2$	Additive matrix decomposition		

➤ Seeks an additive decomposition of the matrix, imposing penalties on both components in the sum.

The Singular Value Decomposition

Given an $m \times n$ matrix **Z** with $m \ge n$, its singular value decomposition takes the form

$$\mathbf{Z} = \mathbf{U}\mathbf{D}\mathbf{V}^T \tag{2}$$

- ▶ **U** is an $m \times n$ orthogonal matrix ($\mathbf{U}^T \mathbf{U} = \mathbf{I}_n$) whose columns $\mathbf{u}_j \in \mathbb{R}^m$ are the *left singular vectors*.
- ▶ **V** is an $n \times n$ orthogonal matrix ($\mathbf{V}^T \mathbf{V} = \mathbf{I}_n$) whose columns $\mathbf{v}_j \in \mathbb{R}^n$ are the *right singular vectors*.
- ▶ The $n \times n$ matrix **D** is diagonal, with $d_1 \ge d_2 \ge \cdots \ge d_n \ge 0$ known as the *singular values*.

The Singular Value Decomposition

- ▶ If columns of **Z** are centered (zero mean), then the right singular vectors $\{\mathbf{v}_j\}_{j=1}^n$ define the *principal components* of **Z**.
- ▶ The unit vector \mathbf{v}_1 yields the linear combination $\mathbf{s}_1 = \mathbf{Z}\mathbf{v}_1$ with highest sample variance among all possible choices of unit vectors.
- $ightharpoonup {f s}_1$ is the first principal component of ${f Z}$, and ${f v}_1$ is the corresponding direction or loading vector.

The Singular Value Decomposition

Suppose $r \leq \text{rank}(\mathbf{Z}) = 800$, and let \mathbf{D}_r be a diagonal matrix with all but the first r diagonal entries of \mathbf{D} set to zero. The optimization problem

$$\hat{\mathbf{Z}}_r = \min_{\mathsf{rank}(M)=r} ||\mathbf{Z} - \mathbf{M}||_F \tag{3}$$

has a closed form solution $\hat{\mathbf{Z}}_r = \mathbf{U}\mathbf{D}_r\mathbf{V}^\mathsf{T} \triangleq$ the rank-r SVD. $\hat{\mathbf{Z}}_r$ is sparse in the sense that all but r singular values are zero.

800 Singular Values 164 Singular Values

24 Singular Values

12 Singular Values

Matrix Completion

Problem Formulation: Recover an $m \times n$ matrix **Z** when we only get to observe $p \ll mn$ of its entries.

- ▶ Impossible without additional information!
- Assumption: Matrix is known to be low-rank or approximately low-rank.
- Matrix Completion: Fill the missing entries.
- Used in: machine learning, computer vision...

Optimization Problem

- ▶ Observe the entries of the $m \times n$ matrix **Z** indexed by the subset $\Omega \subset \{1, \dots, m\} \times \{1, \dots, n\}$.
- ightharpoonup Seek the lowest rank approximating matrix $\hat{\mathbf{Z}}$ that interpolates the entries of \mathbf{Z}

minimize
$$\operatorname{rank}(\mathbf{M})$$

subject to $m_{ij} = z_{ij}, \ (i,j) \in \Omega,$ (4)

- Rank minimization problem is NP-hard.
- Forcing interpolation leads to overfitting.

Optimization Problem

Better to allow M to make some errors on the observed data:

minimize
$$\operatorname{rank}(\mathbf{M})$$

subject to $\sum_{(i,j)\in\Omega} (z_{ij} - m_{ij})^2 \le \delta$, (5)

or equivalently

minimize
$$\sum_{(i,j)\in\Omega} (z_{ij} - m_{ij})^2$$
, (6)

▶ Both problems are non-convex, and exact solutions are generally not available.

Matrix Completion Using the Nuclear Norm

▶ Nuclear norm of $\mathbf{M}_{m \times n}$:

$$||\mathbf{M}||_* = \sum_{k=1}^n \sigma_k(\mathbf{M}) \tag{7}$$

Convex relaxation of the rank minimization problem:

minimize
$$||\mathbf{M}||_*$$
 subject to $m_{ij}=z_{ij},\ (i,j)\in\Omega$, (8)

- ▶ Whereas the rank counts the number of nonzero singular values, the nuclear norm sums their amplitude.
- \blacktriangleright Analogous to the ℓ_1 norm as a relaxation for the ℓ_0 norm as sparsity measure.

Notation

Given an observed subset Ω of matrix entries, define the projection operator as:

$$[P_{\Omega}(\mathbf{Z})]_{i,j} = \left\{ \begin{array}{ll} z_{ij} & if & (i,j) \in \Omega \\ 0 & \text{otherwise} \end{array} \right.$$

 P_{Ω} replaces the missing entries in **Z** with zeros, and leaves the observed entries alone.

The optimization criterion is then:

$$\sum_{(i,j)\in\Omega} (z_{ij} - m_{ij})^2 = ||P_{\Omega}(\mathbf{Z}) - P_{\Omega}(\mathbf{M})||_F$$
(9)

where $||\cdot||_F$ is the Frobenius norm of a matrix defined as the element-wise sum of squares.

