

FSAN/ELEG815: Statistical Learning

Gonzalo R. Arce

Department of Electrical and Computer Engineering University of Delaware

7: Lasso Regression

The l_2 Norm and Sparsity

► The l_0 norm is defined by: $\|\mathbf{x}\|_0 = \sharp\{i : x(i) \neq 0\}$ Sparsity of \mathbf{x} is measured by its number of non-zero elements

- ▶ The l_1 norm is defined by: $\|\mathbf{x}\|_1 = \sum_i |x(i)|$ l_1 norm as two key properties:
 - Robust data fitting
 - Sparsity inducing norm

▶ The l_2 norm is defined by: $\|\mathbf{x}\|_2 = (\sum_i |x(i)|^2)^{1/2}$ l_2 norm is not effective in measuring sparsity of \mathbf{x}

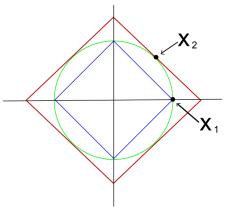
Why l_1 Norm Promotes Sparsity?

Norms

Given two *N*-dimensional signals:

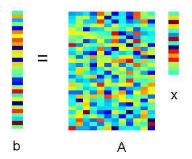
- $x_1 = (1, 0, ..., 0) \rightarrow$ "Spike" signal
- $x_2 = (1/\sqrt{N}, 1/\sqrt{N}, ..., 1/\sqrt{N}) \rightarrow$ "Comb" signal

- x_1 and x_2 have the same ℓ_2 norm: $||x_1||_2 = 1$ and $||x_2||_2 = 1$.
- However, $||x_1||_1 = 1$ and $||x_2||_1 = \sqrt{N}$.



• Linear regression is widely used in science and engineering.

Given
$$A \in R^{m \times n}$$
 and $b \in R^m$; $m > n$
Find x s.t. $b = Ax$ (overdetermined)



Two approaches:

• Minimize the ℓ_2 norm of the residuals

$$\min_{\boldsymbol{x}\in R^n} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2$$

The ℓ_2 norm penalizes large residuals

• Minimizes the ℓ_1 norm of the residuals

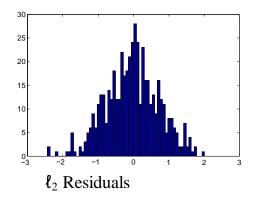
$$\min_{\boldsymbol{x}\in R^n} \parallel \boldsymbol{b} - \boldsymbol{A}\boldsymbol{x} \parallel_1$$

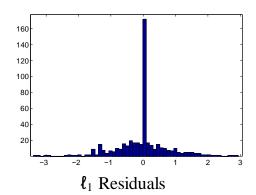
The ℓ_1 norm puts much more weight on small residuals

Matlab Code

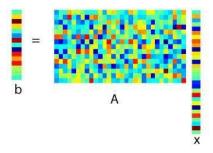
```
\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2
A=randn(500,150);
b = randn(500,1);
x=(A*A)^{-1}*A*B;
                                            Least Squares Solution
\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_1
A = randn(500, 150);
b=randn(500,1);
X = medrec(b,A,max(A'*b),0,100,1e-5);
```

$$m = 500, n = 150. A = randn(m, n)$$
 and $b = randn(m, 1)$





Given $A \in R^{m \times n}$ and $b \in R^m$; m < nFind x s.t. b = Ax (underdetermined)



Two approaches:

• Minimize the ℓ_2 norm of x

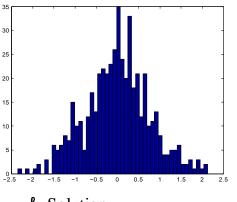
$$\min_{x \in \mathbb{R}^n} ||x||_2 \quad \text{subject to} \quad Ax = b$$

• Minimize the ℓ_1 norm of x

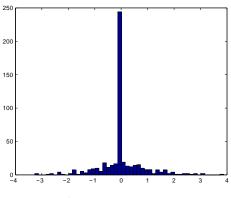
$$\min_{x \in \mathbb{R}^n} ||x||_1 \quad \text{subject to} \quad Ax = b$$

