

FSAN/ELEG815: Statistical Learning Gonzalo R. Arce

Department of Electrical and Computer Engineering University of Delaware

XII: Convolutional Neural Networks

Outline

- Convolutional Neural Networks Overview
- ► Applications: Style Transfer

Neural Networks Architectures

- Consider several outputs. Linear score function: $\mathbf{h} = \mathbf{W}\mathbf{x}$
- ▶ 2-Layer Neural Network: $\mathbf{s} = \mathbf{W2} \theta(\mathbf{W1x})$

Map the raw image pixels to class scores. Classification based on the score.

FSAN/ELEG815

Neural Networks Architectures

 $\begin{array}{l} 4+2=6 \text{ neurons.} \\ [3\times4]+[4\times2]=20 \text{ weights} \\ 4+2=6 \text{ biases.} \end{array}$

4+4+1=9 neurons. $[3 \times 4] + [4 \times 4] + [4 \times 1] = 32$ weights 4+4+1=9 biases.

Convolutional Neural Networks Architectures

- Very similar to ordinary Neural Networks.
- Add convolutional layers. Neurons with 3 dimensions: width, height and depth.
- Inputs are also volumes.

Neural Network - Fully Connected (FC) Layer

Consider a $32 \times 32 \times 3$ image \rightarrow stretch to 3072×1

Each output is the result of a dot product between a row of W and the input x. 10 neurons outputs.

Convolutional Layer

Consider a $32 \times 32 \times 3$ image \rightarrow preserve spatial structure.

Convolutional Layer

Result: dot product between the filter and a small $5 \times 5 \times 3$ chunk of the image.

Volume convolution at (x, y), for **all** maps of the input volume:

$$\operatorname{conv}_{x,y} = \sum_{i} w_i v_i$$

where ws are kernel weights, vs chuck of the image. Adding scalar bias b:

$$z_{x,y} = \sum_{i} w_i v_i + b$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

<ロ > < 母 > < 臣 > < 臣 > 三 の Q @ 8/38

Convolutional Layer

Convolutional Layer

Consider a second, green filter:

Convolutional Layer

Consider 6 filters (5×5) , we get 6 separate activation maps:

We stack these up to get a "new image volume" of size $28 \times 28 \times 6$

Activation Functions

Pass every element of each activation map through a nonlinearity:

Leaky ReLU $\max(0.1x, x)$

 $\begin{aligned} \text{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{aligned}$

<□ > < @ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ 11/38

ConvNet is a sequence of Convolutional Layers, interspersed with activation functions:

Notice how the activation maps get smaller, this can be solved by zero padding.

Interpretation

Filters Learned:

Interpretation

Pooling Layer

- Makes the representations smaller and more manageable.
- Operates over each activation map independently.
- ▶ Neighborhood of 2×2 is replaced by the average.

Max Pooling

- ▶ Neighborhood of 2×2 is replaced by the maximum value.
- Effective in classifying large image databases.
- Simple and fast.

L₂ pooling is also used. Neighborhood of 2×2 is replaced by the squared root of the sum of their squared values.

Example - Image classification

Convolutional Neural Networks Complete Scheme

- 277 × 277 pixels RGB image.
- ▶ 96 feature maps.
- ▶ 96 kernels volumes of size 11 × 11 × 3
- This weights came from AlexNet: CNN trained using more than 1 million images belonging to 1,000 object categories.

Result Feature Maps

(4) and (35) emphasize edge content. (23) is a blurred version of the input.
(10) and (16) capture complementary shades of gray (hair). (39) emphasizes eyes and dress (blue). (45) blue and red tones (lips, hair, skin).

Example - Handwritten Numerals Classification

- Training: 60,000 grayscale images.
- Testing: 10,000 grayscale images.
- Network trained for 200 epochs.
- Performance: 99.4% in training set.
- Performance: 99.1% in testing set.

□ ▶ < 周 ▶ < Ξ ▶ < Ξ ▶ Ξ < 의 < 20/38</p>

XII: Convolutional Neural Networks

Example - Handwritten Numerals Classification

- First stage: 6 features maps.
- Second stage: 12 features maps.
- Kernels of size 5×5 .
- Fully Connected Layer without hidden layers.

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q ○ 21/38

XII: Convolutional Neural Networks

Remember: Networks with many layers - Example

 ϕ_i is feature function which computes the presence (+1) and absence (-1) of the corresponding feature.

If we feed in '1', ϕ_1, ϕ_2, ϕ_3 compute +1 and ϕ_4, ϕ_5, ϕ_6 compute -1. Combining with the signs of the weights, z_1 will be positive and z_5 will be negative.