Singular Value Thresholding for Matrix Completion,⁺

► Solves the optimization problem:

minimize
$$||\mathbf{M}||_*$$
 subject to $P_{\Omega}(\mathbf{M}) = P_{\Omega}(\mathbf{Z})$, (10)

 \triangleright The SVD of a matrix **M** of rank r is:

$$\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T , \ \mathbf{\Sigma} = \operatorname{diag}(\{\sigma_i\}_{1 \le i \le r})$$
 (11)

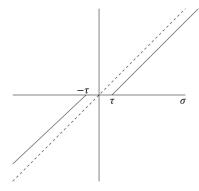
⁺Cai et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4

Singular Value Thresholding (SVT)

▶ For each $\tau \ge 0$, the soft-thresholding operator D_{τ} is defined as:

$$D_{\tau}(\mathbf{M}) = \mathbf{U}D_{\tau}(\mathbf{\Sigma})\mathbf{V}^{T}, \ D_{\tau}(\mathbf{\Sigma}) = \operatorname{diag}(\operatorname{sgn}(\sigma_{i})\{|\sigma_{i}| - \tau\}_{+})$$
 (12)

where t, $t_+ = \max(0, t)$. Operator applies soft-thresholding to the singular values of \mathbf{M} , effectively shrinking them towards zero.



SVT Algorithm - Shrinkage Iterations

Fix $\tau > 0$ and a sequence $\{\delta_k\}$ of positive step sizes. Starting with $\mathbf{Y}^0 = \mathbf{0}$, inductively define for $k = 1, 2, \ldots$,

$$\begin{cases} \mathbf{M}^k = D_{\tau}(\mathbf{Y}^{k-1}) \\ \mathbf{Y}^k = \mathbf{Y}^{k-1} + \delta_k P_{\Omega}(\mathbf{Z} - \mathbf{M}^k) \end{cases}$$

$$\begin{array}{lll} \mathbf{M}^{1} & = & D_{\tau}(\mathbf{Y}^{0}) = 0 \\ \mathbf{Y}^{1} & = & 0 + \delta_{1}P_{\Omega}(\mathbf{Z} - 0) \\ & = & \delta_{1}P_{\Omega}(\mathbf{Z}) \end{array} \qquad \begin{array}{lll} \mathbf{M}^{2} & = & D_{\tau}(\mathbf{Y}^{1}) = \delta_{1}P_{\Omega}(\mathbf{Z}) \\ \mathbf{Y}^{2} & = & \delta_{1}P_{\Omega}(\mathbf{Z}) + \delta_{1}P_{\Omega}(\mathbf{Z} - \delta_{1}P_{\Omega}(\mathbf{Z})) \end{array}$$

until a stopping criterion is reached. At each step, we only need to compute an SVD and perform elementary matrix operations.

SVT Algorithm - Shrinkage Iterations

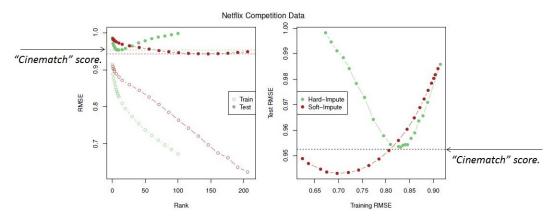
Netflix Movie Challenge - Revisited

- ▶ Dataset: n = 17,770 movies (columns) and m = 480,189 customers (rows).
- Customers rated movies on a scale from 1 to 5. Matrix is very sparse with "only" 100 million of the ratings present in the training set.
- ▶ Goal: Predict the ratings for unrated movies.

- (2006) "Cinematch" algorithm used by Netflix RMSE=0.9525 over a large test set.
- Competition started in 2006, winner should improve this RMSE by at least 10%.
- 2009 "Bellkor's Pragmatic Chaos," uses a combination of many statistical techniques to win.

Netflix Movie Challenge

(Left) RMSE over the training and test sets as the rank of the SVD was varied (Hard-impute). Also estimates based on nuclear norm regularization (soft-impute). (Right) Test error only, plotted against training error, for the two methods.



Viewers rated movies on a scale from 1 to 5, 0 for movies that were not rated by the user.

- ► Each column *j* is a different movie
- Each row i is a different viewer
- Each element $a_{i,j}$ represents the rating of movie j by viewer i

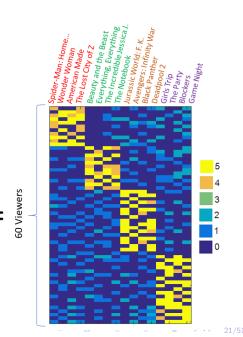
	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5
Viewer 1	0	1	0	0	5
Viewer 2	4	2	0	0	0
Viewer 3	0	0	3	3	0
Viewer 4	4	2	0	0	0
Viewer 5	0	0	0	0	5
Viewer 6	0	0	3	3	0
Viewer 7	1	0	0	0	4
Viewer 8	2	1	0	0	4
Viewer 9	1	0	0	0	4

