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Matrix Decompositions, Approximations, and Completion

Given an m X n matrix Z = {z;;}, find a matrix Z that approximates Z.
> 7 may have simpler structure.
» Missing entries in Z, a problem known as matrix completion.
Approach based on optimization:

Z=arg Mr%in |1Z —M||% subject to ®(M) < ¢ (1)
e mxXn

where [|A|[} =Y, j|a;;|? is the Frobenius Norm, and ®(-) is a constraint
function that encourages Z to be sparse in some sense.
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Constraint ®(Z) Resulting method

(a) ||2||g1 <c Sparse matrix approximation
(b) rank(Z) < k Singular value decomposition
() |1Z]|« < ¢ Convex matrix approximation

> (a) £1-norm of all entries of Z. Leads to a soft-thresholding Zi; = sign(2ij) (|zi5] —7)+,
where > 0 is such that 377", 377 |2 =c.

> (b) Bounds the rank of Z, or the number of nonzero singular values in Z.
Approximation is non-convex, but solution found by computing the SVD and
truncating it to its top k components.

» (c) Relaxes the rank constraint to a nuclear norm (||A|| = Z?Z{l{mn} o). Solved by

computing the SVD and soft-thresholding its singular values.
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Motivation: Image Reconstruction from Incomplete Data

Reconstructed image Incomplete image 50% of the pixels

Matrices with missing elements can be solved exactly using method (c),
whereas methods based on (b) are more difficult to solve in general.
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Constraint Resulting method

(d) Z=UDV?T, &,(u;) <ci, Penalized SVD

Po(vy) <o

() Z=L+S, &1(L)<c1, P2(S) <2 Additive matrix decomposition

» (d) Imposes penalties on the left and right singular vectors of Z. Examples
of penalty functions ®; and ®; include the usual /5 or {1 norms.

» (e) Seeks an additive decomposition of the matrix, imposing penalties on
both components in the sum.
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Matrix Completion

The Singular Value Decomposition

Given an m X n matrix Z with m > n, its singular value decomposition takes

the form
Z-=uDV” (2)

> U is an m x n orthogonal matrix (U”U = 1,,) whose columns u; € R™ are
the left singular vectors.

> Vis an n x n orthogonal matrix (VI'V = 1,,) whose columns v; € R are
the right singular vectors.

» The n xn matrix D is diagonal, with d; > dy > --- > d,, > 0 known as
the singular values.
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Matrix Completion

The Singular Value Decomposition

» If columns of Z are centered (zero mean), then the right singular vectors
{vj}?zl define the principal components of Z.

» The unit vector v; yields the linear combination s; = Zv; with highest
sample variance among all possible choices of unit vectors.

» s is the first principal component of Z, and v; is the corresponding
direction or loading vector.
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The Singular Value Decomposition

Suppose r < rank(Z) = 800, and let D, be a diagonal matrix with all but the
first r diagonal entries of D set to zero. The optimization problem

Z, = i Z-M 3
ran&%:rH 153 (3)

has a closed form solution Z, = UD, VT £ the rank-r SVD. Z, is sparse in the
sense that all but r singular values are zero.

JANUARYZ‘)

8005|ngularVaIues 164S|ngularVaIues 24 Singular Values 12 Singular Values
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Matrix Completion

Problem Formulation: Recover an m x n matrix Z when we only get to
observe p < mn of its entries.

» Impossible without additional information!
» Assumption: Matrix is known to be low-rank or approximately low-rank.
» Matrix Completion: Fill the missing entries.

» Used in: System Identification in control theory, covariance matrix
estimation, machine learning, computer vision...
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Optimization Problem

» Observe the entries of the m x n matrix Z indexed by the subset
Qc{l,---,m}x{1,---,n}

» Seek the lowest rank approximating matrix Z that interpolates the entries
of Z

minimize  rank(M) (4)
subject to mij = Zij, (Z,]) €,
» Rank minimization problem is NP-hard.

» Forcing interpolation leads to overfitting.
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Optimization Problem

» Better to allow M to make some errors on the observed data:

minimize rank(M)

subject to Z (Zij —mij)Q <94, (5)
(i,7)€Q
or equivalently
L 2
minimize Ziq — M4 y
rank(M)<r (27%26(2( " ”) (6)

» Both problems are non-convex, and exact solutions are generally not
available.
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Netflix Movie Challenge

» Dataset: n = 17,770 movies (columns) and m = 480,189 customers (rows).