Matlab Code

```
\bullet \min_{x \in R^n} ||x||_2
                       subject to Ax = b
A = randn(150,500);
b = randn(150,1);
C=eve(150,500);
d = zeros(150,1);
X=lsqlin(C,d,[],[],A,b);
  • In general:
     \min_{x \in \mathbb{R}^n} f(x) subject to Ax = b
X = fmincon(@(x) f(x), zeros(500,1),[],[],A,b,[],[],options);
where f(x) is a convex function.
```



 ℓ_2 Solution



 ℓ_1 Solution

Least Absolute Shrinkage and Selection Operator (LASSO)

- ► LASSO combines shrinking of Ridge regression with variable selection. Tibshirani 1996.
- ▶ Difference between LASSO and Ridge regression is the penalty used

$$\hat{\mathbf{w}}^{\mathsf{ridge}} = \arg\min_{\mathbf{w} \in \mathbb{R}^d} \left[\sum_{i=1}^N (y_i - \sum_{j=0}^d x_{ij} w_j)^2 + \lambda \sum_{j=1}^d w_j^2 \right]$$

$$\hat{\mathbf{w}}^{\mathsf{lasso}} = \arg\min_{\mathbf{w} \in \mathbb{R}^d} \left[\sum_{i=1}^N (y_i - \sum_{j=0}^d x_{ij} w_j)^2 + \lambda \sum_{j=1}^d |w_j| \right]$$

Least Absolute Shrinkage and Selection Operator (LASSO)

▶ LASSO coefficients are the solutions to the ℓ_1 optimization problem defined as

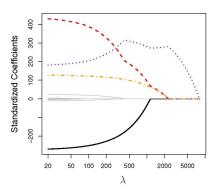
$$\hat{\mathbf{w}}^{\mathsf{lasso}} = \arg\min_{\mathbf{w}} \left[\sum_{i=1}^{N} (y_i - \sum_{j=1}^{d} x_{ij} w_j)^2 + \lambda \sum_{j=0}^{d} |w_j| \right]$$

$$= \arg\min_{\mathbf{w}} \left[\sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda \sum_{j=0}^{d} |w_j| \right]$$

$$= \arg\min_{\mathbf{w}} \left[(\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w}) + \lambda ||\mathbf{w}||_1 \right].$$

- LASSO also shrinks the coefficients.
- ▶ ℓ_1 norm forces coefficients to zero when λ is large: **variable selection**.
- Lasso yields **sparse** models, keeping subset of variables.
- ▶ Unlike ridge regression, $\hat{\mathbf{w}}_{\lambda}^{lasso}$ has no closed form.

Lasso Regression Example Credit Data set



- ► Lasso performs better when a small number of predictors have strong coefficients, and the remaining predictors are small.
- ▶ Ridge regression performs better when the response is a function of many predictors.

The Variable Selection Property of the Lasso

One can show that the Ridge and Lasso regression coefficient estimates solve the following problems

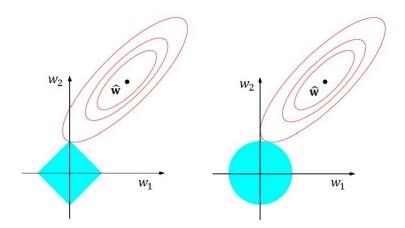
$$\hat{\mathbf{w}}^{\mathsf{ridge}} = \arg\min_{\mathbf{w}} \{ \sum_{i=1}^{N} (y_i - \sum_{j=0}^{d} x_{ij} w_j)^2 \}$$
 (1)

subject to
$$\sum_{j=0}^d w_j^2 \le t$$

$$\hat{\mathbf{w}}^{\mathsf{lasso}} = \arg\min_{\mathbf{w}} \{ \sum_{i=1}^{N} (y_i - \sum_{j=0}^{d} x_{ij} w_j)^2 \}$$
 (2)

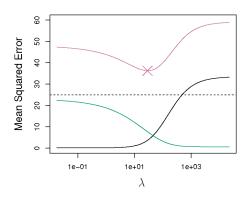
subject to
$$\sum_{j=0}^{d} |w_j| \le t$$

The Variable Selection Property of the Lasso



- ightharpoonup RSS has elliptical contours, centered at the LS estimate.
- ► Constraint regions, $w_1^2 + w_2^2 \le t$, and $|w_1| + |w_2| \le t$.

