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Which Face is Real?




Supervised Learning

Data:(x,y)
x is data, y is label
Goal: Learn a function to map

X—Yy

Examples: Classification, regres-
sion, object detection, semantic
segmentation...
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Supervised vs Unsupervised Learning?

Unsupervised Learning

Data: x

x is data, no labels!

Goal: Learn the hidden or underly-
ing structure of the data
Examples: Clustering, feature or
dimensionality reduction...
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Generative Modeling

Goal: Take as input training samples from some distribution and learn a

model that represents that distribution
Density Estimation Sample Generation

Samples " - Input samples Generated samples
Training data ~ Pyai,(X) Generated ~ Ppode1(X)
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Why Generative Models? Debiasing

Capable of uncovering underlying features in a dataset

VS

Diverse skin color pose,

Homogeneous skin color, pose
illumination

How can we use this information to create fair and representative datasets?
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Why Generative Models? Super resolution

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)
- 3 " b —_— O i S e | R §

Deep residual
generative
adversarial

network

Bicubic Deep resi(_ju?l
network optimized
for MSE

interpolation Original HR image
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How can we detect something new or rare?

»Problem: How canwe detect when 95% of Driving Data:
we encounter something new or rare? (1) sunny, (2) highway, (3) straight road

» Stategy: Leverage generative models,
detect outliers in the distribution

»Use outliers during training to improve
even more!

Edge Cases Harsh Weather ~ Pedestrians



Latent Variable Models

Autoencoders and Variational
Autoencoders (VAES)

FSAN/ELEG815

Generative Adversarial
Networks (GANSs)

‘/




Kullback-Leibler Divergence
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» A way of comparing two probability distributions.

» Measures how well a simple distribution function approximates a complex

one

i
/
/

Space worms and KL divergence

Distribution of Teeth (Observed)

1 2 3 4 5 6 7 8 9 10
teeth count

0
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Kullback-Leibler Divergence (Uniform Distribution)

» There are 11 possible values and we approximate with a uniform
distribution.

Distribution of Teeth (Observed) Distribution of Teeth (Uniform)
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Kullback-Leibler Divergence (Binomial Distribution)

» Represent distribution of teeth in worms as just a Binomial distribution.
» Estimate the probability parameter of the Binomial distribution.
» E[z] =nxp where n =10 and E[x] =5.7, thus p = 0.57.

Distribution of Teeth (Binomial)

teeth count

probability
o
&

°
5

o
=
3

0.00- _-
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Binomial Distribution vs Uniform Distribution

» Compared with the original data, both are approximations.
» How can we choose which one to use?

Distribution of Teeth (all three)

0.204

o
o

> variable

3 [l observed_probabiiity
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Q . uniform
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.10 - binom
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The Entropy of a Distribution

The entropy for a probability distribution is:

N

H=- ;p(:vi) x log(p(xi))

> If we use logy we can interpret entropy as "the minimum number of bits it
would take us to encode our information".

» Our probability distribution has an entropy of 3.12 bits which is the lower
bound for how many bits are needed to encode the number of teeth of a

sample.
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Measuring Information Lost Using Kullback-Leiber Divergence

Kullback-Leiber Divergence is just a modification of entropy:

Drr(pllq) = Zp:r@ (log(p(w;)) —log(q(x:)))

Expectration of the log difference between the probability of data in the
original distribution with the approximating distribution. We could rewrite it
as:

Dir(pll ¢) = Eflog(p(x)) —log(q(z))]

Dir(pllq) = >_p(w:) x (log(
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Comparing our approximating distributions

KL divergence for our two approximating distributions:

Dk (Observe || Uniform) = 0.338
Dy 1,(Observe || Binomial) = 0.477

» The information lost by using the binomial approximation is greater than
using the uniform approximation.

» Note that the KL divergence is not a distance metric, since it is not
symetric i.e:

Dk (Binomial || Observe) = 0.330
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Optimizing Using KL Divergence

KL Divergence as parameter p changes Finding an optimal parameter value for our ad hoc model

KL Divergence

KL Divergence

p=047
kl-div=0.338

0.50 075 1.00 0.00 025 050
value of p value of p

» The minimum value for KL divergence is 0.338 when p = 0.47
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Optimizing Using KL Divergence

» Key point is to use KL Divergence as an objective function to find the
optimal parameters for any approximating distribution.

