

Transformers - Revolutionary Architecture

- ► ChatGPT is based on the GPT (Generative Pretrained Transformer) architecture.
- ▶ Introduced in the paper "Attention is All You Need" by Vaswani et al. in 2017.

- ► Excel in NLP and Imaging tasks thanks to their capacity to incorporate extensive context. Outperforms in image classification, segmentation, and machine translation.
- ➤ The name "transformer" reflects the ability to seamlessly transform one sequence of data into another, thanks to its sophisticated self-attention mechanisms.

Transformers - Image Generation



Tokens and Input Tokenizing

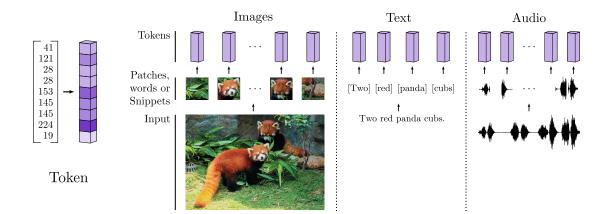
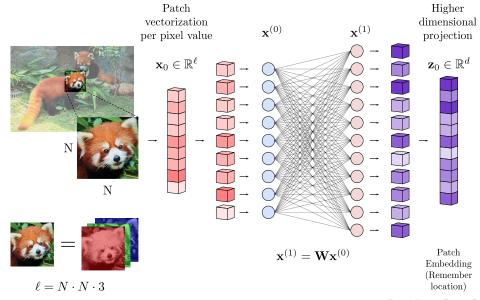
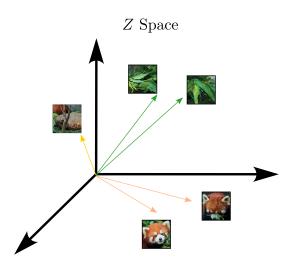


Image Tokenization and Linear Transformation

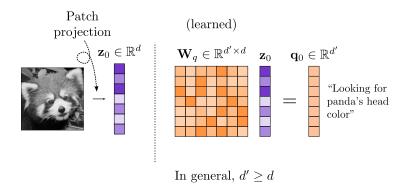


Patch Embedding Has Meaning

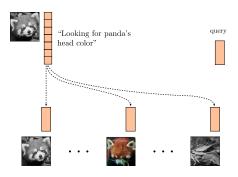


Coloring Problem

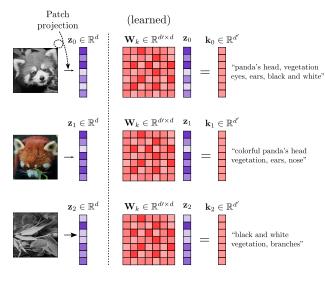
Coloring Problem - Query Vector

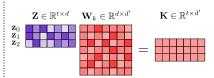


Coloring Problem



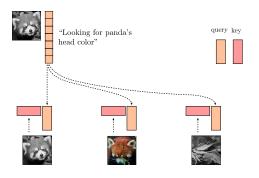
Coloring Problem - Key Matrix



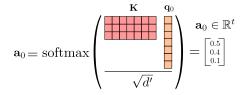


$$\mathbf{k}_i = \mathbf{W}_k \mathbf{z}_i$$

Coloring Problem



Coloring Problem - Self-Attention

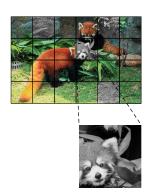


$$\mathbf{a}_0 = \operatorname{softmax}\left(\frac{\mathbf{K}^T \mathbf{q}_0}{\sqrt{d'}}\right)$$

 $\sqrt{d'}$ Scales the dot product for numerical stability on the softmax function and balancing signal magnitudes with respect to the dimensionality

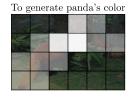
$$softmax(x_i) = \frac{e^{x_i}}{\sum_{j=0}^t e^{x_j}}$$

Coloring Problem - Self-Attention Heat Map

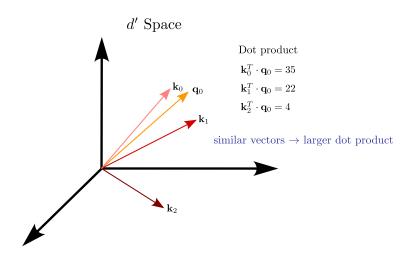


Attention to each patch

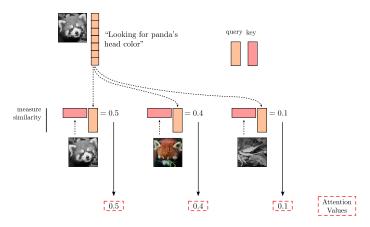
To generate vegetation's color



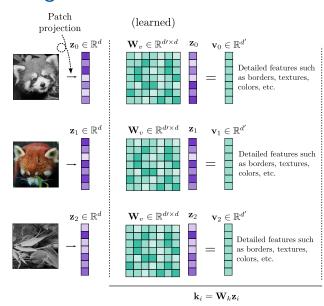
Why Dot Product for Similarity?