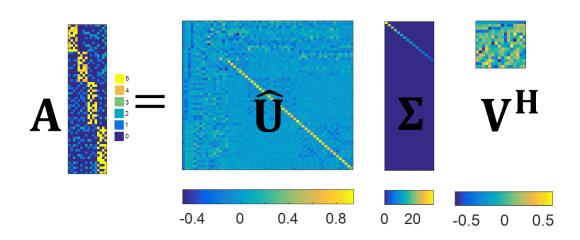
$$\mathbf{A} = \begin{bmatrix} a_{1,1} & \cdots & \cdots & a_{1,n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix}$$

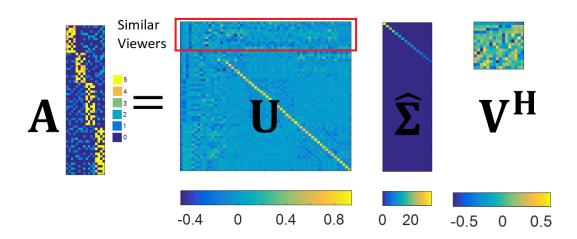
Goal: Use SVT algorithm to predict unobserved data or the rating of a movie that hasn't come out yet.

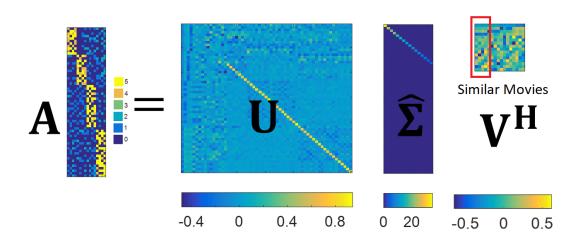
Considering the rating from 60 viewers to 16 movies of 4 different genres(action, romance, sci-fi, comedy), we generate $\mathbf{A} \in \mathbb{R}^{60 \times 16}$

- ➤ Viewers rated movies on a scale from 1 to 5, 0 for movies that were not rated by the user.
- Observe the same 4 categories of viewers.





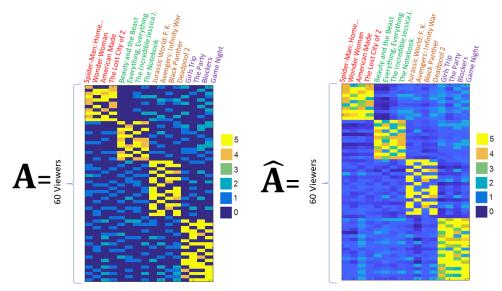




Use SVT Algorithm to estimate not rated movies (zero entries in $\bf A$), solving the optimization problem:

$$\label{eq:minimize} \begin{aligned} & \text{minimize} & & ||\hat{\mathbf{A}}||_* \\ & \text{subject to} & & P_{\Omega}(\hat{\mathbf{A}}) = P_{\Omega}(\mathbf{A}) \;, \end{aligned}$$

Note: The ratings matrix \mathbf{A} is expected to be low-rank since user preferences can be described by a few categories (k), such as the movie genres.



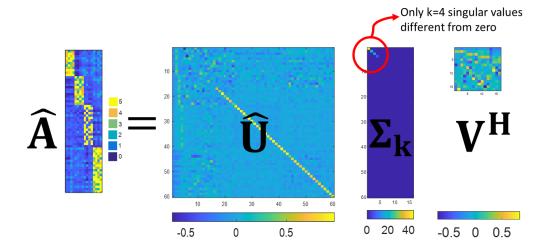
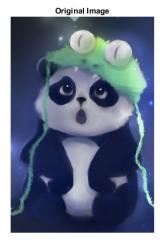


Image Inpainting - Convex Optimization Solver

With 70% of the Information.



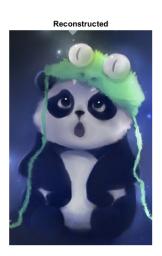
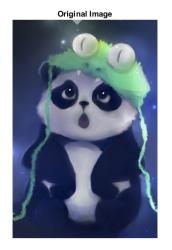


Image Inpainting - Convex Optimization Solver

With 50% of the Information. And multiple columns missing.



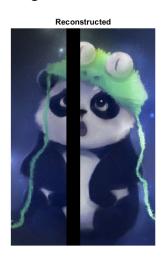


Image Inpainting - Convex Optimization Solver

With 50% of the Information. PSNR=35.9 dB.

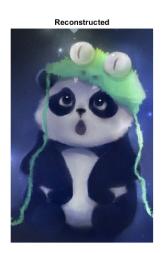
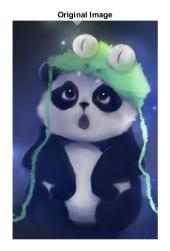
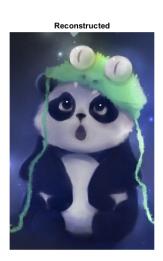


Image Inpainting - SVT Algorithm⁺

With 50% of the Information. PSNR=38.1 dB.





⁺Cai et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4

Text Removal - Convex Optimization Solver