» Extend this approach to high dimensional models with many parameters.
» Neural networks are function approximators.

» Combining KL divergence with neural networks learn complex
approximating distributions for data ("Variational Autoencoder")
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What is a Latent Variable

Can we learn the true explanatory factors, e.g. latent variables, from only
observed data?
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Autoencoders: background

Unsupervised approach for learning a lower-dimensionality feature
representation from unlabeled training data

Why do we care about a
low-dimensional z
OF )

-

“Encoder" learns mapping from the data, x, to a low-dimensional latent space
z
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Autoencoders: background

How can we learn this latent space?
Train the model to use these features to reconstruct the original data

3)( z.'li‘ﬂ

|

L=|x— X ||2 Loss function doesn’t
N use any labels!
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Autoencoders: background

How can we learn this latent space?
Train the model to use these features to reconstruct the original data

3 x z

x)

o

|

Loss function doesn’t

_ %2
L=[x—x] use any labels!
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/ERSITY or
@ﬁmm
Dimensionality of Latent Space — Reconstruction Quality

Autoencoding is a form of compression!
Smaller latent space will force a larger training bottleneck

NT—=TwON~NO
CHNO~NTTMRIV
P NI =N~
M O~ TIMN~
TISOJSOH?HV
|mu.l.u.7.5b7l.§\
FooWwiIsnmNen
O~ mrnomay N
NOW -~ {0Vv

NT—~IFTL-0N~0O
eq%OLHQBfQC

How can we use this information to create fair and representative datasets?
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Autoencoders for Representation Learning

» Bottleneck hidden layer forces network to learn a compressed latent
representation

» Reconstruction loss forces latent representation to capture (or encode)
as much “information" about the data as possible

» Autoencoding- Automatically encoding data

712 /]0]d
Bos AW
7{zl/1014
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Denoiser Layout

Input Output
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Autoencoders for Unsupervised Anomaly Detection

Noise generation

ﬁ u'ps:lmple
mas; l(

Noise

Healthy image

Training time

Reconstruction
residuals

Noisy input Reconstruction

Input

Test time

Postprocess
residuals

Reconstruction Ground truth

Anomaly scores

(top) Training: noise added to foreground of healthy image. Network trained
to reconstruct original image. (Bottom) Test time, reconstruction error is used

as the anomaly score.
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Autoencoders for Unsupervised Anomaly Detection
FLAIR

DAE gives more precise reconstructions. VAE reconstruction quality could be
improved by increasing bottleneck dimensionality, however this would
negatively impact anomaly detection performance.
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Sample anomaly score predictions. From easier (top) to more difficult
(bottom).
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Traditional Autoencoders

3 x 2

_ o2 Loss function doesn’t
L=[lx—x| use any labels!
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VAEs: Key Difference with Traditional Autoencoders

mean
vector

L
148

X
A 58

standard deviation
vector

-

-

x)

Variational autoencoders are probabilistic twist on autoencoders
Sample from the mean and standard deviation an to compute latent sample



FSAN/ELEG815

VAEs Optimization

L4
1

X
A =+

— - _/
Encoder computes: gg(z|x) Decoder computes: pg(x|z)

£(¢,I, x) = (reconstruction loss) + (regularization loss)
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VAEs Optimization

X ||?

14
1

X
2 2 8

- A _J
Encoder computes: gg(z|x) Decoder computes: pg(x|z)

ﬁ(gb,l, X) =|(reconstruction Ioss)|+ (regularization loss)
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VAEs Optimization

Infered latent Fixed prior on

distribution latent distribution

D(gs (2[x) [| p(2))

7!
1
X Zz
A O'f ‘l

— A _J
Encoder computes: ¢g(z|x) Decoder computes: pg(x|z)

£(¢,l x) = (reconstruction loss) +| (regularization Ioss)l
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Priors on the Latent Distribution

KL-divergence between the two distributions

k—1

D (as(20) | (2)) = —5 X (0 + 153 =1 ~log(cr)
z

Common choice of prior - Normal Gaussian

p(Z) :N(M:O7O_2 - 1)

» Encourages encodings to distribute
encodings evenly around the center of the
latent space

L » Penalizes the network when it tries to
“cheat" by clustering points in specific
regions (i.e., by memorizing the data)
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Intuition on Regularization and Normal Prior
1. Continuity: points that are close in latent space — similar content after
decoding