FSAN/ELEG815

Features Map Interpretation

 First feature map: strong vertical components on the left.

Second: strong components in the northwest area of the top of the character and the left vertical lower area.

 Third: strong horizontal components.

▲御▶ ▲臣▶ ▲臣▶

≣ ∽� 23/38

Style Transfer

- ► Goal: Rendering the semantic content of an image in different styles.
- Challenge: separate image content from style.
- A Neural Algorithm of Artistic Style can separate and recombine the image content and style of natural images.

Original Photo

Example Photo

Deep Image Representations

VGG-19 is a convolutional neural network that is trained on more than a million images from the ImageNet database to perform object recognition (1000 categories) and localization.

Content Representation

Responses in a layer l are stored in a matrix $\mathcal{F}^l \in \mathbb{R}^{N_l \times M_l}$ where N_l is the number of filters and M_l is the height times the width of the feature map.

 F_{ij}^l is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in layer l_{ab} is the activation of the i^{th} filter at position j in the activation l_{ab} is the activation of the activation of the activation (layer l_{ab} is the

Visualize Image Information at each Layer

Perform gradient descent on a white noise image to obtain a reconstructed image \vec{x} with the information encoded at different layers. Minimize the loss function:

$$\mathcal{L}_{\mathsf{content}}(ec{p},ec{x},l) = rac{1}{2}\sum_{i,j}(F^l_{ij}-P^l_{ij})^2$$

where F_{ij}^l and P_{ij}^l are the feature representations of the original image \vec{p} and the reconstructed image \vec{x} in layer l.

$$\vec{x}(t+1) = \vec{x}(t) - \lambda \frac{\partial \mathcal{L}_{\text{content}}}{\partial \vec{x}}$$

The gradient with respect to the image \vec{x} can be computed using standard error back-propagation.

FSAN/ELEG815

Content Representation Results

Reconstruction of the input image from layers (a) conv1_2 (b) conv2_2 (c) conv3_2 (d) conv4_2 (e) conv5_2 of the original VGG-Network.

Style Representation

Use a feature space designed to capture texture information: correlation between the different filter responses.

Style Representation

Feature correlations are given by the Gram matrix $G^l \in \mathbb{R}^{N_l \times N_l}$. Expectation taken over the spatial extent of the features maps.

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l$$

 G_{ij}^{l} is the inner product between the vectorized feature maps i and j in layer l.

Perform gradient descent on a white noise image to observe the information captured by these style feature spaces.

Style Representation

Visualize Image Style at each Layer

Minimize the distance between the Gram matrices. The contribution of layer *l* to the total loss is:

$$E_{l} = \frac{1}{4N_{l}^{2}M_{l}^{2}}\sum_{i,j}(G_{ij}^{l} - A_{ij}^{l})^{2}$$

where G_{ij}^l and A_{ij}^l are the style representation of the original image \vec{a} and the generated image \vec{x} in layer l.

The total loss is:

$$\mathcal{L}_{\mathsf{style}}(\vec{a}, \vec{x}) = \sum_{l=0}^{L} w_l E_l$$

 w_l are weighting factors (parameters).

$$\vec{x}(t+1) = \vec{x}(t) - \lambda \frac{\partial \mathcal{L}_{\text{style}}}{\partial \vec{x}}$$

The gradient with respect to the image \vec{x} can be computed using standard error back-propagation.

FSAN/ELEG815

Style Representation Results

Style Reconstructions from layers (a) conv1_1, (b) conv1_1 and conv2_1 (c) conv1_1, conv2_1 and conv3_1 (d) conv1_1, conv2_1, conv3_1 and conv4_1 (e) conv1_1, conv2_1, conv3_1, conv4_1 and conv5_1 of the original VGG-Network.

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 34/38

Style Transfer

The total loss is a linear combination between the content and the style loss:

$$\mathcal{L}_{\mathsf{total}} = \alpha \mathcal{L}_{\mathsf{content}} + \beta \mathcal{L}_{\mathsf{style}}$$

Its derivative with respect to the pixel values can be computed using error back-propagation.

$$\vec{x}(t+1) = \vec{x}(t) - \lambda \frac{\partial \mathcal{L}_{\text{total}}}{\partial \vec{x}}$$

FSAN/ELEG815

Style Transfer

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

XII: Convolutional Neural Networks

FSAN/ELEG815

Results

FSAN/ELEG815

Results

Style Image

Content Image

FSAN/ELEG815

Results

Style Image

Content Image

