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Support Vector Machines - Better linear separation

Linearly separable
data.

Different
separating lines w.

Which one is
the best?

Intuitively, bigger
margin is better.

Two questions:
1. Why is bigger margin better?
2. Which w maximizes the margin?
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Support Vector Machines - Growth Function
All Possible Dichotomies with a line.

Bad news!
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Support Vector Machines - Growth Function

Let’s consider a classifier that requires a minimum margin.

Fat margins imply fewer dichotomies =⇒ smaller growth function
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Support Vector Machines - Finding w with large margin
Let xn be the nearest data point to the line/plane (given by w>x = 0)

How far is it?

Two preliminary techniques:
1. Normalize w: For any point:

|w>xn|> 0.

Does scalar multiplication change the plane? NO! Pick one:

|w>xn|= 1.

2. Pull out w0:
w = (w1, ...wd) apart from w0 = b.
The plane is now wx + b= 0 (no x0).
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Support Vector Machines - Computing the distance

The distance between xn and the plane w>x+b= 0, where |w>xn+b|= 1.

The vector w is ⊥ to the plane in the X
space:

Take x′ and x′′ on the plane.
w>x′+b= 0 and w>x′′+b= 0,

=⇒w>(x′−x′′) = 0.
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... and the distance is...

Distance between xn and the plane:
Take any point x on the plane.

Projection of xn−x on w.

ŵ = w
‖w‖ ⇒ distance = |ŵ>(xn−x)|.

distance = 1
‖w‖ |w

>xn−w>x|=⇒ 1
‖w‖ |w

>xn+ b︸ ︷︷ ︸
=1.

− w>x− b︸ ︷︷ ︸
=0.

Point on the plain

|= 1
‖w‖ .
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Support Vector Machines - The optimization problem
Maximize the margin:

maximizew,b
1
‖w‖

subject to minn=1,2,...,N |w>xn+ b| = 1.

=⇒ Hard to solve

We need to get rid of the min.

Notice: |w>xn+ b|= yn(w>xn+ b).
xn is classified correctly.

minimizew,b
1
2w>w

subject to yn(w>xn+ b)≥ 1 for n= 1,2, ...,N ;.
=⇒ Equivalent problem
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Support Vector Machines - Constrained optimization

minimizew,b
1
2w>w

subject to yn(w>xn+ b)≥ 1 for n= 1,2, ...,N ,

w ∈ Rd, b ∈ R.

Lagrange? inequality instead of equality constraints
=⇒ Karush-Kuhn-Tucker (KKT): Lagrange under inequality constraints
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Support Vector Machines - We saw this before
Remember regularization?

minimize Ein(w) = 1
N (Zw−y)>(Zw−y)

subject to w>w≤ C.

Condition for the solution:

∇Ein relates to constraint.
∇Ein parallel to wreg but in the opposite direc-
tion.

Optimize Constrain
Regularization Ein w>w

SVM w>w Ein
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Support Vector Machines - Lagrange formulation

minimize L(w, b,α) = 1
2w>w−∑N

n=1αn (yn(w>xn+ b)−1)︸ ︷︷ ︸
constrain

yn(w>xn+b)−1≥0

Why is it negative?
Constraint is greater than or equal than zero.

w.r.t to w and b and maximize w.r.t each
αn ≥ 0.

∇wL= w−∑N
n=1αnynxn = 0

∂L
∂b =−∑N

n=1αnyn = 0

Note:

Minimum of f(αn) with
αn ≥ 0

Not in ∂f(αn)
∂αn

but when
αn = 0
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Support Vector Machines - Lagrange formulation
Substituting

w = ∑N
n=1αnynxn and ∑N

n=1αnyn = 0

In the Lagrangian:
L(w, b,α) = 1

2w>w−∑N
n=1αn(yn(w>xn+ b︸︷︷︸∑N

n=1αn(yn)b=0

)−1),

we get:

L(w, b,α) = 1
2w>w−

N∑
n=1

αn(ynw>xn−1)

