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Outline of the Course
1. Review of Probability
2. Stationary processes
3. Eigen Analysis, Singular Value Decomposition (SVD) and Principal

Component Analysis (PCA)
4. The Learning Problem
5. Training vs Testing
6. Estimation theory: Maximum likelihood and Bayes estimation
7. The Wiener Filter
8. Adaptive Optimization: Steepest descent and the LMS algorithm
9. Least Squares (LS) and Recursive Least Squares (RLS) algorithm

10. Overfitting
11. Regularization: Ridge and Lasso regression models.
12. Neural Networks
13. Matrix Completion
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Outline

Matrix Completion

Introduction
Problem Formulation

Optimization Problem

Algorithms
Image Inpainting

Additive Matrix Decomposition
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Matrix Decompositions, Approximations, and Completion

Given an m×n matrix Z = {zij}, find a matrix Ẑ that approximates Z.
I Ẑ may have simpler structure.
I Missing entries in Z, a problem known as matrix completion.

Approach based on optimization:

Ẑ = arg min
M∈Rm×n

||Z−M||2F subject to Φ(M)≤ c (1)

where ||A||2F =∑∑
i,j |aij|2 is the Frobenius Norm, and Φ(·) is a constraint

function that encourages Ẑ to be sparse in some sense.
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Constraint Φ(Z) Resulting method
(a) ||Ẑ||`1 ≤ c Sparse matrix approximation
(b) rank(Ẑ)≤ k Singular value decomposition
(c) ||Ẑ||∗ ≤ c Convex matrix approximation

I (a) `1-norm of all entries of Ẑ. Leads to a soft-thresholding ẑij = sign(zij)(|zij |−γ)+,
where γ > 0 is such that

∑m
i=1
∑n
j=1 |ẑij |= c.

I (b) Bounds the rank of Ẑ, or the number of nonzero singular values in Ẑ.
Approximation is non-convex, but solution found by computing the SVD and
truncating it to its top k components.

I (c) Relaxes the rank constraint to a nuclear norm (||A||∗ =
∑min{m,n}
i=1 σi). Solved by

computing the SVD and soft-thresholding its singular values.
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Motivation: Image Reconstruction from Incomplete Data

Matrices with missing elements can be solved exactly using method (c),
whereas methods based on (b) are more difficult to solve in general.
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Constraint Resulting method
(d) Ẑ = UDVT , Φ1(uj)≤ c1,
Φ2(vk)≤ c2

Penalized SVD

(e) Ẑ = L + S, Φ1(L)≤ c1, Φ2(S)≤ c2 Additive matrix decomposition

I (d) Imposes penalties on the left and right singular vectors of Ẑ. Examples
of penalty functions Φ1 and Φ2 include the usual `2 or `1 norms.

I (e) Seeks an additive decomposition of the matrix, imposing penalties on
both components in the sum.
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The Singular Value Decomposition

Given an m×n matrix Z with m≥ n, its singular value decomposition takes
the form

Z = UDVT (2)

I U is an m×n orthogonal matrix (UTU = In) whose columns uj ∈Rm are
the left singular vectors.

I V is an n×n orthogonal matrix (VTV = In) whose columns vj ∈ Rn are
the right singular vectors.

I The n×n matrix D is diagonal, with d1 ≥ d2 ≥ ·· · ≥ dn ≥ 0 known as
the singular values.
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The Singular Value Decomposition

I If columns of Z are centered (zero mean), then the right singular vectors
{vj}nj=1 define the principal components of Z.

I The unit vector v1 yields the linear combination s1 = Zv1 with highest
sample variance among all possible choices of unit vectors.

I s1 is the first principal component of Z, and v1 is the corresponding
direction or loading vector.
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The Singular Value Decomposition
Suppose r ≤ rank(Z) = 800, and let Dr be a diagonal matrix with all but the
first r diagonal entries of D set to zero. The optimization problem

Ẑr = min
rank(M)=r

||Z−M||F (3)

has a closed form solution Ẑr = UDrVT , the rank-r SVD. Ẑr is sparse in the
sense that all but r singular values are zero.
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Matrix Completion

Problem Formulation: Recover an m×n matrix Z when we only get to
observe p�mn of its entries.
I Impossible without additional information!
I Assumption: Matrix is known to be low-rank or approximately low-rank.
I Matrix Completion: Fill the missing entries.
I Used in: System Identification in control theory, covariance matrix

estimation, machine learning, computer vision...
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Optimization Problem

I Observe the entries of the m×n matrix Z indexed by the subset
Ω⊂ {1, · · · ,m}×{1, · · · ,n}.