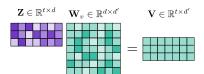


Coloring Problem

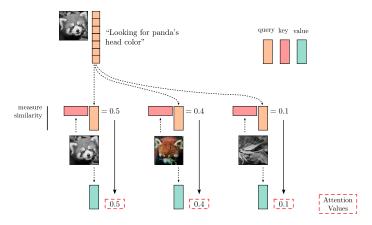


Coloring Problem - Value Matrix

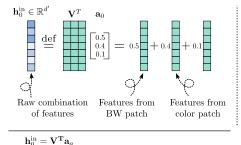


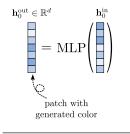


Coloring Problem



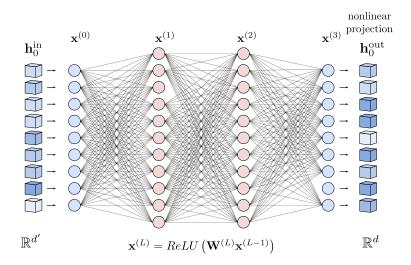
Coloring Problem - Hidden Representation



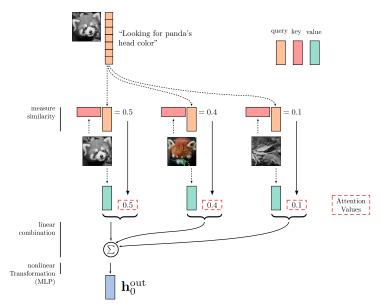


$$\mathbf{h}_0^{\mathrm{out}} = \mathrm{MLP}(\mathbf{h}_0^{\mathrm{in}})$$

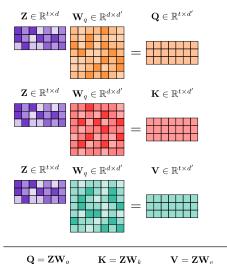
Nonlinear Transformation of Tokens - MLP



Coloring Problem



Coloring Problem - \mathbf{Q}, \mathbf{K} and \mathbf{V} Matrices

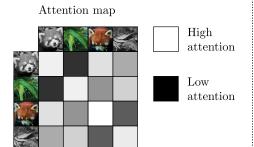


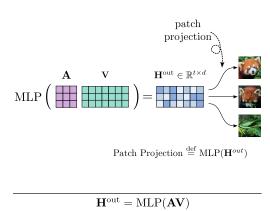
$$\mathbf{A} = \operatorname{softmax} \left(\frac{\mathbf{Q} \quad \mathbf{K}^t}{\sqrt{d'}} \right) = \mathbf{A} \in \mathbb{R}^{t \times t}$$

t = # of patches

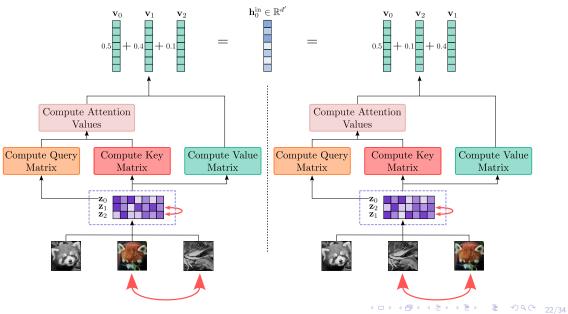
$$\mathbf{A} = \operatorname{softmax}\left(\frac{\mathbf{Q}^T \mathbf{K}}{\sqrt{d'}}\right)$$

Coloring Problem - Attention Map



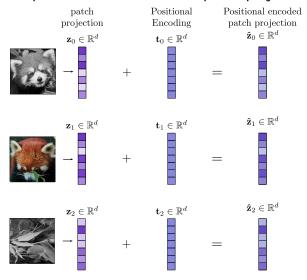


Position in the Matrix Has no Influence



Positional Embedding - Encode Position

► Solution: Add a positional vector to each patch projection.



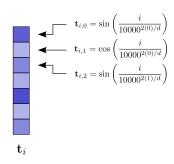
Positional embedding - Sinusoidal Waves

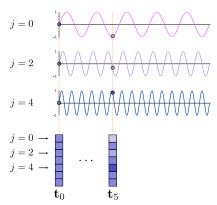
$$PE(i, 2j) = \sin\left(\frac{i}{10000^{2j/d}}\right)$$

$$PE(i, 2j + 1) = \cos\left(\frac{i}{10000^{2j/d}}\right)$$

where i is the position of the patch in the sequence, j for $j = 0, \ldots, d$ is the dimension within the positional vector and d is the size of the positional vector.

