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FSAN/ELEG815

Outline of the Course
1. Review of Probability
2. Stationary processes
3. Eigen Analysis, Singular Value Decomposition (SVD) and Principal

Component Analysis (PCA)
4. The Learning Problem
5. Training vs Testing
6. Estimation theory: Maximum likelihood and Bayes estimation
7. The Wiener Filter
8. Adaptive Optimization: Steepest descent and the LMS algorithm
9. Least Squares (LS) and Recursive Least Squares (RLS) algorithm

10. Overfitting and Regularization
11. Logistic, Ridge and Lasso regression.
12. Neural Networks
13. Matrix Completion
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Review
I Error measures:

User specified e(h(x),f(x))

In-sample:

Ein(h) = 1
N

N∑
n=1

e(h(xn),f(xn))

Out-of-sample:

Eout(h) = Ex[e(h(x),f(x))]

I Noisy targets:
y = f(x)→ y ∼ P (y|x)

(x1,y1), · · · ,(xN ,yN ) generated by

P (x,y) = P (x)P (y|x)

Eout(h) is now Ex,y[e(h(x),y)]
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Outline

I From training to testing

I Illustrative examples

I Key notion: break point

I Puzzle
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Example - The Final Exam

Before the final exam, a professor may hand out practice problems and
solutions to the class (training set).

Why not to give out the exam problems?

The goal is for the students to learn the course material (small Eout), not to
memorize the practice problems (small Ein).

Having memorized all the practice problems (small Ein) does not guarantee to
learn the course material (small Eout).



5/114

5. Training vs Testing FSAN/ELEG815

The Final Exam

Testing:

I The hypothesis is fixed (you already prepare for the test).

I The hypothesis is tested over unseen data (the test does not include the
same practice problems) i.e. Ein is computed using the hypothesis set.

P[|Ein−Eout|> ε]≤ 2e−2ε2N

I For a large N (number of questions), Ein tracks Eout (your performance
gauges how well you learned).
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The Final Exam
Training: Performance on practice problems.

I The hypothesis is adjusted (since you know the answers, you repeat a
problem until getting it right).

P[|Ein−Eout|> ε]≤ 2Me−2ε2N

I Ein is computed using the practice set.
I Small Ein→ not necessarily small Eout.

You may have not learned and have memorized the problems solutions.
I M is the number of hypotheses to explore.

Depending on the times you repeat a problem, your performance may no
longer accurately gauge how well you learned.

Goal: We want to replace M by another quantity that is not infinity.
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Where did the M Come from?

The Bad events Bm are

|Ein(hm)−Eout(hm)|> ε

Venn Diagram of Bad events

The union bound consider Bm as disjoint events:

P[B1 or B2 or · · · or BM ]≤ P[B1] +P[B2] + · · ·P [BM ]

It is a poor bound when there is overlap.
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Can we Improve on M ?

Yes, bad events are very overlapping

Remember the perceptron:

h(x) =
{

1 if ’approved’
−1 if ’deny credit’

h(x) = sign(wTx)
For any perceptron (w): The
line w0 +w1x1 +w2x2 = 0

splits the plane into +1 and −1
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Can we Improve on M ?
For the given perceptron (w) , consider the out-of-sample error Eout and the
in-sample error Ein:
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Can we Improve on M ?
Consider a different perceptron w:

4Eout and 4Ein move in the same direction
Area of yellow part increases → probability of data points falling in yellow part

increases.
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Can we Improve on M ?

|Ein(h1)−Eout(h1)| ≈ |Ein(h2)−Eout(h2)| (Both exceed ε)
Many hypotheses are similar. In PLA, if we slowly vary w, we get infinitely
many hypotheses that differ from each other infinitesimally.
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What can we Replace M with?
Since the input space X is infinity, the possible hypotheses are infinity.

Instead of counting the hypotheses
over the whole input space, consider a
finite set of input points.

On a finite set of input points, how
many different ‘hypotheses’ can I get?

Classification by the four perceptrons
is different in at least one data point,
so we have four different ‘hypotheses’.

Four different perceptrons:
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What can we Replace M with?

Define dichotomy as different
‘hypotheses’ over the finite set of N
input points.

Definition: Let x1, · · · ,xN ∈ X . The
dichotomies generated by H are

H(x1, · · · ,xN ) = {(h(x1), · · · ,h(xN ))|h∈H}

Hypotheses are seen through the eyes of N
points only

Vary perceptron until the line crosses one of
the points → different dichotomy.
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Dichotomies: Mini-Hypotheses

A hypotheses h : X → {−1,+1}

A dichotomy h : {x1,x2, , · · · ,xN ,}→ {−1,+1}

Number of hypotheses |H| can be infinite.

