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Which Face is Real?
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Supervised vs Unsupervised Learning?

Supervised Learning

Data:(x,y)
x is data, y is label
Goal: Learn a function to map

x → y

Examples: Classification, regres-
sion, object detection, semantic
segmentation...

Unsupervised Learning

Data: x
x is data, no labels!
Goal: Learn the hidden or underly-
ing structure of the data
Examples: Clustering, feature or
dimensionality reduction...
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Generative Modeling

Goal: Take as input training samples from some distribution and learn a
model that represents that distribution
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Why Generative Models? Debiasing

Capable of uncovering underlying features in a dataset

Homogeneous skin color, pose

vs

Diverse skin color, pose,
illumination

How can we use this information to create fair and representative datasets?
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Why Generative Models? Super resolution

Bicubic
interpolation

Deep residual
network optimized

for MSE

Deep residual
generative
adversarial
network

Original HR image
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How can we detect something new or rare?
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Latent Variable Models
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Kullback-Leibler Divergence
▶ A way of comparing two probability distributions.
▶ Measures how well a simple distribution function approximates a complex

one

Space worms and KL divergence
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Kullback-Leibler Divergence (Uniform Distribution)

▶ There are 11 possible values and we approximate with a uniform
distribution.
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Kullback-Leibler Divergence (Binomial Distribution)
▶ Represent distribution of teeth in worms as just a Binomial distribution.
▶ Estimate the probability parameter of the Binomial distribution.
▶ E[x] = n×p where n = 10 and E[x] = 5.7, thus p = 0.57.
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Binomial Distribution vs Uniform Distribution
▶ Compared with the original data, both are approximations.
▶ How can we choose which one to use?
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The Entropy of a Distribution

The entropy for a probability distribution is:

H = −
N∑

i=1
p(xi)× log(p(xi))

▶ If we use log2 we can interpret entropy as "the minimum number of bits it
would take us to encode our information".

▶ Our probability distribution has an entropy of 3.12 bits which is the lower
bound for how many bits are needed to encode the number of teeth of a
sample.
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Measuring Information Lost Using Kullback-Leiber Divergence
Kullback-Leiber Divergence is just a modification of entropy:

DKL(p ∥ q) =
N∑

i=1
p(xi)× (log(p(xi))− log(q(xi)))

Expectration of the log difference between the probability of data in the
original distribution with the approximating distribution. We could rewrite it
as:

DKL(p ∥ q) = E[log(p(x))− log(q(x))]

DKL(p ∥ q) =
N∑

i=1
p(xi)× (log(p(xi)

q(xi)
))
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Comparing our approximating distributions
KL divergence for our two approximating distributions:

DKL(Observe ∥ Uniform) = 0.338
DKL(Observe ∥ Binomial) = 0.477

▶ The information lost by using the binomial approximation is greater than
using the uniform approximation.

▶ Note that the KL divergence is not a distance metric, since it is not
symetric i.e:

DKL(Binomial ∥ Observe) = 0.330



15/70

FSAN/ELEG815

Optimizing Using KL Divergence

▶ The minimum value for KL divergence is 0.338 when p = 0.47
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Optimizing Using KL Divergence

▶ Key point is to use KL Divergence as an objective function to find the
optimal parameters for any approximating distribution.

▶ Extend this approach to high dimensional models with many parameters.
▶ Neural networks are function approximators.
▶ Combining KL divergence with neural networks learn complex

approximating distributions for data ("Variational Autoencoder")
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What is a Latent Variable

Can we learn the true explanatory factors, e.g. latent variables, from only
observed data?
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Autoencoders: background
Unsupervised approach for learning a lower-dimensionality feature

representation from unlabeled training data

“Encoder" learns mapping from the data, x, to a low-dimensional latent space
z
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Autoencoders: background
How can we learn this latent space?

Train the model to use these features to reconstruct the original data
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Autoencoders: background
How can we learn this latent space?

Train the model to use these features to reconstruct the original data
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Dimensionality of Latent Space → Reconstruction Quality

Autoencoding is a form of compression!
Smaller latent space will force a larger training bottleneck

2D latent space 5D latent space Ground Truth

How can we use this information to create fair and representative datasets?
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Autoencoders for Representation Learning
▶ Bottleneck hidden layer forces network to learn a compressed latent

representation
▶ Reconstruction loss forces latent representation to capture (or encode)

as much “information" about the data as possible
▶ Autoencoding- Automatically encoding data
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Denoiser Layout



13/63

FSAN/ELEG815

Autoencoders for Unsupervised Anomaly Detection

(top) Training: noise added to foreground of healthy image. Network trained
to reconstruct original image. (Bottom) Test time, reconstruction error is used

as the anomaly score.
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Autoencoders for Unsupervised Anomaly Detection

DAE gives more precise reconstructions. VAE reconstruction quality could be
improved by increasing bottleneck dimensionality, however this would

negatively impact anomaly detection performance.
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Autoencoders for Unsupervised Anomaly Detection

Sample anomaly score predictions. From easier (top) to more difficult
(bottom).
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Traditional Autoencoders
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VAEs: Key Difference with Traditional Autoencoders

Variational autoencoders are probabilistic twist on autoencoders
Sample from the mean and standard deviation an to compute latent sample
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VAEs Optimization
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VAEs Optimization
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VAEs Optimization
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Priors on the Latent Distribution

KL-divergence between the two distributions

D
(
qϕ(z|x) ∥ p(z)