I Seek the lowest rank approximating matrix Ẑ that interpolates the entries
of Z

minimize rank(M)
subject to mij = zij , (i, j) ∈ Ω,

(4)

I Rank minimization problem is NP-hard.
I Forcing interpolation leads to overfitting.
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Optimization Problem

I Better to allow M to make some errors on the observed data:

minimize rank(M)
subject to

∑
(i,j)∈Ω

(zij−mij)2 ≤ δ , (5)

or equivalently
minimize
rank(M)≤r

∑
(i,j)∈Ω

(zij−mij)2 , (6)

I Both problems are non-convex, and exact solutions are generally not
available.
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Netflix Movie Challenge
I Dataset: n= 17,770 movies (columns) and m= 480,189 customers (rows).
I Customers rated movies on a scale from 1 to 5. Matrix is very sparse with “only” 100 million of the

ratings present in the training set.
I Goal: Predict the ratings for unrated movies.

I (2006) “Cinematch” algorithm used by Netflix
RMSE=0.9525 over a large test set.

I Competition started in 2006, winner should
improve this RMSE by at least 10%.

I 2009 “Bellkor’s Pragmatic Chaos,” uses a
combination of many statistical techniques to
win.



14/45

Matrix Completion FSAN/ELEG815

Netflix Movie Challenge
The rating of user i on movie j is given by:

zij =
r∑
`=1

ci`gj`+wij , In Matrix form: Z = CGT +W

There are r genres of movies, and corresponding to each is a “clique” (small group of
people, with shared interests or other features in common) of viewers who like them; a
viewer i has a membership weight of cil for the `th clique, and the genre associated with
this clique has a score gi` for movie j. The overall user rating is obtained by summing these
products over ` (cliques/genres), and then adding some noise.

The table shows the data for the 10
customers and 10 movies with the
most ratings. ( Each rating in the
table corresponds to a score zij
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Netflix Movie Challenge
(Left) RMSE over the training and test sets as the rank of the SVD was varied
(Hard-impute). Also shown are estimates based on nuclear norm regularization
(soft-impute). Training data is doble centered, by removing row and column means
(zij = αi+βj +

∑r
`=1 ci`gj`+wij). (Right) Test error only, plotted against training error,

for the two methods.
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Matrix Completion Using the Nuclear Norm
I Recall rank(M) = # of non-zero singular values of M.
I The nuclear norm ||M ||∗ is the sum of the singular values. It constitutes a

relaxation of rank(M).
I Consider the symmetric matrix M:(

x y
y z

)
These matrices can be thought of as points in a 3D space, and the
coordinate values tell us about the entries in the matrix.

I The singular values for such matrix are:

s1,2 = 1√
2

√
x2 + 2y2 + z2±|x+ z|

√
(x−y)2 + 4z2 (7)

I The unit nuclear norm implies s1 + s2 = 1. Thus
x2 + 2y2 + z2 + 2|y2−xz|= 1. (8)

I This equation in the 3D plane describes a cylinder.
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Matrix Completion Using the Nuclear Norm

The blue cylinder shows the level set of the nuclear norm unit-ball for a
symmetric 2×2 matrix. The tangent plane is the feasible set z = z0 for the
matrix imputation problem where we observe z and wish to impute x and y.
The point M is the solution that we seek, leading to the minimum value for δ
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Matrix Completion Using the Nuclear Norm

I Nuclear norm of Mm×n:

||M||* =
n∑
k=1

σk(M) (9)

I Convex relaxation of the rank minimization problem:

minimize ||M||*
subject to mij = zij , (i, j) ∈ Ω ,

(10)

I Whereas the rank counts the number of nonzero singular values, the nuclear norm
sums their amplitude.

I Analogous to the `1 norm as a relaxation for the `0 norm as sparsity measure.
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Notation

Given an observed subset Ω of matrix entries, define the projection operator as:

[PΩ(Z)]i,j =
{
zij if (i, j) ∈ Ω
0 otherwise

PΩ replaces the missing entries in Z with zeros, and leaves the observed
entries alone.
The optimization criterion is then :∑

(i,j)∈Ω
(zij−mij)2 = ||PΩ(Z)−PΩ(M)||F (11)

where || · ||F is the Frobenius norm of a matrix defined as the element-wise
sum of squares.
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Singular Value Thresholding for Matrix Completion,+

I Solves the optimization problem:

minimize ||M||*
subject to PΩ(M) = PΩ(Z) ,

(12)

I The SVD of a matrix M of rank r is:

