EIAWARE.

ELEG404/604: Imaging & Deep Learning Gonzalo R. Arce

Department of Electrical and Computer Engineering University of Delaware

Introduction

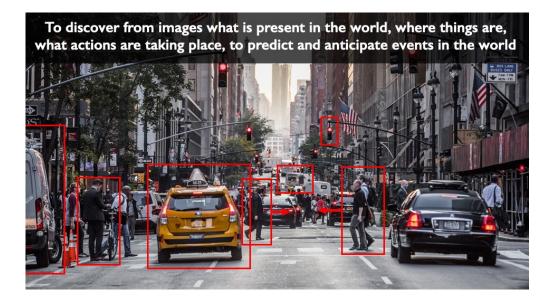
Course Objectives & Structure

Imaging is everywhere at the heart of science, medicine, entertainment, engineering and communications. This course provides and introduction to mathematical and deep learning tools for image sensing and processing.

Course Structure:

- ► Weekly lectures [notes: eecis.udel.edu/~arce/courses/digitalimgproc/].
- Homework & computer assignments [20%].
- 2 Midterms [40%].
- ► Final Exam [20%].
- Project [20%].

Textbook:


Class notes and reference articles.

TA Information:

- Carlos Restrepo
- ► <u>rgaleano@udel.edu</u>
- Office Hours: Friday 3-4pm

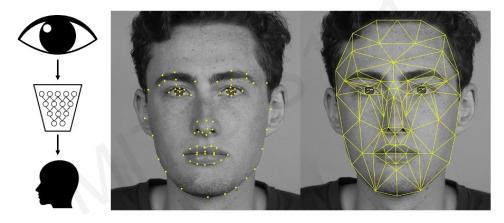
Evans Hall 204

The rise and impact of computer vision

Robotics

Accessibility

Biology & Medicine


MIT Introduction to Deep Learning

Boston Dynamics; P. Isola 6.869 1/9/24

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 ク 9 9 2/58

Impact: Facial Detection & Recognition

MIT Introduction to Deep Learning

1/9/24

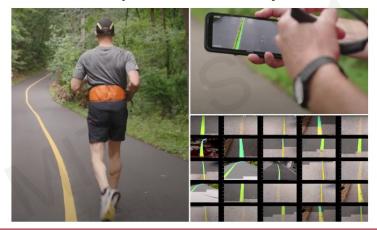
Impact: Self-Driving Cars

MIT Introduction to Deep Learning

Amini+ ICRA 2019. 1/9/24

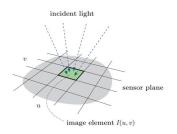
Impact: Medicine, Biology, Healthcare

COVID-19 Breast cancer Skin cancer


MIT Introduction to Deep Learning

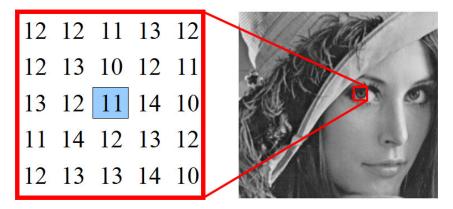
Esteva+ Nature 2017, 1/9/24

Impact: Accessibility


MIT Introduction to Deep Learning

Google Project Guideline 1/9/24

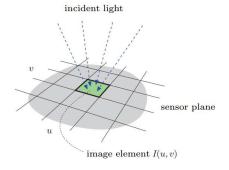
Introduction


Digital imaging refers to processing of digital images by means of a computer.

- An image may be defined as a function f(x,y), where (x,y) are spatial coordinates and f(x,y) is the intensity
- When x, y and f are all finite, discrete quantities the image is called a digital image
- Each f(x,y) are referred to as picture elements, image elements, pels or pixels

What is an image?

An image is a matrix of numbers.

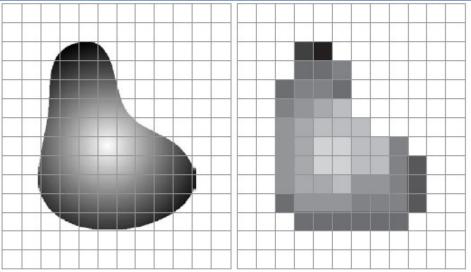


Each individual number in this matrix is a picture element or PIXEL.

