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Matrix Approximations and Completion

Given an m x n matrix Z = {z;;}, find a matrix Z that approximates Z.

> Z may have simpler structure.
» Missing entries in Z, a problem known as matrix completion.

Approach based on optimization:
Z=arg nﬁémx |1Z —M||% subject to ®(M) < ¢ (1)

where [|A|[} =Y, j|a;;|? is the Frobenius Norm, and ®(-) is a constraint
function that encourages Z to be sparse in some sense.
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Constraint ®(Z) Resulting method

(a) ||2||g1 <c Sparse matrix approximation
(b) rank(Z) < k Singular value decomposition
(o) |1Z]|« < ¢ Convex matrix approximation

> (a) £1-norm of all entries of Z. Leads to a soft-thresholding 2;; = sign(zi;)(|zi] — 7).
where v > 0 is such that 371", 377 |25;| = c.

> (b) Bounds the rank of Z, or the number of nonzero singular values in Z.
Approximation is non-convex, but solution found by computing the SVD and
truncating it to its top k components.

» (c) Relaxes the rank constraint to a nuclear norm (||A||. = E?ﬂl{m’n} ;). Solved by

computing the SVD and soft-thresholding its singular values.
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Motivation: Image Reconstruction from Incomplete Data

Reconstructed image Incomplete image 50% of the pixels

Matrices with missing elements can be solved exactly using method (c),
whereas methods based on (b) are more difficult to solve in general.
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Constraint Resulting method

Z=1L +8S, ®1(L) <cp, P2(S) <2 Additive matrix decomposition

» Seeks an additive decomposition of the matrix, imposing penalties on
both components in the sum.
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Matrix Completion

The Singular Value Decomposition

Given an m X n matrix Z with m > n, its singular value decomposition takes

the form
Z-UDVv” (2)

> U is an m x n orthogonal matrix (UTU =1,,) whose columns u; € R™ are
the left singular vectors.

> V is an n x n orthogonal matrix (VT'V =1,,) whose columns v; € R" are
the right singular vectors.

» The n x n matrix D is diagonal, with d; > dy > --- > d,, > 0 known as
the singular values.
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Matrix Completion

The Singular Value Decomposition

» If columns of Z are centered (zero mean), then the right singular vectors
{v;}"_. define the principal components of Z
JJj=1 )

» The unit vector vy yields the linear combination s; = Zv; with highest
sample variance among all possible choices of unit vectors.

» s; is the first principal component of Z, and v; is the corresponding
direction or loading vector.
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The Singular Value Decomposition
Suppose r < rank(Z) = 800, and let D, be a diagonal matrix with all but the
first r diagonal entries of D set to zero. The optimization problem

Z = i Z-M
r ran&%:TH ||F (3)

has a closed form solution Zr = UDrVT £ the rank-r SVD. 2T is sparse in the
sense that all but r singular values are zero.

JEATERS )4 JEATERS 4 T
JANUARY'29 sl JANUARY'29 LS

800 Singular Values 164 Singular Values 24 Singular Values 12 Singular Values
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Matrix Completion

Problem Formulation: Recover an m x n matrix Z when we only get to
observe p < mn of its entries.

» Impossible without additional information!
» Assumption: Matrix is known to be low-rank or approximately low-rank.
» Matrix Completion: Fill the missing entries.

» Used in: machine learning, computer vision...
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Optimization Problem

» Observe the entries of the m x n matrix Z indexed by the subset
Qc{l,---,m}x{1,--- ,n}.

» Seek the lowest rank approximating matrix Z that interpolates the entries

of Z
minimize  rank(M) (4)
subject to mi; = Zij, (’L,j) €,
» Rank minimization problem is NP-hard.

» Forcing interpolation leads to overfitting.
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Optimization Problem

» Better to allow M to make some errors on the observed data:

minimize  rank(M)

subject to > (25 —my;)* <6, (5)
(4,5)€Q
or equivalently
L 2
minimize Zii —mii)“,
rank(M)<r (Z,%EQ( Y Zj) (6)

» Both problems are non-convex, and exact solutions are generally not
available.
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Matrix Completion Using the Nuclear Norm

» Nuclear norm of M,,,xn:

n

IM]s = > o(M) (7)

k=1
» Convex relaxation of the rank minimization problem:

minimize  ||M||«

(8)

subject to mi; = Zij, (Z,]) e,

» Whereas the rank counts the number of nonzero singular values, the nuclear norm
sums their amplitude.

