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The l2 Norm and Sparsity

▶ The l0 norm is defined by: ∥x∥0 = ♯{i : x(i) ̸= 0}
Sparsity of x is measured by its number of non-zero elements

▶ The l1 norm is defined by: ∥x∥1 =∑
i |x(i)|

l1 norm as two key properties:
▶ Robust data fitting
▶ Sparsity inducing norm

▶ The l2 norm is defined by: ∥x∥2 = (∑i |x(i)|2)1/2

l2 norm is not effective in measuring sparsity of x
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Why l1 Norm Promotes Sparsity?
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l1 Norm in Regression
ℓ1 Norm in Regression

Linear regression is widely used in science and engineering.

A ∈Rm×nGiven and b ∈Rm; m > n

Find x s.t. b = Ax (overdetermined)



4/33

Norms FSAN/ELEG815

l1 Norm Regression
ℓ1 Norm Regression

Two approaches:

Minimize the ℓ2 norm of the residuals

min
𝒙∈𝑅𝑛

𝒃 − 𝑨𝒙 2

The ℓ2 norm penalizes large residuals
Minimizes the ℓ1 norm of the residuals

The ℓ1 norm puts much more weight on small residuals

min
𝒙∈𝑅𝑛

𝒃 − 𝑨𝒙 1
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Matlab Code

minx∈Rn ∥b−Ax∥2
A=randn(500,150);
b=randn(500,1);
x=(A*A)−1 ∗A∗B; Least Squares Solution

minx∈Rn ∥b−Ax∥1
A=randn(500,150);
b=randn(500,1);
X=medrec(b,A,max(A’*b),0,100,1e-5);
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l1 Norm Regression
ℓ1 Norm Regression

m = 500, n = 150. A = randn(m,n) and b = randn(m,1)
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l1 Norm Regression
ℓ1 Norm in Regression

Given A ∈Rm×n and b ∈Rm; m < n

Find x s.t. b = Ax (underdetermined)
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l1 Norm Regression
ℓ1 Norm Regression

Two approaches:

Minimize the ℓ2 norm of x

subject to Ax = b

Minimize the ℓ1 norm of x

subject to Ax = b

min
𝒙∈𝑅𝑛

𝒙 2

min
𝒙∈𝑅𝑛

𝒙 1
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Matlab CodeMatlab Code

subject to

A=randn(150,500);

b=randn(150,1); 

C=eye(150,500);

d=zeros(150,1);

Ax = b

X=lsqlin(C,d,[],[],A,b);

In general:

minx∈Rn f (x) subject to Ax = b

X= fmincon(@(x) f(x),zeros(500,1),[],[],A,b,[],[],options); 

where f (x) is a convex function.

min
𝒙∈𝑅𝑛

𝒙 2
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l1 Norm Regression
ℓ1 Norm Regression
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Least Absolute Shrinkage and Selection Operator (LASSO)

▶ LASSO combines shrinking of Ridge regression with
variable selection. Tibshirani 1996.

▶ Difference between LASSO and Ridge regression is the
penalty used

ŵridge = arg min
w∈Rd

 N∑
i=1

(yi −
d∑

j=0
xijwj)2 +λ

d∑
j=1

w2
j


ŵlasso = arg min

w∈Rd

 N∑
i=1

(yi −
d∑

j=0
xijwj)2 +λ

d∑
j=1

|wj|

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Least Absolute Shrinkage and Selection Operator (LASSO)
▶ LASSO coefficients are the solutions to the ℓ1 optimization problem

defined as

ŵlasso = argminw

 N∑
i=1

(yi −
d∑

j=1
xijwj)2 +λ

d∑
j=0

|wj|


= argminw

 N∑
i=1

(yi −xT
i w)2 +λ

d∑
j=0

|wj|


= argminw

[
(y −Xw)T (y −Xw)+λ||w||1

]
.

▶ LASSO also shrinks the coefficients.
▶ ℓ1 norm forces coefficients to zero when λ is large: variable selection.
▶ Lasso yields sparse models, keeping subset of variables.
▶ Unlike ridge regression, ŵlasso

λ has no closed form.
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Lasso Regression Example Credit Data set

▶ Lasso performs better when a small number of predictors have strong
coefficients, and the remaining predictors are small.

▶ Ridge regression performs better when the response is a function of many
predictors.
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The Variable Selection Property of the Lasso

One can show that the Ridge and Lasso regression coefficient estimates solve
the following problems

ŵridge = argminw {
N∑

i=1
(yi −

d∑
j=0

xijwj)2} (1)

subject to ∑d
j=0 w2

j ≤ t

ŵlasso = argminw {
N∑

i=1
(yi −

d∑
j=0

xijwj)2} (2)

subject to ∑d
j=0 |wj| ≤ t
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The Variable Selection Property of the Lasso

▶ RSS has elliptical contours, centered at the LS estimate.
▶ Constraint regions, w2

1 +w2
2 ≤ t, and |w1|+ |w2| ≤ t.
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Comparing the Lasso and Ridge Regression

Simulated data set containing d = 45 predictors and n = 50 observations.
Predictors related to the response.
▶ Plots of squared bias (black), variance (green), and test MSE (purple) for

the lasso.
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Comparing the Lasso and Ridge Regression

Here the response is a function of only 2 out of 45 predictors.
▶ Squared bias (black), variance (green), and test MSE (purple) for the

lasso.
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Lasso vs Ridge regression