Going Digital

Projection on the image plane of a camera is a two-dimensional, time-dependent, continuous distribution of light energy. To convert this image into a digital image, 3 steps are necessary:

- Spatial sampling
- Temporal sampling
- Quantization of pixel values

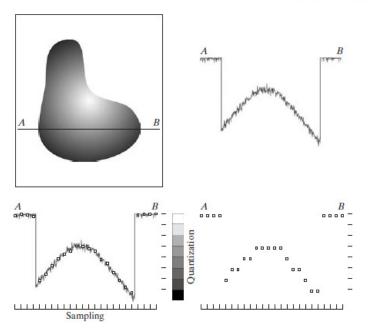


Going Digital

- Spatial sampling: Conversion of the continuous signal to its discrete representation.
- Temporal sampling: Integrates at regular intervals the amount of light incident on each individual sensor element.
- Quantization of pixel values: Image values on the computer they are commonly converted to an integer scale

a b

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.


Intensity Image

In a intensity image, the number corresponds to a shade of gray.

E ∽ ९ ભ 14/66

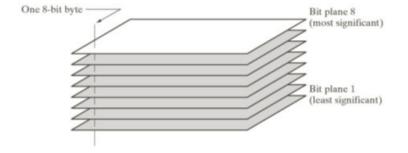
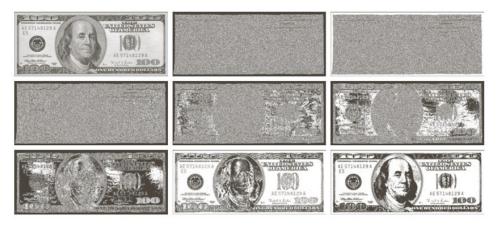

a b c d

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ● ● ● ● 15/66


<□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 つ Q ○ 16/66

Bit-plane representation of an 8-bit image.

abc def ghi

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

DELAWARE.

Pixel Values

Information within an image element depends on the data type used to represent it. A pixel can be represented by any of 2^k different values. Common image types:

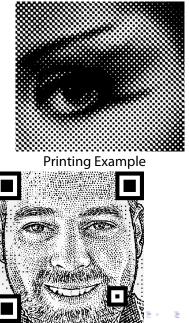
Chan.	Bits/Pix.	Range	Use	
1	1	01	Binary image: document, illustration, fax	
1	8	0255	Universal: photo, scan, print	
1	12	04095	High quality: photo, scan, print	
1	14	016383	Professional: photo, scan, print	
1	16	065535	Highest quality: medicine, astronomy	

Grayscale (Intensity Images):

19/66

Quantization

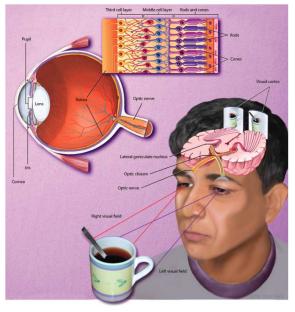
How many different colors are needed to represent a particular image?



Binary images

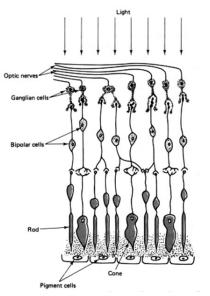
- Binary image pixels can take on one of two values, black or white.
- These values are encoded using a single bit (0/1) per pixel.
- Used for representing line graphics, archiving documents, encoding fax transmissions, and by many printers.

RGB Image


ELAWARE.

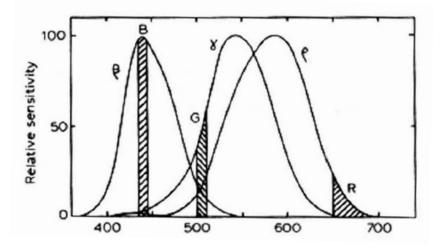
▶ ▲ Ē ▶ Ē ∽ � [©] 21/66

Why Red, Green and Blue



Human retina contains two types of light sensitive cells.