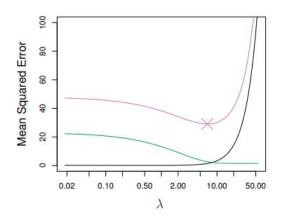
Comparing the Lasso and Ridge Regression



Simulated data set containing d=45 predictors and n=50 observations. Predictors related to the response.

▶ Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso.

Comparing the Lasso and Ridge Regression

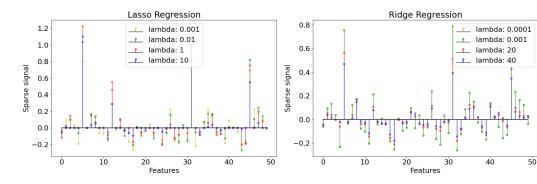


Here the response is a function of only 2 out of 45 predictors.

► Squared bias (black), variance (green), and test MSE (purple) for the lasso.

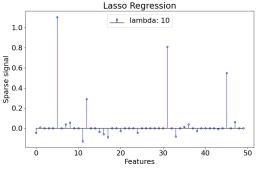
Lasso vs Ridge regression

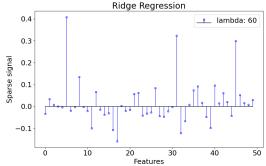
- ▶ $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\epsilon}$, where $\mathbf{X} \in \mathbb{R}^{40 \times 60}$ is random Gaussian and $\boldsymbol{\epsilon}$ is noise.
- ► Model given by $w(k) = \delta(k-5) + 0.5\delta(k-12) + 0.9\delta(k-31) 0.75\delta(k-45)$



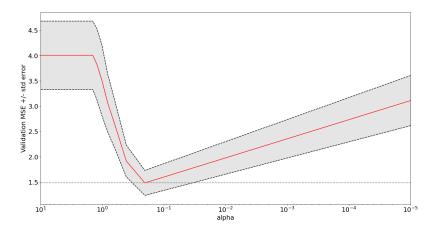
Lasso vs Ridge regression

- **y** = $\mathbf{X}\mathbf{w} + \boldsymbol{\epsilon}$, where $\mathbf{X} \in \mathbb{R}^{40 \times 60}$ is random Gaussian and $\boldsymbol{\epsilon}$ is noise.
- ► Model given by $w(k) = \delta(k-5) + 0.5\delta(k-12) + 0.9\delta(k-31) 0.75\delta(k-45)$





Lasso hyperparameter optimization



Optimization of the alpha parameter through GridSearch with Cross-Validation and Mean Squared Error as the evaluation metric.

Iterative Calculation

- LASSO does not have a close form solution. Solved iteratively.
- ▶ Define $F(\mathbf{w}) = ||\mathbf{y} \mathbf{X}\mathbf{w}||_2^2 + \lambda ||\mathbf{w}||_1$.
- ▶ The solution to the LASSO problem is denoted as \mathbf{w}_S .
- ▶ Define an iterative procedure adding the non-negative term, having zero value at \mathbf{w}_S , $G(\mathbf{w}) = (\mathbf{w} \mathbf{w}_S)^T (\alpha \mathbf{I} \mathbf{X}^T \mathbf{X}) (\mathbf{w} \mathbf{w}_S)$, to the function $F(\mathbf{w})$.

The cost function is:

$$H(\mathbf{w}) = F(\mathbf{w}) + (\mathbf{w} - \mathbf{w}_S)^T (\alpha \mathbf{I} - \mathbf{X}^T \mathbf{X}) (\mathbf{w} - \mathbf{w}_S), \tag{3}$$

where α is such that the added term is always nonnegative. It means $\alpha > \lambda_{max}$, where λ_{max} is the largest eigenvalue of $\mathbf{X}^T\mathbf{X}$.

$$H(\mathbf{w}) = F(\mathbf{w}) + G(\mathbf{w})$$

$$= ||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2 + \lambda ||\mathbf{w}||_1 + (\mathbf{w} - \mathbf{w}_S)^T (\alpha \mathbf{I} - \mathbf{X}^T \mathbf{X}) (\mathbf{w} - \mathbf{w}_S)$$