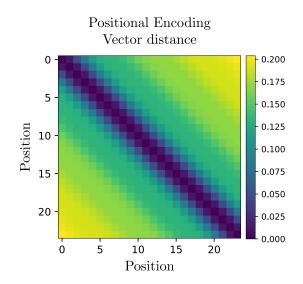
For each dimension of \mathbf{t}_i , there is a sinusoidal wave with different frequency



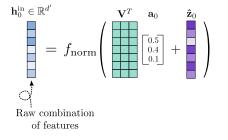


Positional embedding - Sinusoidal Waves

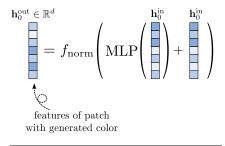
This function provides a large number of vectors with a constant distance between them, i.e. ||t_i − t_{i+1}||₂ is constant for all i.



Attention Layer - Normalization

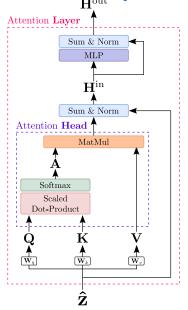


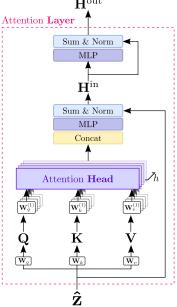
$$\mathbf{h}_0^{\mathrm{in}} = f_{\mathrm{norm}}(\mathbf{V}^T \mathbf{a}_0 + \mathbf{\hat{z}}_0)$$



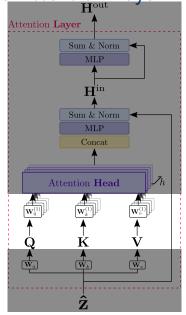
$$\mathbf{h}_0^{\mathrm{out}} = f_{\mathrm{norm}}(\mathrm{MLP}(\mathbf{h}_0^{\mathrm{in}}) + \mathbf{h}_0^{\mathrm{in}})$$

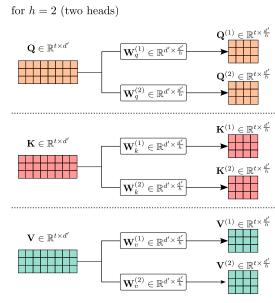
Single Attention Layer - Single-Head and Multi-Head



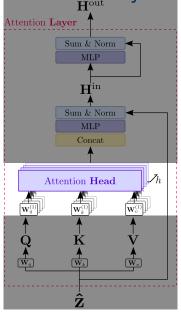


Single Attention Layer - \mathbf{Q}, \mathbf{K} and \mathbf{V} split

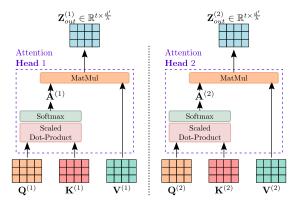




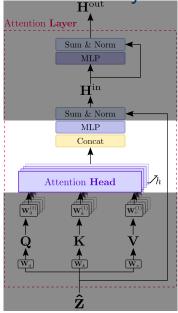
Single Attention Layer - Multi-Head Attention

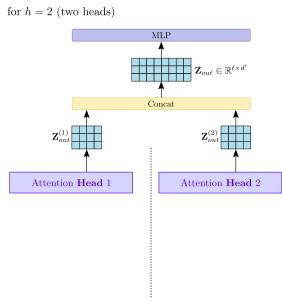


for h = 2 (two heads)

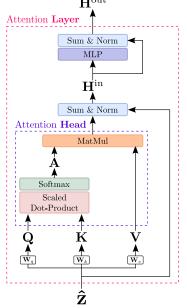


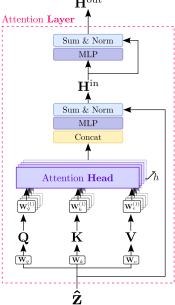
Single Attention Layer - Multi-Head Concat



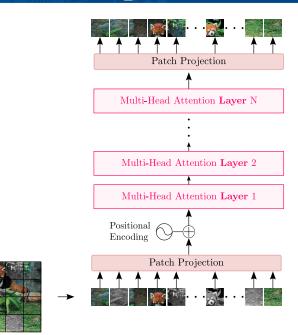


Single Attention Layer - Single Head and Multi Head



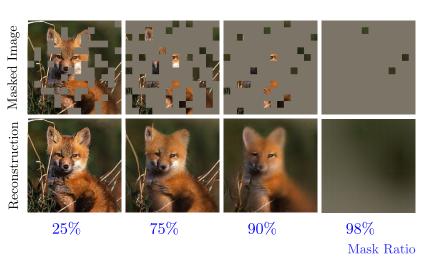


Transformer



Vision Transformer - Reconstructing Masked Image

Ground Truth



Vision Transformer - Reconstructing Masked Image