» Customers rated movies on a scale from 1 to 5. Matrix is very sparse with “only” 100 million of the
ratings present in the training set.

» Goal: Predict the ratings for unrated movies.

> (2006) “Cinematch” algorithm used by Netflix
RMSE=0.9525 over a large test set.

» Competition started in 2006, winner should
improve this RMSE by at least 10%.

» 2009 “Bellkor's Pragmatic Chaos,"” uses a
combination of many statistical techniques to
win.
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Netflix Movie Challenge

The rating of user ¢ on movie j is given by:

.
Zij = Zciggjg—{—wij, In Matrix form: Z=CGY +W
(=1

There are r genres of movies, and corresponding to each is a “clique” (small group of
people, with shared interests or other features in common) of viewers who like them; a
viewer i has a membership weight of ¢;; for the ¢*" clique, and the genre associated with
this clique has a score g;; for movie j. The overall user rating is obtained by summing these
products over ¢ (cliques/genres), and then adding some noise.

The table shows the data for the 10
customers and 10 movies with the
most ratings. ( Each rating in the
table corresponds to a score z;;
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Netflix Movie Challenge

(Left) RMSE over the training and test sets as the rank of the SVD was varied
(Hard-impute). Also shown are estimates based on nuclear norm regularization
(soft-impute). Training data is doble centered, by removing row and column means

(zij = i + B +>_y—1 ciegje +wij). (Right) Test error only, plotted against training error,
for the two methods.
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Matrix Completion Using the Nuclear Norm

>
>

>

Recall rank(M) = # of non-zero singular values of M.

The nuclear norm || M|« is the sum of the singular values. It constitutes a
relaxation of rank(M).

Consider the symmetric matrix M:

r 'y
y =z
These matrices can be thought of as points in a 3D space, and the

coordinate values tell us about the entries in the matrix.
The singular values for such matrix are:

1
S19=—=\22 4202+ 22+ |z + z|\/(x —y)? + 422 7
2= s\at 24l 2y ey )

The unit nuclear norm implies s; 4+ so = 1. Thus

2242+ 22y — 2| =1 (8)

This equation in the 3D plane describes a cylinder.
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Matrix Completion Using the Nuclear Norm

Feasible set

The blue cylinder shows the level set of the nuclear norm unit-ball for a
symmetric 2 X 2 matrix. The tangent plane is the feasible set z = z; for the
matrix imputation problem where we observe z and wish to impute x and .
The point M is the solution that we seek, leading to the minimum value for o
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Matrix Completion Using the Nuclear Norm

» Nuclear norm of M, «n:

n

M+ =>_ 0% (M) (9)

k=1
» Convex relaxation of the rank minimization problem:

minimize  ||M||« (10)
subject to  m;; = z;5, (i,7) € Q,

» Whereas the rank counts the number of nonzero singular values, the nuclear norm
sums their amplitude.

» Analogous to the ¢; norm as a relaxation for the £y norm as sparsity measure.



Matrix Completion AfIlE FSAN/ELEGS815

Notation

Given an observed subset €2 of matrix entries, define the projection operator as:

[Pa(Z)]; ;= { 0 otherwise

Pq replaces the missing entries in Z with zeros, and leaves the observed
entries alone.
The optimization criterion is then :

> (zij—mij)* = |Pa(Z) = Pa(M)||r (11)
(1,5)€Q
where || - || is the Frobenius norm of a matrix defined as the element-wise

sum of squares.



Matrix Completion ARE FSAN/ELEG815

Singular Value Thresholding for Matrix Completion,™

» Solves the optimization problem:

minimize  ||M||«

12
subject to Po(M) = Pq(Z), (12)

» The SVD of a matrix M of rank r is:
M=UXV , ¥ =diag({ci};<;<,) (13)

+Cai et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4
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Singular Value Thresholding (SVT)

» For each 7 > 0, the soft-thresholding operator D is defined as:
D-(M)=UD,(Z)V", D;(%)=diag({o; —7},) (14)

where ¢ is the positive part of ¢, £+ = max(0,t). Operator applies
soft-thresholding to the singular values of M, effectively shrinking them
towards zero.