2. Completeness: sampling from latent space — “meaningful" content
after decoding

4 e R
A Point in latent space a
" not meaningfully |

decoded

Close in latent space, but
not similarly decoded

Points close in latent
space, simlarly and
meaningfully dj:oded

N J N
Not Regularized Regularized




FSAN/ELEG815

Intuition on Regularization and Normal Prior

1. Continuity: points that are close in latent space — similar content after
decoding

2. Completeness: sampling from latent space — “meaningful" content
after decoding
Normal Prior—

Continuity + completeness
Regularize variance

Encoding as a distribution does not
guarantee these properties!

-~ .

Small variances — A _ -~ /\ = ,
Pointed distributions 4 . (X~ e
R P Centgr means
- P Regularize variance
.

Different means — IR . _ .
Discontinuities - - - Sel -

R

Not Regularized Regularized
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Intuition on Regularization and Normal Prior
1. Continuity: points that are close in latent space — similar content after
decoding

2. Completeness: sampling from latent space — “meaningful" content
after decoding

Regularization with Normal prior helps enforce information gradient in the
space



VAE Computation Graph
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Problem: We cannot backpropagate gradients through sampling layers

2

”1
2 e

2

A 4

Encoder computes: ¢,(z|x)

£(¢7 97

X) =

(reconstruction loss) +

Decoder computes: py(x|z)

(regularization loss)
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Reparametrizing the Sampling Layer
Key ldea:

2~ N(p,0%)

Consider the Sampled latent vector
z as a sum of:

» A fixed p vector
» and fixed o, scaled by

random constants drawn
from the prior distribution

Z=pu+o@ e

Where € ~ N(0,1)
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Reparametrizing the Sampling Layer

‘ 01 Backprop 0

X z=g(¢,X,¢)

Deterministic node

Stochastic node

Z~ q4(z[x)

Original form Reparametrized form
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VAEs: Latent Perturbation

Slowly increase or decrease a single latent variable.
Keep all other variables fixed

CESEEERERER

Head pose

Different dimensions of z encode different interpretable latent features



Smile

Head pose
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Ideally, we want latent variables
that are uncorrelated with each
other.

Enforce diagonal prior on the
latent variables to encourage
independence
Disentanglement
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Latent Space Disentanglement with 5-VAEs

Standard VAE loss

L(0,:%,2) = Eq, [log(pe(x[2))] — Dri(g5(2(x) || p(2))

Reconstruction term Regularization term

B-VAE loss

L(0,p7%,2) = Eqy, [log(pe(x[2))] — FDk(g9(2[x) || p(2))

Reconstruction term Regularization term

> 1: constrain latent bottleneck, encourage efficient latent encoding —
disentanglement
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Latent Space Disentanglement With £-VAEs
B-VAE loss

L(0,0;x,2) = Eqy, [log(ps(x|2))] — B Dk1(g4(2]x) || p(2))

Reconstruction term Regularization term

[ > 1: constrain latent bottleneck, encourage efficient latent encoding —
disentanglement

Head rotation (azimuth)

Smile also ’ ". ' ' ‘ ‘

changing! constant!

-
i A ‘.l i e | &

* B-VAE (8 = 250)

~ Standard VAE (5 — 1)

Smile relatively
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Why Generative Models? Debiasing

Capable of uncovering underlying features in a dataset

VS

Diverse skin color pose,

Homogeneous skin color, pose
illumination

How can we use this information to create fair and representative datasets?
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Traditional Autoencoders

Compress representation of world to something we can use to learn
Reconstruction allows for unsupervised learning (no labels!)
Reparametrization trick to train end-to-end

Interpret hidden latent variables using perturbation

A A

Generating new examples

x)

3 X z ‘1
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Generative Neural Networks (GANs)

What if we just want so sample?
Idea: don't explicitly model density, and instead just sample to generate new
instances
Problem: want to sample from complex distribution - can't do this directly
Solution: sample from something simple (e.g., noise), learn a transformation
to the data distribution

noise Z

xfa,ke

“fake” sample from
Generator Network G learned representation of
data distribution
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Generative Neural Networks (GANs)

Generative Adversarial Networks (GANs) are a way to make a generative
model by having two neural networks compete with each other.