M = UΣΣΣV , ΣΣΣ = diag({σi}1≤i≤r) (13)
+Cai et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4
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Singular Value Thresholding (SVT)
I For each τ ≥ 0, the soft-thresholding operator Dτ is defined as:

Dτ (M) = UDτ (ΣΣΣ)V* , Dτ (ΣΣΣ) = diag({σi− τ}+) (14)

where t+ is the positive part of t, t+ = max(0, t). Operator applies
soft-thresholding to the singular values of M, effectively shrinking them
towards zero.
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SVT Algorithm - Shrinkage Iterations

Fix τ > 0 and a sequence {δk} of positive step sizes. Starting with Y0 = 0,
inductively define for k = 1,2, . . .,{

Mk =Dτ (Yk−1)
Yk = Yk−1 + δkPΩ(Z−Mk)

until a stopping criterion is reached. At each step, we only need to compute
an SVD and perform elementary matrix operations.
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SVT Algorithm - Shrinkage Iterations
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Spectral Regularization

I Problem: Unrealistic to model observed entries as being noiseless.
I Relaxed version of (5)

minimize
M

1
2

∑
(i,j)∈Ω

(zij−mij)2 +λ||M||* , (15)

I Introduce bias to decrease variance.
I Avoids over-fitting.
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Soft SVD

I Consider the SVD M = UΣΣΣVT of a rank r matrix M.
I The convex optimization problem

minimize
M

1
2 ||PΩ(Z)−PΩ(M)||2F +λ||M||* (16)

I Solution is the Soft-thresholded SVD

Dλ(M) = UΣΣΣλVT (17)

where, ΣΣΣλ = diag{(σ1−λ)+, . . . ,(σr−λ)+}
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Convex Optimization Problem

minimize
M

1
2 ||PΩ(Z)−PΩ(M)||2F +λ||M||* (18)

I This is a semi-definite program (SDP), convex in M.
I Complexity of existing off-the-shelf solvers:

I interior-point methods: O(n4) · · ·O(n5) · · ·
I (black box) first-order methods complexity: O(n3)

I Use an iterative soft SVD (next slide), with cost per soft SVD
O
[
(m+n)Â∆r+ |Ω|

]
where r is rank of solution.
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Soft-Impute for Matrix Completion,+

1. Initialize Zold and create a decreasing grid λ1 ≥ λ2 ≥ ·· · ≥ λK
2. For k = 1, . . . ,K, set λ= λk and iterate until convergence:

Compute Ẑλ←Dλ(PΩ(Z) +P⊥Ω (Zold))
Update Zold← Ẑλ
3. Output the sequence solutions Ẑλ1, · · · , Ẑλk

P⊥Ω projects onto the complement of the set Ω. +Mazumder et al. Journal of Machine Learning
Research 2010
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Soft-Impute for Matrix Completion,+
I Each iteration requires an SVD of a large dense matrix, even though
PΩ(Z) is sparse.

PΩ(Z) +P⊥Ω (Zold) (19)
I Strategy:

PΩ(Z) +P⊥Ω (Zold) =
{
PΩ(Z)−PΩ(Zold)

}
Sparse

+ Zold
Low Rank

(20)

I The first component is sparse, with |Ω| non-missing entries. The second
component is a soft-thresholded SVD, so can be represented using the
corresponding components.

I Each component’s special structure can be exploited to efficiently perform
left and right multiplications by a vector, and thereby apply iterative
Lanczos methods to compute a (low rank) SVD efficiently.

+Mazumder et al. Journal of Machine Learning Research 2010
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Impediments and Solutions
I How many samples N do we need in order to be able to recover the matrix of

dimensions p×p when N � p2?
I It is impossible to recover the matrix exactly if there are no observed entries in some

row or column, even if it is rank one.
I Example: Consider the rank one matrix Z = e1eT1 with a single one in its upper left

corner:

I If we only observe N � p2 entries of this matrix, with the entries chosen uniformly at
random, then with high probability, we will not observe the single nonzero entry.

I Z′ = e1vT , where v ∈ Rp is an arbitrary p vector.
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Theoretical Results for Matrix Completion

I To exclude troublesome matrices → draw matrices from random ensemble
e.g. construct a random matrix of the form Z =∑r

j=1 ajbTj where the
random vectors aj ∼N(0, Ip) and bj ∼N(0, Ip) are all independently
drawn.

I Gross (2011), shows that the nuclear norm relaxation succeeds in exact
recovery if:

N ≥ Crp logp, (21)
where C > 0 is a fixed universal constant.
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Theoretical Results for Matrix Completion
I Set to missing a fixed proportion of entries and applied Soft-Impute with λ chosen small enough so

that ||P⊥Ω (Z− Ẑ)||2F /||P
⊥
Ω (Z)||2F < 10−5.