Number of dichotomies |H(x1,x2, , · · · ,xN )| is
at most 2N

Candidate for replacing M .

Ex: The two dichotomies
in the picture could be:
[−1,−1,−1,+1,+1,+1],
[−1,−1,+1,+1,+1,+1].
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The Growth Function
The growth function counts the most dichotomies on any N points

mH(N) = max
x1,x2,··· ,xN∈X

|H(x1,x2, · · · ,xN )|

The value of mH(N) is at most |{−1,+1}N |. Hence, the growth function
satisfies:

mH(N)≤ 2N

Let’s apply the definition.
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Applying mH(N) Definition - 2D Perceptrons

Maximum 8
dichotomies with three

points.

Dichotomy on 3
colinear points cannot
be generated (N = 4)

.

Dichotomy here cannot
be generated

mH(3) = 8 mH(4) = 14
Note: At most 14 out of the possible 16 dichotomies on any 4 points can be
generated.
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Outline

I From training to testing

I Illustrative examples
These examples confirm the intuition that mH(N) grows faster when H
becomes more complex.

I Key notion: break point

I Puzzle
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Example 1: Positive Rays

H is set of h : R→{−1,+1}

h(x) = sign(x−a)

Hypotheses are defined on a one-dimensional input space, and they return −1
to the left of a and +1 to the right of a.
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Example 1: Positive Rays

N points, split line into N + 1 regions. As we vary a we get different
dichotomies.
The growth function: mH(N) =N + 1
At most N + 1 dichotomies given any N points.
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Example 2: Positive Intervals

H is set of h : R→{−1,+1}

Hypotheses defined on a one-dimensional input space, and they return +1
over some interval and −1 otherwise.
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Example 2: Positive Intervals

N points, split line into N + 1 regions.

mH(N) =
(
N + 1

2

)
+ 1 = 1

2N
2 + 1

2N + 1

Dichotomies are decided by end values of interval, we have
(
N + 1

2

)
possibilities. Add the case in which both end values fall in the same region.
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Example 3: Convex Sets
A set is convex if a line segment connecting any two points in the set lies
entirely within the set

H consists of all hypotheses in two dimensions that are positive inside some
convex set and negative elsewhere

H is set of h : R2→{−1,+1} h(x) = +1 is convex
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Example 3: Convex Sets

How many patterns can I get out of these data points using convex regions?
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Example 3: Convex Sets
How many patterns can I get out of these data points using convex regions?

If we consider some outer points to be +1, then all interior points are +1 (not
many dichotomies).
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Example 3: Convex Sets
Find another distribution of points to get all possible dichotomies using
convex regions?

Place N points over the perimeter of the circle. We get all possible
combinations (maximum number of dichotomies).
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Example 3: Convex Sets

mH(N) = 2N

Any dichotomy on these N points can
be realized using a convex hypothesis.

The N points are ‘shattered’ by
convex sets.

Note: mH(N) is an upper bound.
The number of possible dichotomies
for given data points may be less than
2N because of interior points. The hypothesis shatters all points
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The 3 Growth Functions

I H is positive rays:
mH(N) =N + 1

I H is positive intervals:

mH(N) = 1
2N

2 + 1
2N + 1

I H is convex sets:
mH(N) = 2N

mH(N) grows faster when H becomes more complex.
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Back to the Big Picture

Remember this inequality?

P[|Ein(g)−Eout(g)|> ε]≤ 2Me−2ε2N

What happens if mH(N) replaces M?

mH(N) polynomial =⇒ Good

If mH(N) can be bounded by any polynomial, the generalization error will go
to zero as N →∞ =⇒ Learning is feasible.

Just prove that mH(N) can be bounded by a polynomial?
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Outline

I From training to testing

I Illustrative examples

I Key notion: break point
It would enable us to proof that mH(N) can be bounded by a polynomial

I Puzzle
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Break Point of H

Definition:
If data set of size k cannot be shattered by H,
then k is a break point for H

mH(k)< 2k

The break point k is the number of data
points at which we fail to get all possible
dichotomies.

A bigger data set cannot be shattered either.

Remember the 2D perceptrons

At most 14 out of 16 dichotomies
on any 4 points can be generated.

k = 4
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Break Point - the 3 Examples

mH(k)< 2k

I Positive rays mH(N) =N + 1

k = 1 mH(1) = 2≮ 21

k = 2 mH(2) = 3< 22 → break point

Intuitively, remember the positive rays:

There is no way for the positive ray to generate: • •
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Break Point - the 3 Examples
I Positive intervals mH(N) = 1

2N
2 + 1

2N + 1

k = 1 mH(1) = 2≮ 21

k = 2 mH(2) = 4≮ 22

k = 3 mH(3) = 7< 23 → break point

Intuitively, remember the positive intervals:

There is no way to generate: • • •
I Convex sets mH(N) = 2N

break point k = ‘∞’
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Main Result

We observe how the break point increases with the complexity of the model.

