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The [5 Norm and Sparsity

» The [y norm is defined by: ||x||o = #{é: z(i) # 0}
Sparsity of x is measured by its number of non-zero elements

» The [y norm is defined by: ||x||1 = >; |z ()]
[1 norm as two key properties:

» Robust data fitting
» Sparsity inducing norm

» The Iy norm is defined by: ||x||o = (2, |#(i)]?)/?
lo norm is not effective in measuring sparsity of x
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Why [; Norm Promotes Sparsity?

Given two N-dimensional signals:
@ x; = (1,0,...,0) — ”Spike” signal
@ x, = (1/v/N,1/V/N,...,1/+/N) — ”Comb” signal

@ x; and x, have the same ¢, norm:
[x1]]2 = 1 and [|xz[|2 = 1. (

e
\
@ However, ||x;||; = 1 and X
2l = VN
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[1 Norm in Regression
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@ Linear regression is widely used in science and engineering.

Given AE€ER™" and b&R™ m >n

Find x s.t. b =Ax (overdetermined)
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[1 Norm Regression

Two approaches:
@ Minimize the £, norm of the residuals

min|| b — Ax
mip| I

The £, norm penalizes large residuals
@ Minimizes the £; norm of the residuals

min|| b — Ax
minll b - Ax l;

The £; norm puts much more weight on small residuals
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Matlab Code

minxeRn Hb — AXH2

A=randn(500,150);

b=randn(500,1);

x=(A*A)"1x Ax B, Least Squares Solution

minxeRn ||b - AX||1
A=randn(500,150);

b=randn(500,1);
X=medrec(b,A,max(A"*b),0,100,1e-5);
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[1 Norm Regression
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m = 500, n = 150. A = randn(m, n) and b = randn(m, 1)
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[1 Norm Regression

Given AER™" and b&R™ m <n

Find x s.t. b=Ax (underdetermined)
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[1 Norm Regression

Two approaches:
@ Minimize the £, norm of x

min||x
minlxll,

@ Minimize the £; norm of x

min||x
min|lxll;

subject to

subject to

FSAN/ELEG815

Ax=Db

Ax=D
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Matlab Code

[ JETEIJ}?Y}l”x”z subjectto AX = b
A=randn(150,500);
b=randn(150,1);
C=eye(150,500);
d=zeros(150,1);
X=lIsqlin(C,d,[1,[],A,b);

@ Ingeneral:

miner f(x) subjectto Ax=0b

X=fmincon(@(x) f(x),zeros(500,1),[].[1,A,b,[].[],0ptions);
where f(x) is a convex function.
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[1 Norm

Regression
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Least Absolute Shrinkage and Selection Operator (LASSO)

» LASSO combines shrinking of Ridge regression with
variable selection. Tibshirani 1996.

» Difference between LASSO and Ridge regression is the
penalty used

[ N d d
arg min Z(?Jz — Z xijwj)z + A Z w?
weR? |19 §=0 j=1

[N d d
W30 — arg min |3 (g — 3 @) P NS !ij]
=1 =0 =1

weRd
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Least Absolute Shrinkage and Selection Operator (LASSO)

» LASSO coefficients are the solutions to the /1 optimization problem
defined as

. |lasso .
w = arg mv&n

Z zijw;)? 4 A Z |w]|]

Mz I\Mz

= argmin
gW

_X w) +)\Z’w3|]

Li=1 7=0
= argmvgnk )T(y—Xw)HHle}-

» LASSO also shrinks the coefficients.
» (1 norm forces coefficients to zero when )\ is large: variable selection.
» Lasso yields sparse models, keeping subset of variables.

» Unlike ridge regression, wlasso has no closed form.
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Lasso Regression Example Credit Data set
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» Lasso performs better when a small number of predictors have strong
coefficients, and the remaining predictors are small.

» Ridge regression performs better when the response is a function of many
predictors.
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The Variable Selection Property of the Lasso

One can show that the Ridge and Lasso regression coefficient estimates solve
the following problems

N

. d
w988 — argmin{ > (yi — O wijwj)?) (1)
i=1 =0

subject to fo:o wjz <t

N d
w!asso _ argm“iln{Z(yi — > wiw;)?} (2)
i=1 =0

subject to Z?:o lwj| <t
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» RSS has elliptical contours, centered at the LS estimate.
» Constraint regions, w? +w3 <t, and |wy |+ |ws| < t.
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Comparing the Lasso and Ridge Regression
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Simulated data set containing d = 45 predictors and n = 50 observations.
Predictors related to the response.

» Plots of squared bias (black), variance (green), and test MSE (purple) for
the lasso.
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Comparing the Lasso and Ridge Regression

Mean Squared Error
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Here the response is a function of only 2 out of 45 predictors.
» Squared bias (black), variance (green), and test MSE (purple) for the
lasso.
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Lasso vs Ridge regression

> y=Xw+e, where X € R40%60 js random Gaussian and € is noise.

» Model given by
w(k) =0(k—5)4+0.56(k—12) 4+ 0.96(k — 31) — 0.755 (k — 45)
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Lasso vs Ridge regression

> y=Xw+e, where X € R40%60 js random Gaussian and € is noise.