I Process repeated 100 times for various values of rank r and the proportion set to missing.

Convex matrix completion in the no-noise setting. Shown are probabilities of exact completion (mean ±one standard error)
as a function of the proportion missing, for n×n matrices with n 2{20,40}. The true rank of the complete matrix is one in
the left panel and five in the right panel.
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Image Inpainting - Convex Optimization Solver
With 70% of the Information.
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Image Inpainting - Convex Optimization Solver
With 50% of the Information. And multiple columns missing.
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Image Inpainting - Convex Optimization Solver
With 50% of the Information. PSNR=35.9 dB.
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Image Inpainting - SVT Algorithm+

With 50% of the Information. PSNR=38.1 dB.

+Cai et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4
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Image Inpainting - Soft Impute Algorithm+

With 50% of the Information. PSNR= 35.7 dB.

+Mazunder et al. Journal of Machine Learning Research 2010
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Text Removal - Convex Optimization Solver
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Additive Matrix Decomposition

I Objective: Decompose a matrix into the sum of two or more matrices:
Z = L∗+ S∗.

I Components should have complementary structures: eg. sum of a
low-rank matrix with a sparse matrix.

I Applications: Factor analysis, Robust forms of PCA and matrix
completion, and multivariate regression.

I These applications can be described in a noisy linear observation model
Z = L∗+ S∗+ W, where the pair (L∗,S∗) specifies the additive matrix
decomposition into low rank and sparse components, and W is a noise
matrix.
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Additive Matrix Decomposition

I Estimate the pair (L∗,S∗) as:

min
L,S∈Rm×n

{1
2 ||Z− (L + S)||2F +λ1Φ1(L) +λ2Φ2(S)

}
(22)

where Φ1 and Φ2 are penalty functions each designed to enforce type of
generalized sparsity.

I In the case of low rank and sparse matrices, the penalty functions are:
Φ1(L) = ||L||∗ and Φ2(S) = ||S||1
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Factor Analysis With Sparse Noise

I Widely used form of linear dimensionality reduction that generalizes PCA.
I Generative model: Generate random vectors yi ∈ Rp using the noisy

subspace model:

yi = µ+ ΓΓΓui+wi, for i= 1,2, · · · ,N. (23)

I µ ∈ Rp is a mean vector, ΓΓΓ ∈ Rp×r is a loading matrix, and the random
vectors ui ∼N(0, Ir×r) and wi ∼N(0,S∗) are independent.

I Given N samples, the goal is to estimate the column of the loading matrix
ΓΓΓ, or equivalently, the rank r matrix L∗ = ΓΓΓΓΓΓT ∈ Rp×p that spans the
column space of ΓΓΓ.
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Factor Analysis With Sparse Noise

I The covariance matrix of yi has the form ΣΣΣ = ΓΓΓΓΓΓT + S∗

I When S∗ is sparse, the problem of estimating L∗ = ΓΓΓΓΓΓT can be
understood as an instance of our general problem p=N .

I Let our observation matrix Z ∈ Rp×p be the sample covariance matrix
1
N

∑N
i=1 yiy

T
i .

I Thus, Z = L∗+ S∗+ W, where L∗ = ΓΓΓΓΓΓT is of rank r and
W := 1

N

∑N
i=1 yiy

T
i −{L∗+ S∗}
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Robust PCA

Standard PCA:
I Find SVD of Z ∈ RN×p, where row i represents the ith sample of a
p-dimensional data vector.

I Rank-r SVD is obtained by minimizing the squared Frobenius norm
||Z−L||2F subject to a rank constraint on L.

I If some entries of Z are corrupted, its solution is very sensitive to noise.
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Robust PCA
I Additive decompositions provide one way in which to introduce robustness

to PCA.
I Instead of approximating Z with a low-rank matrix, approximate it with

the sum L + S of a low-rank matrix with a sparse component.
I In the case of element-wise corruption, the component S would be

modeled as a row-sparse matrix. Given some target rank r and sparsity k,
the direct approach solves the optimization problem.

min
rank(L)≤r,card(S)≤k

1
2 ||Z− (L + S)||2F (24)

I Criterion is non-convex, due to both the rank and cardinality constraints.
A natural convex relaxation is provided Φ1(L) = ||L||∗ and
Φ2(S) =∑

i,j |si,j| for element wise sparsity.
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Robust PCA: Video Surveillance
Columns of Z are frames from a video.
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Robust PCA: Video Surveillance
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