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7. Lasso Regression



The ℓ1 Norm and Sparsity

Theℓ0 norm is defined by: ‖x‖0 = #{i : x(i) 6= 0}
Sparsity of x is measured by its number of non-zero elements.

Theℓ1 norm is defined by: ‖x‖1 =
∑

i |x(i)|
ℓ1 norm has two key properties:

Robust data fitting
Sparsity inducing norm

Theℓ2 norm is defined by: ‖x‖2 = (
∑

i |x(i)|2)1/2

ℓ2 norm is not effective in measuringsparsity of x



Why ℓ1 Norm Promotes Sparsity?

Given twoN-dimensional signals:

x1 = (1, 0, ..., 0) → ”Spike” signal

x2 = (1/
√

N, 1/
√

N, ..., 1/
√

N) → ”Comb” signal

x1 andx2 have the sameℓ2 norm:
‖x1‖2 = 1 and‖x2‖2 = 1.

However,‖x1‖1 = 1 and
‖x2‖1 =

√
N.

x 2

x 1
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Least Absolute Shrinkage and Selection Operator (LASSO)

I LASSO combines shrinking of Ridge regression with
variable selection. Tibshirani 1996.

I Difference between LASSO and Ridge regression is the
penalty used

ŵridge = arg min
w∈Rd

 N∑
i=1

(yi−w0−
d∑
j=1

xijwj)2 +λ
d∑
j=1

w2
j


ŵlasso = argminw

 N∑
i=1

(yi−
d∑
j=1

xijwj)2 +λ
d∑
j=1
|wj|


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Least Absolute Shrinkage and Selection Operator (LASSO)
I LASSO coefficients are the solutions to the `1 optimization problem

defined as

ŵlasso = argminw

 N∑
i=1

(yi−
d∑
j=1

xijwj)2 +λ
d∑
j=1
|wj|


= argminw

 N∑
i=1

(yi−xTi w)2 +λ
d∑
j=1
|wj|


= argminw

[
(y−Xw)T (y−Xw)+λ||wj||1

]
.

I LASSO also shrinks the coefficients.
I `1 norm forces coefficients to zero when λ is large: variable selection.
I Lasso yields sparse models, keeping subset of variables.
I Unlike ridge regression, ŵlasso

λ has no closed form.
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Lasso Regression Example Credit Data set

I Lasso performs better when a small number of predictors have strong
coefficients, and the remaining predictors are small.

I Ridge regression performs better when the response is a function of many
predictors.
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The Variable Selection Property of the Lasso

One can show that the Ridge and Lasso regression coefficient estimates solve
the following problems

ŵridge = argmin
w
{
N∑
i=1

(yi−w0−
d∑
j=1

xijwj)2} (1)

subject to ∑d
j=1w

2
j ≤ t

ŵlasso = argmin
w
{
N∑
i=1

(yi−w0−
d∑
j=1

xijwj)2} (2)

subject to ∑d
j=1 |wj| ≤ t
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The Variable Selection Property of the Lasso

I RSS has elliptical contours, centered at the LS estimate.
I Constraint regions, w2

1 +w2
2 ≤ t, and |w1|+ |w2| ≤ t.
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Comparing the Lasso and Ridge Regression

The criteria to be analyzed for each case:
I Bias: Error that is introduced by approximating a real-life problem, by a

much simpler model.
I Variance: Amount by which y would change is we estimated it using a

different training data set.
I Training MSE: Mean squared error computed using the training data.
I Test MSE: Mean squared error computed using the test data.
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Comparing the Lasso and Ridge Regression
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Simulated data set containing d= 45 predictors and n= 50 observations. For
this figure all predictors were related to the response.
I Left: Plots of squared bias (black), variance (green), and test MSE

(purple) for the lasso.
I Right: Comparison of squared bias, variance and test MSE between lasso

(solid) and ridge (dashed).
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Comparing the Lasso and Ridge Regression
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Here the the response is a function of only 2 out of 45 predictors.
I Left: Squared bias (black), variance (green), and test MSE (purple) for

the lasso.
I Right: Comparison of squared bias, variance and test MSE between lasso

(solid) and ridge (dashed).
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Lasso vs Ridge regression
I y = Xw+ εεε, where X ∈ R40×60 is random Gaussian and εεε is noise.
I Original sparse signal is
w(k) = δ(k−5)+0.5δ(k−12)+0.9δ(k−31)−0.75δ(k−45)



10/19

Lasso Regression FSAN/ELEG815

Example
y = Xw, where
I X is a random Gaussian matrix ∈ R40×60.
I Original sparse signal is
w(k) = δ(k−5)+0.5δ(k−12)+0.9δ(k−31)−0.75δ(k−45).

I The results for λ= 0.01 and λ= 0.0001 are presented
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Example: Prostate Cancer

I Study by Stamey et al. (1989)
I Examines the correlation between the level of prostate-specific antigen

and a number of clinical measures in men who were about to receive
radical prostatectomy.

I Variables: log cancer volume (lcavol), log prostate weight (lweight), age,
log of the amount of benign prostatic hyperplasia (lbph), seminal vesicle
invasion (svi), log of capsular penetration (lcp), Gleason score (gleason),
and percent of Gleason scores 4 or 5 (pgg45).
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Ridge vs Lasso Regression
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Example: Breast Cancer

We consider a classification problem involving a binary response variable
Y ∈ 0,1, describing the lymph node status of a cancer patient, and we have a
covariate with p= 7129 gene expression measurements. There are n= 49
breast cancer tumor samples. The data is taken from West et al. (2001). It is
known that this is a difficult, high noise classification problem.
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Ridge vs Lasso Regression

Results for the 7129 predictors (Only first 10 labeled)
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Choosing parameters: cross-validation

I Ridge and Lasso have regularization parameters.
I An optimal parameter needs to be chosen in a principled way

K- fold cross-validation: Split data into K equal (or almost equal)
parts/folds at random.

1: for each value λi do
2: for j = 1, · · · ,K do
3: Fit model on data with fold j removed
4: Test model on remaining fold jth test error
5: end for
6: Compute average test errors for parameter λi
7: end for
8: Pick parameter with smallest average error



16/19

Example FSAN/ELEG815

Choosing parameters: cross validation
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Cross validation- Example K=5
I y = Xw+ εεε, where X ∈ R40×60 is random Gaussian and εεε is noise.
I Original sparse signal is
w(k) = δ(k−5)+0.5δ(k−12)+0.9δ(k−31)−0.75δ(k−45)
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Model selection vs Model assesment

I Model selection: estimate performance of different models in order to
choose the “best" one

I Model assessment: having a chosen model, estimate its prediction error
on new data

I When enough data is available, it is better to separate the data into three
parts: train/validate, and test

I Typically: 50% train, 25 % validate, 25 % test.
I Test data is “kept in a vault", i.e. it is not used to fitting or choosing the

model
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