=T //
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SVT Algorithm - Shrinkage Iterations

Fix 7 > 0 and a sequence {d;} of positive step sizes. Starting with Yq =0,
inductively define for £k =1,2,...,

Mk _ DT(kal)
YE =YL 45, Po(Z — MF)

until a stopping criterion is reached. At each step, we only need to compute
an SVD and perform elementary matrix operations.
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SVT Algorithm - Shrinkage Iterations

1 iteration 10 iterations

50 iterations 100 iterations 250 iterations 500 iterations
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Spectral Regularization

» Problem: Unrealistic to model observed entries as being noiseless.
» Relaxed version of (5)

. 1
minimize 37 (21— miy) + A}« (15)
M .
(i,5)€Q
» Introduce bias to decrease variance.

» Avoids over-fitting.
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Soft SVD

» Consider the SVD M = UXV” of a rank r matrix M.

» The convex optimization problem
o 1
minimize §||PQ(Z) — Po(M)||% + \||M| |« (16)
» Solution is the Soft-thresholded SVD
Dy(M)=UZ,V7 (17)

where, ¥\ =diag{(c1 —A)4,...,(or = A)+}
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Convex Optimization Problem

1
minjmize 5||PQ<z>—PQ(M)||%+A|IM|I* (18)

» This is a semi-definite program (SDP), convex in M.

» Complexity of existing off-the-shelf solvers:
> interior-point methods: O(n*)---O(n%)---
> (black box) first-order methods complexity: O(n?3)

> Use an iterative soft SVD (next slide), with cost per soft SVD
@ {(m+n)AAr—|— \Q|] where r is rank of solution.
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Soft-Impute for Matrix Completion,™

1. Initialize Z° and create a decreasing grid A1 > Ao > -+ > Ak
2. For k=1,...,K, set A= )\, and iterate until convergence:
Compute Zy < Dy(Pq(Z) + Pa(Z°9))
Update Z°4 « Z,

3. Output the sequence solutions 2,\1, e ,2,\k

P(Jz_ prOjeCtS onto the Complement of the set ). +Mazumder et al. Journal of Machine Learning
Research 2010
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Soft-Impute for Matrix Completion,™

» Each iteration requires an SVD of a large dense matrix, even though
Pq(Z) is sparse.

Po(Z)+ P (Z°7'7) (19)
> Strategy:
Po(Z)+ Py (Z) = {Po(Z) — Po(Z7 )+ Z°V (20)
Sparse Low Rank

» The first component is sparse, with |2| non-missing entries. The second
component is a soft-thresholded SVD, so can be represented using the
corresponding components.

» Each component'’s special structure can be exploited to efficiently perform
left and right multiplications by a vector, and thereby apply iterative
Lanczos methods to compute a (low rank) SVD efficiently.

+Mazumder et al. Journal of Machine Learning Research 2010



Matrix Completion AR FSAN/ELEG815

Impediments and Solutions

» How many samples N do we need in order to be able to recover the matrix of
dimensions p x p when N < p??

P It is impossible to recover the matrix exactly if there are no observed entries in some
row or column, even if it is rank one.

» Example: Consider the rank one matrix Z = e;e! with a single one in its upper left
p 1 g pp

corner:
1 0 0 O V1 Vz V3 Vs
7_[0 0 0 0 Z,_oooo
“lo0 o0 0 0 1o o0 o0 o
0 0 0 O 0O 0 0 0

» If we only observe N < p? entries of this matrix, with the entries chosen uniformly at
random, then with high probability, we will not observe the single nonzero entry.

» Z'=e;v!, where v € R? is an arbitrary p vector.
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Theoretical Results for Matrix Completion

» To exclude troublesome matrices — draw matrices from random ensemble
e.g. construct a random matrix of the form Z = 227:1 ajb;F where the
random vectors a; ~ N(0,1,) and bj ~ N(0,1,) are all independently
drawn.

» Gross (2011), shows that the nuclear norm relaxation succeeds in exact
recovery if:

N > Crplogp, (21)

where C' > 0 is a fixed universal constant.
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Theoretical Results for Matrix Completion

> Set to missing a fixed proportion of entries and applied Soft-Impute with \ chosen small enough so
1 51112 1 2 -5
that ||Po (Z—2)||%/]|Pq (Z)|F <107°.
» Process repeated 100 times for various values of rank  and the proportion set to missing.

Rank 1 Rank 5
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Convex matrix completion in the no-noise setting. Shown are probabilities of exact completion (mean tone standard error)
as a function of the proportion missing, for n X n matrices with n 2{20,40}. The true rank of the complete matrix is one in
the left panel and five in the right panel.
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Image Inpainting - Convex Optimization Solver

With 70% of the Information.