Why Red, Green and Blue


Human retina contains two types of light sensitive cells.

- RODS-sensitive to light intensity, sees only in gray-scale.
- Cones-see color. Red light, green light and Blue light sensitive cones.

Why Red, Green and Blue

Light sensitive curves for the red, green and blue sensitive cones.

Image Sensing

Interest in digital imaging methods stems from two main applications:

- Improvement of pictorial information for human interpretation
 - Vision is the most advanced of human senses
 - Limited to visual band of EM spectrum
- Processing of image data for medicine, science, surveilance, consumer electronics.

Imaging machines cover almost the entire EM spectrum

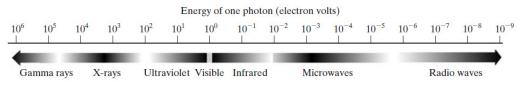
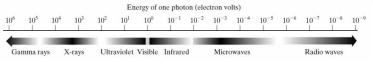
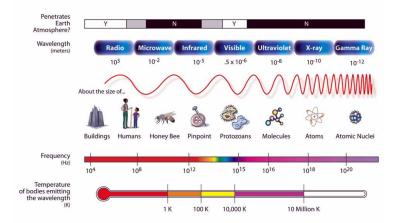
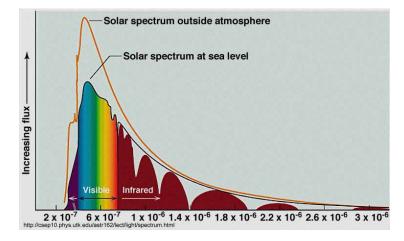
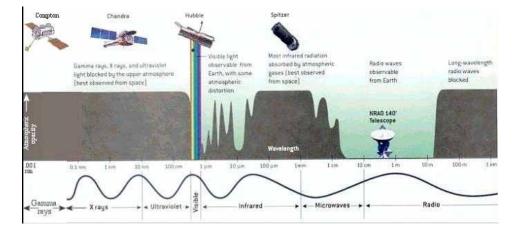
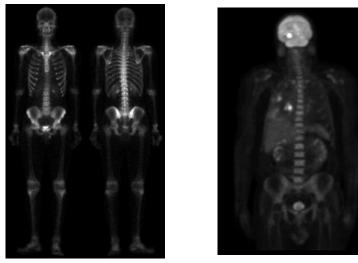




FIGURE 1.5 The electromagnetic spectrum arranged according to energy per photon.

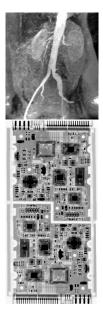



THE ELECTROMAGNETIC SPECTRUM



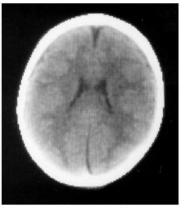
< □ ▶ < □ ▶ < ■ ▶ < ≡ ▶ < ≡ ♪ ○ Q @ 28/66

Applications


 Gamma-Ray imaging: radioactive isotope in patient emits gamma rays as it decays.

X-ray Imaging

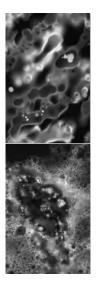
- X-rays.
- Angiogram.
- CAT scans (Housefield and Cormmack 1979 - Nobel prize in medicine).
- Industrial inspection.
- Astronomy.



2^{nd} and 3^{rd} CT Generations

1972: 5 Minutes 1976: 2 Seconds

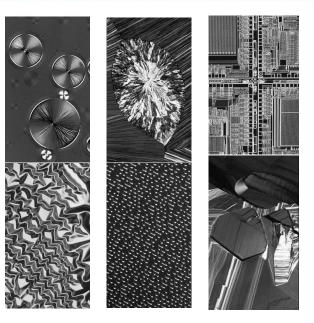
SITYOF

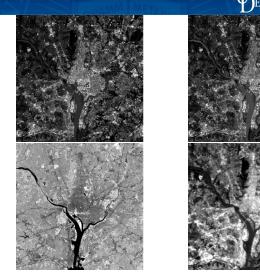


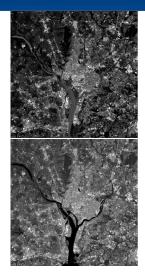
3G

Imaging in the ultraviolet band

- Fluorescent microscopy
- UV photon collides with electron in fluorescent atom, elevates electron to a higher energy electron then emits light at lower energy when it relaxes.