No break point → mH(N) = 2N

Any break point → Use k to bound quadmH(N) by a polynomial in N

Remember: If mH(N) can be bounded by any polynomial, the generalization
error will go to zero as N →∞ =⇒ Learning is feasible.
To consider learning feasible, all that we need to know now is that there exist
a break point.
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Puzzle
Let’s consider 3 data points and a break point k = 2, i.e. we cannot get 4
dichotomies out of any pair of points. How many dichotomies can we get on
these 3 data points?

We start generating the possible dichotomies.

We stop when we get all possible combinations out of two points.
We cannot include this last dichotomy!
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Puzzle

We tried another one:

We can add this one!
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Puzzle
Let’s continue!

We stop again when we get all possible combinations out of two points.
We cannot include this last dichotomy either!
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Puzzle
If we continue trying, we’ll see that none of the other dichotomies work.

At most 4 dichotomies out of 8.

If we start different, are we going to be able to achieve more? No!

Note: Knowing only N and k, we can determine the maximum number of
dichotomies (complexity).
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Review

I Dichotomies:

I Growth Function:

mH(N) = max
x1,··· ,xN∈X

|H(x1, · · · ,xN )|

I Break Point k :

At most 14 out of the possible 16 dichotomies

on any 4 points can be generated. k = 4

I Maximum # of dichotomies
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Bounding the Growth Function
For a given H, if the break point k is fixed, mH(N) can be bounded by a
polynomial(∗):

Theorem:
If mH(k)< 2k for some value k, then

mH(N)≤
k−1∑
i=0

(
N

i

)

for all N . The RHS is polynomial of degree k−1.

Note: This ensures good generalization on the Hoeffding’s Inequality.
(∗) Proof can be found on the book: Learning from Data, Yaser S. Abu-Mostafa, Malik Magdon-Ismail and

Hsuan-Tien Lin, AMLbook 2012.
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Three examples
Let’s take the hypothesis sets for which we compute the growth function:
I H is positive rays:

We compute before:
mH(N) =N + 1

No need to know anything about the hypothesis set just that break point
k = 2

mH(N)≤
1∑
i=0

(
N

i

)
=N + 1
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Three examples

mH(N)≤
k−1∑
i=0

(
N

i

)

I H is positive intervals: (break point k = 3)

mH(N) = 1
2N

2 + 1
2N + 1 ≤

2∑
i=0

(
N

i

)
= 1

2N
2 + 1

2N + 1

I H is 2D perceptrons: (break point k = 4)

mH(N) = ? ≤
3∑
i=0

(
N

i

)
= 1

6N
3 + 5

6N + 1
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What we Want

Instead of:

P[|Ein(g)−Eout(g)|> ε]≤ 2 M e−2ε2N

We want:

P[|Ein(g)−Eout(g)|> ε]≤ 2 mH(N) e−2ε2N

Let’s consider a pictorial proof:
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Pictorial Proof

I How does mH(N) relate to overlaps?

I What to do about Eout?

I Putting it together
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How does mH(N) relate to overlaps?
The ‘canvas’ represents space of all possible data sets, with areas
corresponding to probabilities. Each data set D is a point on the canvas. The
total area of the canvas is 1.
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How does mH(N) relate to overlaps?

(a) For a given hypothesis h ∈H, colored points correspond to data sets
where Ein does not generalize well to Eout (“|Ein(h)−Eout(h)|> ε”).

The Hoeffding Inequality guarantees a small colored area.
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How does mH(N) relate to overlaps?

(b) Considering different hypothesis.
The event “|Ein(h)−Eout(h)|> ε” may contain different points

(painted with different color).
The union bound assumes no overlap, colored area is large.
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How does mH(N) relate to overlaps?

How the growth function is going to account for the overlaps?

Assume a hypothesis set H that colors each point on
the canvas 100 times (because of 100 different h’s).
The total colored area is now 1

100 of what it would
have been without any overlap.

Many hypotheses have same dichotomy on a given D.

If a hypothesis paints a given point, similar hypotheses
(same dichotomy) will do too.
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How does mH(N) relate to overlaps?

(c) The VC bound keeps track of overlaps.
It estimates the total area of bad generalization to be relatively small.

Learning is Feasible!
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Pictorial Proof

I How does mH(N) relate to overlaps?