)
= −1

2
k−1∑
j=0

(σ2
j +µ2

j −1− log(σj))

Common choice of prior - Normal Gaussian

p(z) = N (µ = 0,σ2 = 1)
▶ Encourages encodings to distribute

encodings evenly around the center of the
latent space

▶ Penalizes the network when it tries to
“cheat" by clustering points in specific
regions (i.e., by memorizing the data)
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Intuition on Regularization and Normal Prior
1. Continuity: points that are close in latent space → similar content after

decoding
2. Completeness: sampling from latent space → “meaningful" content

after decoding
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Intuition on Regularization and Normal Prior
1. Continuity: points that are close in latent space → similar content after

decoding
2. Completeness: sampling from latent space → “meaningful" content

after decoding
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Intuition on Regularization and Normal Prior
1. Continuity: points that are close in latent space → similar content after

decoding
2. Completeness: sampling from latent space → “meaningful" content

after decoding

Regularization with Normal prior helps enforce information gradient in the
space
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VAE Computation Graph

Problem: We cannot backpropagate gradients through sampling layers
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Reparametrizing the Sampling Layer
Key Idea:

z ∼ N (µµµ,σσσ2)

Consider the Sampled latent vector
z as a sum of:
▶ A fixed µµµ vector
▶ and fixed σσσ , scaled by

random constants drawn
from the prior distribution

Where ϵϵϵ ∼ N (0,1)
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Reparametrizing the Sampling Layer
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VAEs: Latent Perturbation

Slowly increase or decrease a single latent variable.
Keep all other variables fixed

Different dimensions of z encode different interpretable latent features
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VAEs: Latent Perturbation

Ideally, we want latent variables
that are uncorrelated with each

other.
Enforce diagonal prior on the
latent variables to encourage

independence
Disentanglement
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Latent Space Disentanglement with β-VAEs

Standard VAE loss

L(θ,φ;x,z) = Eqϕ
[log(pθ(x|z))]︸ ︷︷ ︸

Reconstruction term

−DKL(qϕ(z|x) ∥ p(z))︸ ︷︷ ︸
Regularization term

β-VAE loss

L(θ,φ;x,z) = Eqϕ
[log(pθ(x|z))]︸ ︷︷ ︸

Reconstruction term

−βDKL(qϕ(z|x) ∥ p(z))︸ ︷︷ ︸
Regularization term

β > 1: constrain latent bottleneck, encourage efficient latent encoding →
disentanglement
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Latent Space Disentanglement with β-VAEs
β-VAE loss

L(θ,φ;x,z) = Eqϕ
[log(pθ(x|z))]︸ ︷︷ ︸

Reconstruction term

−βDKL(qϕ(z|x) ∥ p(z))︸ ︷︷ ︸
Regularization term

β > 1: constrain latent bottleneck, encourage efficient latent encoding →
disentanglement
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Why Generative Models? Debiasing

Capable of uncovering underlying features in a dataset

Homogeneous skin color, pose

vs

Diverse skin color, pose,
illumination

How can we use this information to create fair and representative datasets?
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Traditional Autoencoders

1. Compress representation of world to something we can use to learn
2. Reconstruction allows for unsupervised learning (no labels!)
3. Reparametrization trick to train end-to-end
4. Interpret hidden latent variables using perturbation
5. Generating new examples
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Generative Neural Networks (GANs)

What if we just want so sample?
Idea: don’t explicitly model density, and instead just sample to generate new

instances
Problem: want to sample from complex distribution - can’t do this directly

Solution: sample from something simple (e.g., noise), learn a transformation
to the data distribution
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Generative Neural Networks (GANs)

Generative Adversarial Networks (GANs) are a way to make a generative
model by having two neural networks compete with each other.
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Intuition Behind GANs

Generator starts from noise to try to create an imitation of the data.
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Intuition Behind GANs

Discriminator tries to predict what’s real and what’s fake.
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Intuition Behind GANs

Generator tries to improve its imitation of the data.
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Intuition Behind GANs

Discriminator tries to predict what’s real and what’s fake.
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Intuition Behind GANs

Generator tries to improve its imitation of the data.
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Intuition Behind GANs

Discriminator tries to differentiate real data from fake data created bt the
generator.

Generator tries to create imitations of data to trick the discriminator.
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Training GANs

Training: adversarial objective for D and G
Global optimum: G reproduces the true data distribution
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Training GANs: Loss Functions
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Training GANs: Loss Functions
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Training GANs: Loss Function
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Training GANs: Loss Function
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Generating New Data with GANs

After training, use generator network to create new data that’s never been
seen before.
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GANs are Distribution Transformers
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GANs are Distribution Transformers
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GANs Recent Advances: Progressive Growing of GANs
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GANs Recent Advances: Progressive Growing of GANs
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GANs Recent Advances: StyleGAN(2): Progressive Growing
+ Style Transfer
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GANs for Image Synthesis: Latest Results
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GANs for Image Synthesis: Latest Results



63/70

FSAN/ELEG815

Conditional GANs

What if we want to control the nature of the output, by conditioning on a
label?
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Conditional GANs and Pix2Pix: Paired Translation
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Applications of Paired Translation
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Paired Translation: Results
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CycleGAN: Domain Transformation

CycleGAN learns transformation across domains with unpaired data

www.youtube.com/watch

https://www.youtube.com/watch?v=9reHvktowLY
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Distribution Transformation
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CycleGAN: Transforming Speech
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