▶ y = Xw+ ϵϵϵ, where X ∈ R40×60 is random Gaussian and ϵϵϵ is noise.
▶ Model given by

w(k) = δ(k −5)+0.5δ(k −12)+0.9δ(k −31)−0.75δ(k −45)
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Lasso vs Ridge regression

▶ y = Xw+ ϵϵϵ, where X ∈ R40×60 is random Gaussian and ϵϵϵ is noise.
▶ Model given by

w(k) = δ(k −5)+0.5δ(k −12)+0.9δ(k −31)−0.75δ(k −45)
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Lasso hyperparameter optimization

Optimization of the alpha parameter through GridSearch with
Cross-Validation and Mean Squared Error as the evaluation metric.
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Iterative Calculation

▶ LASSO does not have a close form solution. Solved iteratively.
▶ Define F (w) = ||y−Xw||22 +λ||w||1.
▶ The solution to the LASSO problem is denoted as wS .
▶ Define an iterative procedure adding the non-negative term, having zero

value at wS , G(w) = (w−wS)T (αI−XT X)(w−wS), to the function
F (w).
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The cost function is:

H(w) = F (w)+(w−wS)T (αI−XT X)(w−wS), (3)

where α is such that the added term is always nonnegative. It means
α > λmax, where λmax is the largest eigenvalue of XT X.

H(w) = F (w)+G(w)
= ||y−Xw||22 +λ||w||1 +(w−wS)T (αI−XT X)(w−wS)

Since ||w||1 = wT sign{w} = || w1sign(w1),w2sign(w2), . . . ,wNsign(wN ) ||1

H(w) = ||y||22 −wT XT y−yT Xw+wT XT Xw+λwT sign{w}
+(w−wS)T (αI−XT X)(w−wS)
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Iterative Calculation

H(w) = ||y||22 −wT XT y−yT Xw+wT XT Xw+λwT sign{w}
+(w−wS)T (αI−XT X)(w−wS)

Equating the gradient of H(w) to zero:

∂H(w)
∂wT

= −2XT y+2XT Xw+λsign{w}+2(αI−XT X)(w−wS)

0 = −XT y+XT Xw+ λ

2 sign{w}+αw−XT Xw− (αI−XT X)wS

0 = −XT y+ λ

2 sign{w}+αw− (αI−XT X)wS

Rearranging the terms,

w+ λ

2α
sign{w} = 1

α
XT (y−XwS)+wS
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Iterative Calculation

Corresponding iterative update

ws+1 + λ

2α
sign{ws+1} = 1

α
XT (y−Xws)+ws (4)

How to solve it?
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Note
The solution of the scalar equation z + δsign(z) = q, is obtained using
soft-thresholding rule defined by a function soft(q,δ) as:

z = soft(q,δ) =


q + δ for q < −δ
0 for |q| ≤ δ
q − δ for q > δ

or
soft(q,δ) = sign(q)max{0, |q|− δ}
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Iterative Calculation

▶ The solution of z + δsign(z) = q is z = soft(q,δ)

▶ ws+1︸ ︷︷ ︸
z

+ λ

2α︸︷︷︸
δ

sign

ws+1︸ ︷︷ ︸
z

= 1
α

XT (y−Xws)+ws︸ ︷︷ ︸
q

Thus,
ws+1 = soft

(
1
α

XT (y−Xws)+ws,
λ

2α

)
(5)

This is the iterative soft-thresholding algorithm (ISTA) for LASSO
minimization.
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Example
y = Xw, where
▶ X is a random Gaussian matrix ∈ R40×60.
▶ Oracle model is:

w(k) = δ(k −5)+0.5δ(k −12)+0.9δ(k −31)−0.75δ(k −45).
▶ The results for λ = 0.01 and λ = 0.0001 are presented
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Example: Prostate Cancer
▶ Study by Stamey et al. (1989)
▶ Examines the correlation between the level of prostate-specific antigen

and a number of clinical measures in men who were about to receive
radical prostatectomy.

Variable Unit Code
Cancer volume log() lcavol
Prostate weight log() lweight
age - age
Amount of benign prostatic
hyperlasia

log() lbph

Seminal Vesicle Invasion - svi
Gleason Score - gleason
Percentage of Gleason Score 4 or 5 pgg45
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Ridge vs Lasso Regression
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Choosing parameters: cross-validation

▶ Ridge and Lasso have regularization parameters.
▶ An optimal parameter needs to be chosen in a principled way

K- fold cross-validation: Split data into K equal (or almost equal)
parts/folds at random.

1: for each value λi do
2: for j = 1, · · · ,K do
3: Fit model on data with fold j removed
4: Test model on remaining fold jth test error
5: end for
6: Compute average test errors for parameter λi

7: end for
8: Pick parameter with smallest average error
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Choosing parameters: cross validation
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Cross validation- Example K=5
▶ y = Xw+ ϵϵϵ, where X ∈ R40×60 is random Gaussian and ϵϵϵ is noise.
▶ Oracle model is

w(k) = δ(k −5)+0.5δ(k −12)+0.9δ(k −31)−0.75δ(k −45)
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Model selection vs Model assesment

▶ Model selection: estimate performance of different models in order to
choose the “best" one

▶ Model assessment: having a chosen model, estimate its prediction error
on new data

▶ When enough data is available, it is better to separate the data into three
parts: train/validate, and test

▶ Typically: 50% train, 25 % validate, 25 % test.
▶ Test data is “kept in a vault", i.e. it is not used to fitting or choosing the

model
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