The point being colored (event “|Ein(h)−Eout(h)|> ε”) depends not
only on D, but also on the entire X because Eout(h) is based on X .

I What to do about Eout?

I Putting it together
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What to do about Eout
To remedy this, consider the artificial event “|Ein(h)−E′in(h)|> ε” instead,
where Ein and E′in are based on two samples D and D′ each of size N .

(a) For multiple hypotheses, Ein(h)
may sometimes deviate from Eout(h).

(b) Ein(h) and E′in(h) track Eout(h).
Thus, they track each other. For
multiple hypotheses the behavior
reflects the same as in (a), Ein(h)
may sometimes deviate from E′in(h).
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Putting it Together
Instead of:

P[|Ein(g)−Eout(g)|> ε]≤ 2 M e−2ε2N

We wanted:

P[|Ein(g)−Eout(g)|> ε]≤ 2 mH(N) e−2ε2N

but rather, we get:

P[|Ein(g)−Eout(g)|> ε]≤ 4 mH(2N) e−
1
8 ε

2N

The Vapnik-Chervonenkis Inequality
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Outline

I The definition

I VC dimension of perceptrons

I Interpreting the VC dimension

I Generalization bounds
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Definition of VC Dimension

The Vapnik-Chervonenkis (VC) dimension of a hypothesis set H denoted by
dVC(H), is

the largest value of N for which mH(N) = 2N

“ the maximum number of points H can shatter”

N ≤ dVC(H) =⇒ H can shatter N points

k > dVC(H) =⇒ k is a break point for H
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The Growth Function

In terms of a break point k:

mH(N)≤
k−1∑
i=0

(
N

i

)

In terms of the dVC:

mH(N)≤
dVC∑
i=0

(
N

i

)

Maximum power is NdVC
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Examples
I H is positive rays: dVC = 1 •

if N = 2, we cannot have • •

I H is 2D perceptrons: dVC = 3 • • •

if N = 4, we cannot have

I H is convex sets: dVC =∞
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VC Dimension and Learning
Result: If dVC(H) is finite, g ∈H will generalize.

This statement is true independently
of:
I Learning algorithm

I Input distribution

I Target function
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VC Dimension and Learning
Result: If dVC(H) is finite, g ∈H will generalize.

This statement depends on:
I Final hypothesis
I Hypothesis set

VC dimension depends only on the
hypothesis set.

I Training samples
Exist a small chance of having a data set
that won’t allow generalization.
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VC Dimension of Perceptrons
Consider the 2D perceptron:

d= 2, dVC = 3

In general, for a d-dimensional
perceptron:

dVC = d+ 1
To prove this, we are going to show
that:

dVC ≤ d+ 1
dVC ≥ d+ 1
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VC Dimension of Perceptrons
Consider a set of N = d+ 1 points in Rd shattered by the perceptron:

Let’s choose input points such as:

X =



1 x11 x12 . . . x1d
1 x21 x22 . . . x2d
1 x31 x32 . . . x3d
... ... ... . . . ...
1 xN1 xN2 . . . xNd

=



1 0 0 . . . 0
1 1 0 . . . 0
1 0 1 . . . 0
... ... ... . . . ...
1 0 . . . 0 1


I X ∈ R(d+1)×(d+1)

I X is invertible (det(X) = 1).

This would allow us to shatter the data set.
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Can we Shatter this Data Set?
In vector form, dichotomies are:

y =


y1
y2
...

yd+1

=


±1
±1
...
±1

 , and considering the perceptron: y = sign(Xw)

Since X is invertible, for any y, we can find a vector w satisfying:

sign(Xw) = y
Xw = y
w = X−1y

Note: There exist a perceptron w that can generate all possible dichotomies y.
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Quiz
This result implies what?

(a) dVC = d+ 1

(b) dVC ≥ d+ 1

(c) dVC ≤ d+ 1

(d) No conclusion

Answer: (b) dVC ≥ d+ 1
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Quiz
This result implies what?

(a) dVC = d+ 1

(b) dVC ≥ d+ 1

(c) dVC ≤ d+ 1

(d) No conclusion

Answer: (b) dVC ≥ d+ 1
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Quiz
Now, to demonstrate that dVC ≤ d+ 1, we need to show that:

(a) There are d+ 1 points we cannot shatter

(b) There are d+ 2 points we cannot shatter

(c) We cannot shatter any set of d+ 1 points

(d) We cannot shatter any set of d+ 2 points

Answer: (d) We cannot shatter any set of d+ 2 points
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Quiz
Now, to demonstrate that dVC ≤ d+ 1, we need to show that:

(a) There are d+ 1 points we cannot shatter

(b) There are d+ 2 points we cannot shatter

(c) We cannot shatter any set of d+ 1 points

(d) We cannot shatter any set of d+ 2 points

Answer: (d) We cannot shatter any set of d+ 2 points



63/114

5. Training vs Testing FSAN/ELEG815

For any d+ 2 points,
x1, · · · ,xd+1,xd+2

More points than dimensions (x ∈ Rd) =⇒ the vectors must be linearly
dependent and

xj =
∑
i6=j

aixi

where not all the ai’s are zeros.
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xj =
∑
i6=j

aixi

Focus on xi’s with non-zero ai and construct a dichotomy that cannot be
implemented by a perceptron:

xi’s with non-zero ai get yi = sign(ai), xj gets yj =−1 and let others either
+1 or −1.

No perceptron can implement such dichotomy!
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Why?
The perceptron:

xj =
∑
i6=j

aixi =⇒ wTxj =
∑
i6=j

aiwTxi

If yi = sign(wTxi) = sign(ai), then aiwTxi > 0

This forces

wTxj =
∑
i 6=j

aiwTxi > 0

Therefore, yj = sign(wTxj) = +1 (impossible to get −1).

Conclusion: we cannot shatter any set of d+ 2 points =⇒ dVC ≤ d+ 1
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Putting it Together

We proved dVC ≤ d+ 1 and dVC ≥ d+ 1. Thus,

dVC = d+ 1
What is d+ 1 in the perceptron?

It is the number of parameters w0,w1, ...,wd,

Note: The more parameters a model has, the more diverse its hypothesis set
is, which is reflected in a larger value of the growth function.
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Outline

I The definition

I VC dimension of perceptrons

I Interpreting the VC dimension
I What does it signify?
I How apply it in practice?

I Generalization bounds
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Degrees of Freedom

Parameters create degrees of freedom

# of parameters: analog degrees of
freedom

dVC: translates to degrees of freedom.

Parameters are consider as knobs
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The Usual Suspects
Let’s see if the correspondence between degrees of freedom and VC dimension
holds.
I Positive rays (dVC = 1):

we cannot have • •
Each hypothesis is specified by the parameter a (one degree of freedom).

I Positive Intervals (dVC = 2)

we cannot have • • •
Each hypothesis is specified by the two end values of the interval (two
degrees of freedom).
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Not Just Parameters
Parameters may not contribute degrees of freedom:

Example: consider a one-dimensional perceptron h(x) = sign(w0 +w1x)
where w0 is a threshold.

y = h(x) =
{

1 if w1x >−w0
−1 if w1x <−w0

2 parameters and 2 degrees of freedom.
Creating a cascade of perceptrons:

Eight parameters in this model and still two degrees of freedom.

dVC measures the effective number of parameters.
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Number of Data Points Needed
Two small quantities in the VC inequality:

P[|Ein(g)−Eout(g)|> ε]≤ 4mH(2N)e−
1
8 ε

2N︸ ︷︷ ︸
δ

If we want certain ε and δ, how does N depend on dVC

Let us look at Nde−N

Fix Nde−N = small value

How does N change with d?
It is basically proportional.

Rule of thumb:

N ≥ 10dVC
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Outline

I The definition

I VC dimension of perceptrons

I Interpreting the VC dimension

I Generalization bounds



73/114

5. Training vs Testing FSAN/ELEG815

Rearranging Things
Start from the VC inequality:

P[|Ein(g)−Eout(g)|> ε]≤ 4mH(2N)e−
1
8 ε

2N︸ ︷︷ ︸
δ

The performance is specified by these two parameters:
I ε determines the allowed generalization error
I δ determines how often the error tolerance is violated (confidence).

Get ε in terms of δ:

δ = 4mH(2N)e−
1
8 ε

2N =⇒ ε=
√

8
N

ln 4mH(2N)
δ︸ ︷︷ ︸

Ω

With probability ≥ 1− δ, |Eout−Ein| ≤ Ω(N,H, δ)
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Generalization Bound

With probability ≥ 1− δ, |Eout−Ein| ≤ Ω(N,H, δ)

Since we minimize Ein, in general, Ein ≤ Eout. Thus,

With probability ≥ 1− δ, Eout−Ein ≤ Ω

=⇒

With probability ≥ 1− δ, Eout ≤ Ein+ Ω
We know and we have control over the RHS quantities.

Tradeoff: bigger hypothesis set is good for ↓ Ein but bad for generalization
↑ Ω.
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Review

I mH(N) is polynomial
if H has a break point k

mH(N)≤
k−1∑
i=0

(
N

i

)

Maximum power is Nk−1

I The VC Inequality:

P[|Ein(g)−Eout(g)|> ε] ≤ 2 M e−2ε2N

↓ ↓ ↓
P[|Ein(g)−Eout(g)|> ε] ≤ 4 mH(2N) e−

1
8 ε

2N
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A real data set

16x16 pixels gray-scale images of digits from the US Postal Service Zip Code
Database. Goal: recognize the digit in each image.