Since $||\mathbf{w}||_1 = \mathbf{w}^T \operatorname{sign}\{\mathbf{w}\} = ||w_1 sign(w_1), w_2 sign(w_2), \dots, w_N sign(w_N)||_1$

$$\begin{array}{rcl} H(\mathbf{w}) &=& ||\mathbf{y}||_2^2 - \mathbf{w}^T \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} + \lambda \mathbf{w}^T \mathrm{sign} \left\{ \mathbf{w} \right\} \\ &+ (\mathbf{w} - \mathbf{w}_S)^T (\alpha \mathbf{I} - \mathbf{X}^T \mathbf{X}) (\mathbf{w} - \mathbf{w}_S) \end{array}$$

Iterative Calculation

$$\begin{split} H(\mathbf{w}) &= & ||\mathbf{y}||_2^2 - \mathbf{w}^T \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} + \lambda \mathbf{w}^T \mathrm{sign} \left\{ \mathbf{w} \right\} \\ &+ (\mathbf{w} - \mathbf{w}_S)^T (\alpha \mathbf{I} - \mathbf{X}^T \mathbf{X}) (\mathbf{w} - \mathbf{w}_S) \end{split}$$

Equating the gradient of $H(\mathbf{w})$ to zero:

$$\begin{split} \frac{\partial H(\mathbf{w})}{\partial \mathbf{w}^T} &= -2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\mathbf{w} + \lambda \mathrm{sign}\left\{\mathbf{w}\right\} + 2(\alpha\mathbf{I} - \mathbf{X}^T\mathbf{X})(\mathbf{w} - \mathbf{w}_S) \\ 0 &= -\mathbf{X}^T\mathbf{y} + \mathbf{X}^T\mathbf{X}\mathbf{w} + \frac{\lambda}{2}\mathrm{sign}\left\{\mathbf{w}\right\} + \alpha\mathbf{w} - \mathbf{X}^T\mathbf{X}\mathbf{w} - (\alpha\mathbf{I} - \mathbf{X}^T\mathbf{X})\mathbf{w}_S \\ 0 &= -\mathbf{X}^T\mathbf{y} + \frac{\lambda}{2}\mathrm{sign}\left\{\mathbf{w}\right\} + \alpha\mathbf{w} - (\alpha\mathbf{I} - \mathbf{X}^T\mathbf{X})\mathbf{w}_S \end{split}$$

Rearranging the terms,

$$\mathbf{w} + \frac{\lambda}{2\alpha} \operatorname{sign} \{\mathbf{w}\} = \frac{1}{\alpha} \mathbf{X}^T (\mathbf{y} - \mathbf{X} \mathbf{w}_S) + \mathbf{w}_S$$

Iterative Calculation

Corresponding iterative update

$$\mathbf{w}_{s+1} + \frac{\lambda}{2\alpha} \operatorname{sign} \left\{ \mathbf{w}_{s+1} \right\} = \frac{1}{\alpha} \mathbf{X}^{T} (\mathbf{y} - \mathbf{X} \mathbf{w}_{s}) + \mathbf{w}_{s} \tag{4}$$

How to solve it?

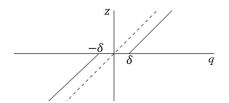
Note

The solution of the scalar equation $z + \delta \text{sign}(z) = q$, is obtained using soft-thresholding rule defined by a function $\text{soft}(q, \delta)$ as:

$$z = \mathsf{soft}(q, \delta) = \left\{ \begin{array}{ll} q + \delta & \mathsf{for} & q < -\delta \\ 0 & \mathsf{for} & |q| \leq \delta \\ q - \delta & \mathsf{for} & q > \delta \end{array} \right.$$

or

$$\mathsf{soft}(q,\delta) = \mathsf{sign}(q) \mathsf{max} \left\{ 0, |q| - \delta \right\}$$



Iterative Calculation

▶ The solution of $z + \delta \operatorname{sign}(z) = q$ is $z = \operatorname{soft}(q, \delta)$

$$\underbrace{\mathbf{w}_{s+1}}_z + \underbrace{\frac{\lambda}{2\alpha}}_{\delta} \operatorname{sign} \left\{ \underbrace{\mathbf{w}_{s+1}}_z \right\} = \underbrace{\frac{1}{\alpha} \mathbf{X}^T (\mathbf{y} - \mathbf{X} \mathbf{w}_s) + \mathbf{w}_s}_q$$

Thus,

$$\mathbf{w}_{s+1} = \operatorname{soft}\left(\frac{1}{\alpha}\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\mathbf{w}_{s}) + \mathbf{w}_{s}, \frac{\lambda}{2\alpha}\right)$$
(5)

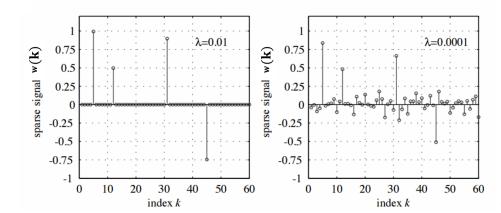
This is the iterative soft-thresholding algorithm (ISTA) for LASSO minimization.