» Model given by
w(k) =0(k—5)4+0.56(k—12) 4+ 0.96(k — 31) — 0.755 (k — 45)
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Lasso hyperparameter optimization
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Optimization of the alpha parameter through GridSearch with

Cross-Validation and Mean Squared Error as the evaluation metric.



Lasso Regression ARE FSAN/ELEGS815

lterative Calculation

» LASSO does not have a close form solution. Solved iteratively.
> Define F'(w) = ||y — Xw]|[3 +\||w]]1.
» The solution to the LASSO problem is denoted as wg.

» Define an iterative procedure adding the non-negative term, having zero
value at wg, G(w) = (w—wg)” (ol — XTX)(w —wyg), to the function
F(w).
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The cost function is:
H(w) = F(w) + (w—wg)T (ad = XTX)(w —wg), (3)

where « is such that the added term is always nonnegative. It means
a > Apaz, Where A\pq. is the largest eigenvalue of XX,

H(w) = F(w)+G(w)
= [y — Xw|[3+ Al [w]|1 + (w—wg)" (ol = X" X)(w —ws)

Since ||w||1 = wTsign{w} = || wisign(wy),wesign(ws),. .., wysign(wy)||1

Hw) = |lyl|3—w!XTy —y"Xw +w X" Xw + Awsign {w}
+(w—wg)T (ad = XTX)(w —wg)
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lterative Calculation

Hw) = [ly|l3—w"X"y—y"Xw+w"X"Xw + Aw” sign {w}
+(w—wg) T (al = XTX)(w—wg)

Equating the gradient of H(w) to zero:

H
88\157‘6’) = —2XTy 4+ 2XTXw + Asign {w} 4 2(al — XTX)(w — wg)
A
0 = —XT'y+XTXw+ Ssign{w}+aw— XTXw — (al = XTX)wg
A
0 = —Xly+ §sign {w}+aw— (ol —XTX)wg

Rearranging the terms,

A 1
w+ %sign {w} = aXT(y —Xwg) +wg
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lterative Calculation

Corresponding iterative update

A 1
W] +%S|gn {Wsi1} = aXT(y—st) +wy (4)

How to solve it?
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Note

The solution of the scalar equation z + dsign(z) = ¢, is obtained using
soft-thresholding rule defined by a function soft(q,d) as:

qg+0 for g<—o
z =soft(q,0) =14 0 for |q| <9¢
qg—0 for q>9

or
soft(q,d) = sign(q¢)max{0,|¢| —d}

zZ

.
6 |-
p
.
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lterative Calculation

» The solution of z + dsign(z) = ¢ is z = soft(q,d)

A 1
> Wei+ —SignqWsy1 o = *XT(y - st) + Wy

z

z

5 q
Thus,

1 A
W1 = soft (aXT(y — XWS) +wg, 204) (5)

This is the iterative soft-thresholding algorithm (ISTA) for LASSO
minimization.
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Example

y:

Xw, where

FSAN/ELEG815

» X is a random Gaussian matrix € R40%60,

>

>

Oracle model is:

w(k) =06(k—5)4+0.56(k—12)4+0.96(k — 31) — 0.755(k — 45).
The results for A =0.01 and A =0.0001 are presented
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Example: Prostate Cancer

» Study by Stamey et al. (1989)

» Examines the correlation between the level of prostate-specific antigen
and a number of clinical measures in men who were about to receive
radical prostatectomy.

] Variable H Unit H Code
Cancer volume log() Icavol
Prostate weight log() lweight
age - age
Amount of benign prostatic || log() Ibph
hyperlasia
Seminal Vesicle Invasion - svi
Gleason Score - gleason
Percentage of Gleason Score || 4 or 5 pgg4b
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Ridge vs Lasso Regression

Ridge Regression

Coefficients

Icavol

2 4 6 8
tr [X(XTX + AD1XT]

Coefficients
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Lasso Regression
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Choosing parameters: cross-validation

» Ridge and Lasso have regularization parameters.
» An optimal parameter needs to be chosen in a principled way

K- fold cross-validation: Split data into K equal (or almost equal)
parts/folds at random.
1. for each value \; do

2. forj=1,---,K do

3: Fit model on data with fold j removed

4 Test model on remaining fold j" test error
5. end for

6: Compute average test errors for parameter \;
7. end for

8

. Pick parameter with smallest average error
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Choosing parameters: cross validation




Example

Cross validation- Example K=5

> y = Xw+e¢, where X € R40%60 is random Gaussian and € is noise.
» Oracle model is
w(k) = 8(k—5) +0.55(k — 12) + 0.96(k — 31) — 0.755(k — 45)
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Lasso Regression for A\ 4.35e-02
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Model selection vs Model assesment

v

Model selection: estimate performance of different models in order to
choose the “best" one

Model assessment: having a chosen model, estimate its prediction error
on new data

When enough data is available, it is better to separate the data into three
parts: train/validate, and test

Typically: 50% train, 25 % validate, 25 % test.

Test data is “kept in a vault", i.e. it is not used to fitting or choosing the
model



	Norms
	Lasso Regression
	Example