Not a trivial task (even for a human). Typical human error Eout is 2.5% due
to common confusions between {4,9} and {2,7}.

Machine Learning tries to achieve or beat this error.
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Input Representation

Since the images are 16×16 pixels:
I ‘raw’ input

xr = (x0,x1,x2, · · · ,x256)

I Linear model:
(w0,w1,w2, · · · ,w256)

Too many many parameters.
A better representation needed.

Features: Extract useful information,
e.g.,
I Average intensity and symmetry

x = (x0,x1,x2)

I Linear model: (w0,w1,w2)
The descriptors must be representative of the data.
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Illustration of Features
x = (x0,x1,x2) x0 = 1

Almost linearly separable. However, it is impossible to have them all right.
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What Perceptron Learning Algorithm does?
Evolution of in-sample error Ein and
out-of-sample error Eout as a function
of iterations of PLA

I Assume we know Eout .
I Ein tracks Eout. PLA generalizes

well!

I It would never converge (data not
linearly separable).

I Stopping criteria: Max. number
of iterations.

Final perceptron boundary
We can do better...
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The ‘pocket’ algorithm

Keeps ‘in its pocket’ the best weight vector encountered up to the current
iteration t in PLA.

PLA Pocket
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Classification boundary - PLA versus Poket

PLA Pocket
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Linear Regression - Credit Example

Regression ≡ Real-valued output

Classification: Credit approval (yes/no)
Regression: Credit line (dollar amount)

Input: x =

age 23 years
gender male

annual salary $30,000
years in residence 1 year

years in job 1 year
current debt $15,000

... ...

Linear regression output: h(x) =∑d
i=0wixi = wTx
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Credit Example Again - The data set

Input: x =

age 23 years
gender male

annual salary $30,000
years in residence 1 year

years in job 1 year
current debt $15,000

... ...

Output:

h(x) =
d∑
i=0

wixi = wTx

Credit officers decide on credit lines:

(x1,y1),(x2,y2), · · · ,(xN ,yN )

yn ∈ R is the credit for customer xn.

Linear regression wants to automate this task, trying to replicate human
experts decisions.
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How to Measure the Error?

How well does h(x) = wTx approximate y = f(x)?

Linear regression algorithm is based on minimizing the squared error:

Eout(h) = E[(h(x)−y)2]

where E[·] is taken with respect to P (x,y) that is unknown. Thus, we resort
to minimize the in-sample error:

Ein(h) = 1
N

N∑
n=1

(h(xn)−yn)2

The goal is to find a hypothesis that achieves a small Ein.
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Illustration of Linear Regression
The solution hypothesis (in blue) of the linear regression algorithm in one and
two dimensions input. The sum of square error is minimized.

One dimension (line)
Two dimensions (hyperplane)
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Linear Regression - The Expression for Ein
y = w0 +w1x1 +w2x2 + ...+wpxd+ ε.


y1
...
yN


︸ ︷︷ ︸

y

=


1 x11 x12 · · · x1d
... ... ... . . . ...
1 xN1 xN2 · · · xNd


︸ ︷︷ ︸

X

·


w0
w1
...
wd


︸ ︷︷ ︸

w

+


ε
...
ε



Ein = 1
N

N∑
n=1

(wTxn−yn)2 X ∈ RN×(d+1)

= 1
N
||Xw−y||22 = 1

N
(Xw−y)T (Xw−y)

= 1
N

(wTXTXw−yTXw−wTXTy + yTy)

= 1
N

(wTXTXw−2wTXTy + yTy)



87/114

5. Training vs Testing FSAN/ELEG815

Learning Algorithm - Minimizing Ein

ŵ = arg min
w∈Rd

1
N
||Xw−y||22

= arg min
w∈Rd

1
N

(wTXTXw−2wTXTy + yTy)

Observation: The error is a quadratic function of w
Consequences: The error is an d–dimensional bowl–shaped function of w with
a unique minimum
Result: The optimal weight vector, ŵ, is determined by differentiating Ein(w)
and setting the result to zero

∇wEin(w) = 0

I A closed form solution exists
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Example
Consider a two dimensional case, i.e., a d= 2. Plot the error surface and error
contours.