Color-coded surgery:

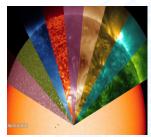

 $https:www.ted.comtalksquyen_nguyen_color_coded_surgery?language\bar{e}n$



Imaging in the visible and infrared band

 Microscopy at various scales

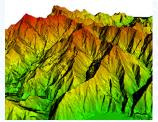
Remote sensing and spectral imaging


- Same scene at various bands.
- Visible through IR (450nm 2000nm).

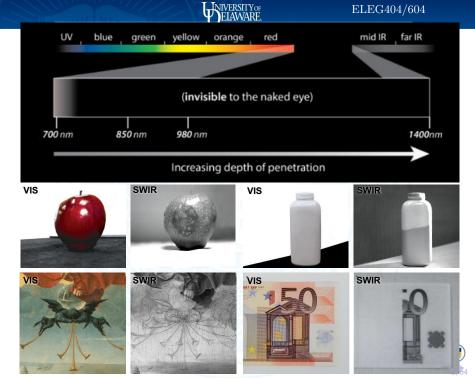
Band No.	Name	Wavelength (µm)	Characteristics and Uses
1	Visible blue	0.45-0.52	Maximum water penetration
2	Visible green	0.52-0.60	Good for measuring plant vigor
3	Visible red	0.63-0.69	Vegetation discrimination
4	Near infrared	0.76-0.90	Biomass and shoreline mapping
5	Middle infrared	1.55–1.75	Moisture content of soil and vegetation
6	Thermal infrared	10.4–12.5	Soil moisture; thermal mapping
7	Middle infrared	2.08-2.35	Mineral mapping

Multimodal Imaging

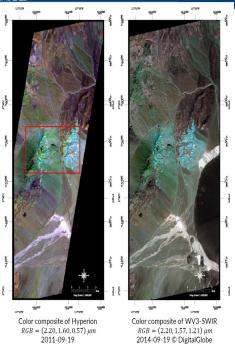
Spectral Imaging



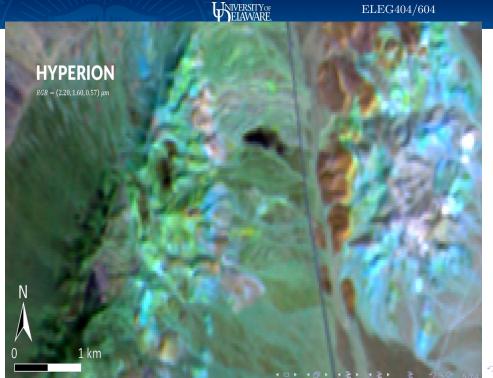
Hyperspectral Imaging


Depth Maps

э


つくご 37/66

HYPERION AND WV3 FUSION


Cuprite, Nevada, US

		ð	© DigitalGlobe
		Hyperion	WorldView-3
Number of bands	VNIR	50 (70)	8
	SWIR	117 (172)	8
GSD (m)	VNIR	30	1.24
	SWIR	30	7.5 (3.7)
Swath width (km)		7.7	13.1