= 1
2w>w−

N∑
n=1

αnynw>xn+
N∑
n=1

αn



11/20

FSAN/ELEG815

Support Vector Machines - Lagrange formulation
Substituting

w = ∑N
n=1αnynxn and ∑N

n=1αnyn = 0

In the Lagrangian:
L(w, b,α) = 1

2w>w−∑N
n=1αn(yn(w>xn+ b︸︷︷︸∑N

n=1αn(yn)b=0

)−1),

we get:

L(w, b,α) = 1
2w>w−

N∑
n=1

αn(ynw>xn−1)

= 1
2w>w−

N∑
n=1

αnynw>xn+
N∑
n=1

αn



12/20

FSAN/ELEG815

Support Vector Machines - Lagrange formulation
Substituting

w = ∑N
n=1αnynxn

In: L(w, b,α) = 1
2w>w−∑N

n=1αnynw>xn+ ∑N
n=1αn,

we get:

L(α) =
N∑
n=1

αn−
1
2

N∑
n=1

N∑
m=1

ynymαnαmx>n xm.

Now maximize w.r.t α subject to αn ≥ 0 for n= 1, ...,N and ∑N
n=1αnyn = 0.



12/20

FSAN/ELEG815

Support Vector Machines - Lagrange formulation
Substituting

w = ∑N
n=1αnynxn

In: L(w, b,α) = 1
2w>w−∑N

n=1αnynw>xn+ ∑N
n=1αn,

we get:

L(α) =
N∑
n=1

αn−
1
2

N∑
n=1

N∑
m=1

ynymαnαmx>n xm.

Now maximize w.r.t α subject to αn ≥ 0 for n= 1, ...,N and ∑N
n=1αnyn = 0.



13/20

FSAN/ELEG815

Support Vector Machines - The solution

Notice: max L = min −L.
Quadratic programming:

min
α

1
2α
>

 y1y1x>1 x1 y1y2x>1 x2 ... y1yNx>1 xN
y2y1x>2 x1 y2y2x>2 x2 ... y2yNx>2 xN
yNy1x>Nx1 yNy2x>Nx2 ... yNyNx>NxN


︸ ︷︷ ︸

quadratic coefficients

α+(−1>)︸ ︷︷ ︸
linear

α

subject to y>α = 0︸ ︷︷ ︸
linear constraint

,

0︸︷︷︸
lower bounds

≤ α≤ ∞︸︷︷︸
upper bounds

.
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Support Vector Machines - QP hands us α
Solution: α = α1,α2, ...,αN
=⇒w = ∑N

n=1αnynxn.
Many αn equal to zero.
KKT condition: For n= 1, ...,N

αn(yn(w>xn+ b)−1) = 0.

I αn = 0 (interior points, no need for
regularization)

I (yn(w>xn+ b)−1) = 0 (boundary points
that support the plane)

αn > 0 =⇒ xn is a support vector.

We saw this before!
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Support Vector Machines - Support vectors

Closest xn’s to the plane.
Support vectors =⇒ achieve the margin.

=⇒ yn(w>xn+ b)) = 1.

w = ∑
xn is SVαnynxn.

Solve b using any support vector:

yn(w>xn+ b)) = 1.
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Support Vector Machines - Nonlinear transformation

z instead of x

L(α) = ∑N
n=1αn− 1

2
∑N
n=1

∑N
m=1 ynymαnαmx>n xm.

X −→Z
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Support Vector Machines - "Support vectors" in X space

Support vectors live in the Z space. In the X

space, "pre-images" of support vectors.

The margin is maintened in the Z space.

Generalization result

E [Eout]≤ E[# of SV’s]
N−1
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Example: Scikit-Learn on Synthetic Datasets
In high-dimensional spaces, data can more easily be separated linearly and the
simplicity of classifiers such as linear SVM and SVM with a Radial Basis
Function (RBF) kernel might lead to better generalization compared to other
classifiers.

Input Data Nearest Neighbors Linear SVM RBF SVM Neural Net

I Training points in solid colors.
I Testing points semi-transparent.
I Classification accuracy on the test set (lower right)
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Example: Scikit-Learn on Synthetic Datasets
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