Error Surface Error Contours
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Aside (Matrix Differentiation):
Let w ∈R(d+1) and let f :R(d+1)→R. The derivative of f (called gradient of
f) with respect to w is:

∇w(f) = ∂f

∂w =


∇0(f)
∇1(f)

...
∇d(f)

=



∂f
∂w0
∂f
∂w1...
∂f
∂wd


Thus,

∇k(f) = ∂f

∂wk
, k = 0,1, · · · ,d
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Example
Now suppose f = cTw. Find ∇w(f)
In this case,

f = cTw =
d∑

k=0
wkck

and

∇k(f) = ∂f

∂wk
= ck, k = 0,1, · · · ,d

Result: For f = cTw

∇w(g) =


∇0(g)
∇1(g)

...
∇d(g)

=


c0
c1
...
cd

= c

Same for f = wTc.
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Example
Lastly, suppose f = wTQw. Where Q ∈ R(d+1)×(d+1) and w ∈ Rd+1. Find
∇w(f)
In this case, using the product rule:

∇wf = ∂wT (Qw̄)
∂w + ∂(w̄TQ)w

∂w

= ∂wTu1
∂w + ∂uT2 w

∂w

Using previous result, ∂c
Tw
∂w = ∂wT c

∂w = c,

∇wf = u1 +u2,

= Qw+ QTw = (Q + QT )w, if Q symmetric, QT = Q
= 2Qw
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Returning to the MSE performance criteria

Ein(w) =
[ 1
N

(wTXTXw−2wTXTy + yTy)
]

Differentiating with respect to w and setting equal to zero, we obtain,

5Ein(w) = 1
N

(2XTXw−2XTy+ 0)

= 2
N
XTXw− 2

N
XTy = 0

XTXw = XTy
ŵ = (XTX)−1XTy

= X†y

where X† = (XTX)−1XT is the pseudo-inverse of X.
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Learning Diagram - Linear Regression
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Review

I VC dimension dVC(H)
most points H can shatter.

I Scope of VC analysis

I Utility of VC dimension:

N ∝ dVC

Rule of thumb: N ≥ 10dVC

I Generalization bound
Eout ≤ Ein+ Ω
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Approximation- Generalization Tradeoff
Balance between approximating f in the training data and generalizing on new
data.

Goal: small Eout→ good approximation of f out of sample.

More complex H =⇒ better chance of approximating f

Less complex H =⇒ better chance of generalizing out of sample

A more complex H better approximates f , however, it might be more difficult
for the algorithm to zoom in on the right hypothesis.

The ideal H is a singleton hypothesis set containing only the target function.

H = {f} ≡ Wining the lottery!
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Approximation-Generalization Tradeoff
Two different approaches:

I VC analysis (binary error): Eout ≤ Ein+ Ω .
I Ein→ Approximation
I Ω→ Generalization

The optimal model is a compromise that minimizes a combination of the
two terms.

I Bias-variance analysis (squared error): decomposing Eout into

1. How well H can approximate f
2. How well we can zoom in on a good h ∈H

We apply this analysis to real-valued targets and use squared error
(linear regression).
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Start with Eout

Eout(g(D)) = Ex[(g(D)(x)−f(x))2]

where Ex denotes the expected value with respect to x (based on P on X ).

Rid of the dependence on a particular data set by taking the expectation with
respect to all data sets:

ED
[
Eout(g(D))

]
= ED

[
Ex[(g(D)(x)−f(x))2]

]

= Ex
[
ED[(g(D)(x)−f(x))2]

]
Now, let us focus on:

ED[(g(D)(x)−f(x))2]



98/114

5. Training vs Testing FSAN/ELEG815

The Average Hypothesis
To evaluate ED[(g(D)(x)−f(x))2]:

We define the ‘average’ hypothesis ḡ(x):

ḡ(x) = ED[g(D)(x)]

Imagine we generate many data sets D1,D1, · · · ,DK . We can estimate an
average function for any x by

ḡ(x)≈ 1
K

K∑
k=1

g(Dk)(x)

g(x) is seen as a RV, with the randomness coming from the randomness in the
data set.

For a particular x, ḡ(x) is the expectation of this RV.
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Using ḡ(x)

ED[(g(D)(x)−f(x))2] = ED[(g(D)(x)− ḡ(x) + ḡ(x)−f(x))2]
= ED[(g(D)(x)− ḡ(x))2 + (ḡ(x)−f(x))2

+2(g(D)(x)− ḡ(x))(ḡ(x)−f(x))]

Since ED[g(D)(x)] = ḡ(x), cross term cancels.

= ED[(g(D)(x)− ḡ(x))2] + (ḡ(x)−f(x))2
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Bias and Variance

ED[(g(D)(x)−f(x))2] = ED[(g(D)(x)− ḡ(x))2]︸ ︷︷ ︸
var(x)

+(ḡ(x)−f(x))2︸ ︷︷ ︸
bias(x)

var(x) is the variance of the RV g(D)(x) and measures the variation in the
final hypothesis depending on the data set.

bias(x) measures how much the average function that we would learn using
different data sets D deviates from the target function.