Original Image Noisy Image Reconstructed
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Image Inpainting - Convex Optimization Solver
With 50% of the Information. And multiple columns missing.
Reconstructed

Original Image Noisy Image
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Image Inpainting - Convex Optimization Solver

With 50% of the Information. PSNR=35.9 dB.

Original Image Neisy Image

Reconstructed
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Image Inpainting - SVT Algorithm™
With 50% of the Information. PSNR=38.1 dB.

Original Image Noisy Image Reconstructed

*Cai et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4
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Image Inpainting - Soft Impute Algorithm™
With 50% of the Information. PSNR= 35.7 dB.

Original Image Reconstructed

Noisy Image
o

+Mazunder et al. Journal of Machine Learning Research 2010



Matrix Completion ARE FSAN/ELEG815

Text Removal - Convex Optimization Solver

Noisy Image Reconstructed

Original Image
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Additive Matrix Decomposition

» Objective: Decompose a matrix into the sum of two or more matrices:
Z=L"+S"

» Components should have complementary structures: eg. sum of a
low-rank matrix with a sparse matrix.

» Applications: Factor analysis, Robust forms of PCA and matrix
completion, and multivariate regression.

» These applications can be described in a noisy linear observation model
Z=L"+S"+W, where the pair (L*,S™) specifies the additive matrix
decomposition into low rank and sparse components, and W is a noise
matrix.
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JAWARE

Additive Matrix Decomposition

» Estimate the pair (L*,S) as:

1
min {HZ—(L+S)]|2F+>\1<I>1(L)+>\2<1>2(5)} (22)
L,ScRm*n 2

where ®; and ®$, are penalty functions each designed to enforce type of
generalized sparsity.

» In the case of low rank and sparse matrices, the penalty functions are:
®1(L) = [|L|]+ and ®5(S) = [[S[]x
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Factor Analysis With Sparse Noise

v

Widely used form of linear dimensionality reduction that generalizes PCA.

Generative model: Generate random vectors y; € R? using the noisy
subspace model:

yi = p+Tu; +w;,fori=1,2,---  N. (23)

i € RP is a mean vector, I' € RP*" is a loading matrix, and the random
vectors u; ~ N(0,l,x,) and w; ~ N(0,S*) are independent.

Given N samples, the goal is to estimate the column of the loading matrix
T, or equivalently, the rank r matrix L* = I'T'" € RP*P that spans the
column space of T'.
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Additive Matrix Decomposition lﬁﬁ

TAWARE

Factor Analysis With Sparse Noise

v

The covariance matrix of y; has the form ¥ = rr’ +s*

» When S is sparse, the problem of estimating L* = I'T7 can be
understood as an instance of our general problem p = N.

» Let our observation matrix Z € RP*P be the sample covariance matrix
LN T
N ZZ:]_ yly’L .
> Thus Z= L*—|—S*+W, where L* = I'T7 is of rank r and
= XS iyl —{L" +8%}



IAWARE

Additive Matrix Decomposition @ETR\SNWW FSAN/ELEG815

Robust PCA

Standard PCA:

» Find SVD of Z € RV*P, where row i represents the i sample of a
p-dimensional data vector.

» Rank-r SVD is obtained by minimizing the squared Frobenius norm
||Z — L||% subject to a rank constraint on L.

» |If some entries of Z are corrupted, its solution is very sensitive to noise.
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Additive Matrix Decomposition lﬁﬁ

Robust PCA

» Additive decompositions provide one way in which to introduce robustness
to PCA.

» Instead of approximating Z with a low-rank matrix, approximate it with
the sum L+ S of a low-rank matrix with a sparse component.

» In the case of element-wise corruption, the component S would be
modeled as a row-sparse matrix. Given some target rank r and sparsity k,
the direct approach solves the optimization problem.

m L+S)|)% 24
rank(L)<r, card(S)<k2|| ( >||F ( )
» Criterion is non-convex, due to both the rank and cardinality constraints.

A natural convex relaxation is provided ®;(L) =||L||« and
Do(S) = X2; j |si,5] for element wise sparsity.
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Robust PCA: Video Surveillance

Columns of Z are frames from a video.

Video

>
N
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Robust PCA: Video Surveillance

True Tmage Training Image Low-Rank (L) Sparse (S)




	Matrix Completion
	Introduction
	Problem Formulation
	Algorithms
	Image Inpainting

	Additive Matrix Decomposition