The discriminator tries to differentiate real

data from fakes created by the generator
The generator turns noise into an imitatation \

of the data to try to trick the discriminator D

x'real

y

noise &

xfake
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Intuition Behind GANs

Generator starts from noise to try to create an imitation of the data.

4 ™\
Generator




Intuition Behind GANs
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Discriminator tries to predict what's real and what's fake.

4 )
Discriminator
Ploea) Z ) e
“~— - — - - — —
- J
Real data

Generator

Fake data
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Intuition Behind GANs

Generator tries to improve its imitation of the data.

4 N\
Discriminator Generator

Real data Fake data
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Intuition Behind GANs

Discriminator tries to predict what's real and what's fake.

4 N
Discriminator Generator

Real data Fake data
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Intuition Behind GANs

Generator tries to improve its imitation of the data.

4 N\
Discriminator Generator

(g J
Real data Fake data
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Intuition Behind GANs

Discriminator tries to differentiate real data from fake data created bt the
generator.
Generator tries to create imitations of data to trick the discriminator.

Discriminator Generator

Real data Fake data
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Training GANs

D tries to identify

\ the synthesized instances
G tries to synthesize fake

. D y
instances that fool D

e

X'real

noise Z

Xfak:e

Training: adversarial objective for D and G
Global optimum: G reproduces the true data distribution
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Training GANs: Loss Functions

D tries to identify

\ the synthesized instances
y

real

Xfa,k:e

argmaxpE; x [log(D(G(2))) + log(1 — D(x))]
fake

real
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Training GANs: Loss Functions

D tries to identify

\ the synthesized instances
y

real

Xfa,k:e

argmaxpE; x [log(D(G(2))) + log(1 — D(x))]
fake

real
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Training GANs: Loss Function

G ftries to synthesize fake
instances that fool D

noise Z

xfake

argming, x [log(D(G(2))) +log(1 — D(x))]

fake real
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Training GANs: Loss Function

D tries to identify

\ the synthesized instances
G ftries to synthesize fake

instances that fool D y

real

noise Z

xfake

argminomaxpE; x [log(D(G(z))) + log(1 —

D(x))]
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Generating New Data with GANs

noise Z

xfake

After training, use generator network to create new data that's never been
seen before.
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GANSs are Distribution Transformers

Gaussian noise
z~ N(0,1)

Z

Trained
generator

Learned target
data distribution
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GANSs are Distribution Transformers

Gaussian noise
z~ N(0,1)

Z

Trained
generator

Learned target
data distribution
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GANSs Recent Advances: Progressive Growing of GANs

G |
[4x4 ] [4x4 ] 4 x4
[ 8x8 | —
* —]
:  —
! ——

i | 1024 % 1024 |
. [ ]
:: [ 1
no ———————1
N C————1
' ———————
C————1
: —_—
[4x4 1] [4x4 ] 4 x4

Training progresses

v
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GANSs Recent Advances: StyleGAN(2): Progressive Growing
+ Style Transfer

Latent z € Z Noi
atent z € Synthesis network ¢ e

Const 4x4x512

=
P
£
3
2
@

Normalize
Mapping
network f

Source A

FC
HE
FC
FC
FC
HE
FC
FC
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GANs for Image Synthesis: Latest Results
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GANs for Image Synthesis: Latest Results
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Conditional GANs

What if we want to control the nature of the output, by conditioning on a
label?

Xreal

CInditioning factor—» \

©
o
S}
S~
noise  Z x
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Conditional GANs and Pix2Pix: Paired Translation

-{E}- i

Generator ) |— Real or fake pair?

----------- > .
- Discriminator



FSAN/ELEGS815

Applications of Paired Translation

BW to Color

Labels to Facade

Labels to Street Scene

tput
AerialtoMap PV

output



Paired Translation: Results

Map— Aerial View

Input | Output
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Output
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CycleGAN: Domain Transformation

CycleGAN learns transformation across domains with unpaired data
?X ?Y

G
7

\/Y
F

www.youtube.com /watch



https://www.youtube.com/watch?v=9reHvktowLY
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Distribution Transformation

. Gaussian noise
GANSs: 0 0)

@_.

Gaussian noise — target data manifold

CycleGANs:

data manifold X — data manifold Y
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CycleGAN: Transforming Speech

Audio waveform (A) Audio waveform (B)

Spectrogram image (A) Spectrogram image (B)
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