Therefore,

ED
[
Eout(g(D))

]
= Ex

[
ED[(g(D)(x)−f(x))2]

]
= Ex [bias(x) + var(x)]]
= bias+var
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bias = Ex
[
(ḡ(x)−f(x))2

]

Very small model (one hypothesis).
The final hypothesis g(D) will be the

same as ḡ, for any data set → var = 0.
The bias will depend solely on how well
this single hypothesis approximates the
target f , and unless we are extremely

lucky, we expect a large bias.

var = Ex
[
ED[(g(D)(x)− ḡ(x))2]

]

Very large model (all hypothesis). f ∈H. Different
data sets will lead to different hypotheses that agree

with f on the data set, and are spread around f in the
red region. Thus, bias≈ 0 because ḡ is likely to be

close to f . The var is large ( represented by the size of
the red region in the figure).

The Tradeoff:
H ↑ bias↓ var↑



102/114

5. Training vs Testing FSAN/ELEG815

Example: Sine Target

f : [−1,1]→R f(x) = sin(πx) unknown

We sample x uniformly in [−1,1] to
generate two training samples (N = 2)

Two models used for learning:

H0 : h(x) = b

H1 : h(x) = ax+ b

Which is better, H0 or H1?
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Approximation - H0 versus H1
Based on the two models and assuming we know f , try to find the two
functions that minimize the squared error:

H0 : h(x) = b H1 : h(x) = ax+ b
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Learning - H0 versus H1
In learning, we do not know f . We use the two examples (x1,y1),(x2,y2) to
learn the two functions that best fits the data.

H0 : midpoint
(
b= y1+y2

2

)
H1 : line passes through the two points

The result varies depending on the data points. We need bias-variance
analysis to evaluate our result (considering other possible data sets).
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Bias and Variance - H0
Repeating the process with many data sets, we can estimate the bias and the
variance.

Average hypothesis ḡ(x). In this case ḡ(x)≈ 0 that is close to the best approximation
computed using f .

bias: difference between red function ḡ(x) and blue function f .
var(x) is indicated by the gray shaded region that is ḡ(x)±

√
var(x)
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Bias and Variance - H1

Using the same data sets as before, for the second model we get

bias: difference between red function ḡ(x) and blue function f .
var(x) is indicated by the gray shaded region that is ḡ(x)±

√
var(x)
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The Winner is ...

bias = 0.50 var=0.25 bias=0.21 var=1.69
The simpler model wins by significantly decreasing the var at the expense of a

smaller increase in bias
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Lesson Learned

However, the var term decreases as N increases, so if we get a bigger data
set, the bias term will be dominant in Eout, and H1 will win.

Match the ‘model complexity’

to the data resources, not to the target complexity
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Outline

I Bias and Variance

I Learning Curves
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Expected Eout and Ein

Consider learning with a data set D of size N ,

the final hypothesis has a expected out-of-sample error ED
[
Eout(g(D))

]
and

expected in-sample error ED
[
Ein(g(D))

]
How do they vary with N?
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The Curves

Simple Model Complex Model

Note: the simple model converges more quickly but to a higher error. In both
models, Eout decreases while Ein increases toward the smallest error the
learning model can achieve in approximating f .
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VC versus Bias-Variance

In the VC analysis, Eout ≤Ein+Ω. In the bias-variance, it is assumed that, for every N , ḡ
has the same performance as the best approximation to f in the learning model.

Both capture the tradeoff: Approximation-Generalization
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Example - Linear Regression Case

Noisy target y = f(x) + ε= wTx+ ε
where ε represents noise with zero mean and variance σ2.

Data set D = {(x1,y1), · · · ,(xN ,yN )}

Linear regression solution: w = (XTX)−1XTy

In sample error vector = Xw−y

Out-of-sample error vector = Xw−y’

where y’ correspond to the output of the target function to the same inputs x
but with a different realization of the noise. y′ = f(x) + ε′
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Learning Curves for Linear Regression
Best approximation error = σ2

Expected in-sample error = σ2
(
1− d+1

N

)
Expected out-of-sample error = σ2

(
1 + d+1

N

)
Expected generalization error = 2σ2

(
d+1
N

)
d+ 1→ VC dimension in perceptron
d+ 1→ ‘degrees of freedom’ in regression.

Conclusion: the generalization error is a compromise between the ‘degrees of
freedom’ (complexity of the model) and the size of the dataset.
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