» Analogous to the £1 norm as a relaxation for the £y norm as sparsity measure.
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Notation

Given an observed subset €2 of matrix entries, define the projection operator as:

[Pa(Z)]; ;= { 0 otherwise

Pq replaces the missing entries in Z with zeros, and leaves the observed
entries alone.
The optimization criterion is then :

> (zij—mij)* = ||Pa(Z) — Pa(M)|| (9)
(1,5)€Q
where || - || is the Frobenius norm of a matrix defined as the element-wise

sum of squares.
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Singular Value Thresholding for Matrix Completion,™
» Solves the optimization problem:
L Mils
mln-lmlze [|M]]| (10)
subject to Po(M) = Pq(Z),
» The SVD of a matrix M of rank r is:
M=UZV" | T =diag({oi},,,) (11)

*Cai et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4
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Singular Value Thresholding (SVT)

» For each 7 > 0, the soft-thresholding operator D is defined as:
DA (M) =UD, (VT , D,(E) = diag(sgn(o)) {loi| —7},)  (12)

where ¢, 1 = max(0,t). Operator applies soft-thresholding to the singular
values of M, effectively shrinking them towards zero.
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SVT Algorithm - Shrinkage Iterations

Fix 7 > 0 and a sequence {4;} of positive step sizes. Starting with Y =0,
inductively define for £k =1,2,...,

Mk _ DT(Yk_l)
YE = YR 45, Po(Z — MF)

MY = D (Y) =0
Y! 0+061Po(Z—0)
= 01Pa(Z)

M? = D.(Y')=6,Py(2)
Y2 = §,Po(Z)+01Po(Z—6,Po(Z))

until a stopping criterion is reached. At each step, we only need to compute
an SVD and perform elementary matrix operations.



Matrix Completion FSAN/ELEGS815

SVT Algorithm - Shrinkage Iterations

1 iteration 10 iterations

50 iterations 100 iterations 250 iterations 500 iterations
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Netflix Movie Challenge - Reuvisited

> Dataset: n = 17,770 movies (columns) and m = 480,189 customers (rows).

> Customers rated movies on a scale from 1 to 5. Matrix is very sparse with “only” 100 million of the
ratings present in the training set.

» Goal: Predict the ratings for unrated movies.

> (2006) “Cinematch” algorithm used by Netflix
RMSE=0.9525 over a large test set.

» Competition started in 2006, winner should
improve this RMSE by at least 10%.

> 2009 “Bellkor's Pragmatic Chaos,"” uses a
combination of many statistical techniques to
win.
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Netflix Movie Challenge

(Left) RMSE over the training and test sets as the rank of the SVD was varied
(Hard-impute). Also estimates based on nuclear norm regularization (soft-impute). (Right)
Test error only, plotted against training error, for the two methods.
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SVT Algorithm Solution

Viewers rated movies on a scale from 1 to 5, 0 for movies that were not rated

by the user. ¢ g g ¢
» Each column j is a Y I A I B
different movie Viewerz 8 1 2 4 9 L O 1O
Viewer 3 0 0 3 3 0
Viewer 4 4 2 0 0 0
.o . Viewer 5 0 0 0 0 5
» Each row ¢ is a different vewre e T =TT
viewer Viewer 7 1 0 0 0 4
Viewer 8 2 1 0 0 4
Viewer 9 1 0 0 0 4
» Each element a; ; ap 1 ai
represents the rating of A —
movie j by viewer ¢
| Am,1 -+ ... Qmn

Goal: Use SVT algorithm to predict unobserved data or the rating of a movie
that hasn’t come out yet.



FSAN/ELEG815

Matrix Completion

SVT Algorithm Solution

Considering the rating from 60 viewers
to 16 movies of 4 different
genres(action, romance, sci-fl,

comedy), we generate A ¢ R60x16

» Viewers rated movies on a scale
from 1 to 5, 0 for movies that
were not rated by the user.

I
60 Viewers
]

» Observe the same 4 categories of
viewers.
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SVT Algorithm Solution
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SVT Algorithm Solution
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SVT Algorithm Solution

Use SVT Algorithm to estimate not rated movies (zero entries in A), solving
the optimization problem:

minimize  ||A||+

subject to  Pq(A) = Po(A),

Note: The ratings matrix A is expected to be low-rank since user preferences
can be described by a few categories (k), such as the movie genres.
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SVT Algorithm Solution

Only k=4 singular values
different from zero

s
s owoow®
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Image Inpainting - Convex Optimization Solver

With 70% of the Information.

Original Image Noisy Image Reconstructed
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Image Inpainting - Convex Optimization Solver

With 50% of the Information. And multiple columns missing.

Original Image Noisy Image Reconstructed
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Image Inpainting - Convex Optimization Solver

With 50% of the Information. PSNR=35.9 dB.

Original Image

Noisy Image Reconstructed
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Image Inpainting - SVT Algorithm™
With 50% of the Information. PSNR=38.1 dB.

Original Image Reconstructed

Noisy Image

*Cai et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4
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Text Removal - Convex Optimization Solver

Original Image Noisy Image Reconstructed
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