Example

- y = Xw, where
 - **X** is a random Gaussian matrix $\in \mathbb{R}^{40 \times 60}$.
 - Oracle model is:

$$w(k) = \delta(k-5) + 0.5\delta(k-12) + 0.9\delta(k-31) - 0.75\delta(k-45).$$

The results for $\lambda = 0.01$ and $\lambda = 0.0001$ are presented

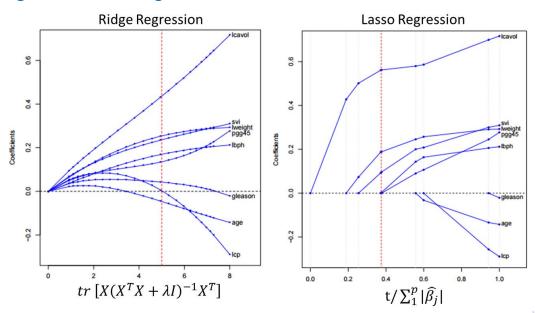


Example: Prostate Cancer

- ► Study by Stamey et al. (1989)
- ► Examines the correlation between the level of prostate-specific antigen and a number of clinical measures in men who were about to receive radical prostatectomy.

Variable	Unit	Code
Cancer volume	log()	Icavol
Prostate weight	log()	lweight
age	-	age
Amount of benign prostatic	log()	lbph
hyperlasia		
Seminal Vesicle Invasion	-	svi
Gleason Score	-	gleason
Percentage of Gleason Score	4 or 5	pgg45

Ridge vs Lasso Regression



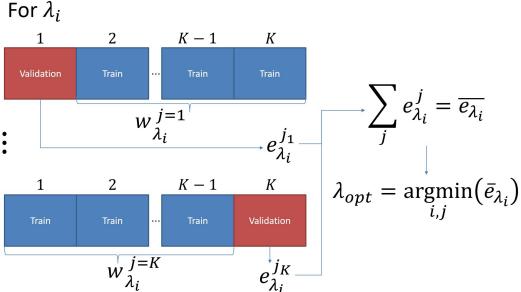
Choosing parameters: cross-validation

- ▶ Ridge and Lasso have regularization parameters.
- ▶ An optimal parameter needs to be chosen in a principled way

K- fold cross-validation: Split data into K equal (or almost equal) parts/folds at random.

- 1: **for** each value λ_i **do**
- 2: **for** $j = 1, \dots, K$ **do**
- 3: Fit model on data with fold j removed
- 4: Test model on remaining fold j^{th} test error
- 5: end for
- 6: Compute average test errors for parameter λ_i
- 7: end for
- 8: Pick parameter with smallest average error

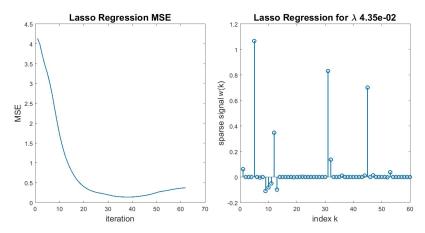
Choosing parameters: cross validation



Cross validation- Example K=5

- ▶ $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\epsilon}$, where $\mathbf{X} \in \mathbb{R}^{40 \times 60}$ is random Gaussian and $\boldsymbol{\epsilon}$ is noise.
- Oracle model is

$$w(k) = \delta(k-5) + 0.5\delta(k-12) + 0.9\delta(k-31) - 0.75\delta(k-45)$$



Model selection vs Model assesment

- ► Model selection: estimate performance of different models in order to choose the "best" one
- ► Model assessment: having a chosen model, estimate its prediction error on new data
- ► When enough data is available, it is better to separate the data into three parts: train/validate, and test
- ► Typically: 50% train, 25 % validate, 25 % test.
- ► Test data is "kept in a vault", i.e. it is not used to fitting or choosing the model