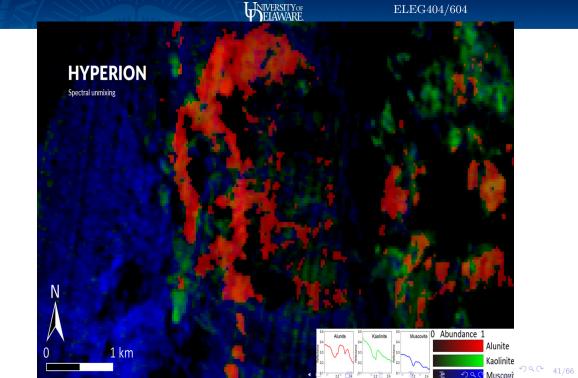
말다

^{م (۲} 38/66

^{) Q} ⁽^Q 39/66

ELEG404/604

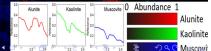
HYPERION-WV3 FUSION


 $RGB = (2.20, 1.60, 0.57) \, \mu m$

1 km

N

0


HYPERION-WV3 FUSION

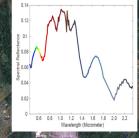
Spectral unmixing

Ν

0

1 km

かくご 42/66



かくで 43/66

HYPERION-WV2 (GSD RATIO: 15)

Fukushima, Japan

Medical Spectral Imaging

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ▲ ■ → りへで 11/64

<□ ▶ < 団 ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 45/66

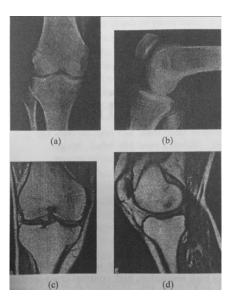
↓□▶ ↓@▶ ↓ E▶ ↓ E▶ E

৩৫ে 46/66

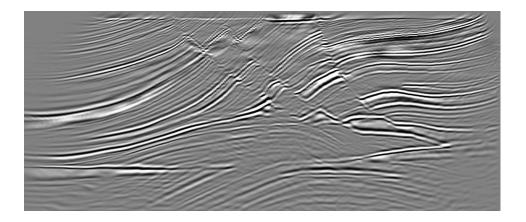
Visible band imaging

► Applications in biometrics, authentication and surveillance.

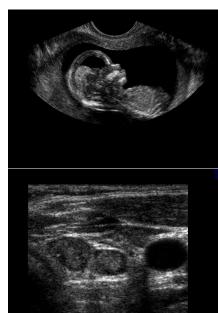
Magnetic Resonance Imaging



X-ray CT vs MRI

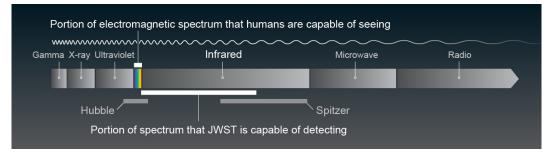

Comparison of projection radioagraphy and MRI of the knee:

- a Anterior projection radiograph
- b Lateral projection radiograph
- c Coronal MRI
- d Sagittal MRI



Geological Seismic Exploration (100 Hz)

Ultrasound imaging (1-5Mhz)


James Webb Space Telescope Imaging

- 10 Billion camera
- Can view objects too old in distance
- Can observe the first stars, the formation of the first galaxies, and atmospheric characterization of potentially habitable planets.

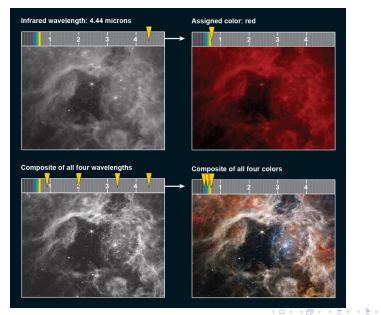
<ロト < 母 ト < 臣 ト < 臣 ト 臣 の < で 53/66

The JWST was designed to capture light with frequencies in the infrared range.

JWST - Six Data Collection Components

It allows combining data from multiple telescopes for higher resolution than a single lens can achieve A grid of small doors can open or close to measure spectra from up to 100 points in a single frame Coronagraphs are opaque circles that block bright starlight to let the weaker signals through

JWST - Six Data Collection Components



Two cameras capture light in the near-infrared range and one works in the mid-infrared A combined camera and spectrograph captures an image, along with spectra for each pixel prisms separate incoming light into spectra to reveal the intensity of individual wavelengths

JWST - Image Composite

ELAWARE.

AI Computer Rendering

AI Computer Rendering

Neural gigapixel images

Neural SDF

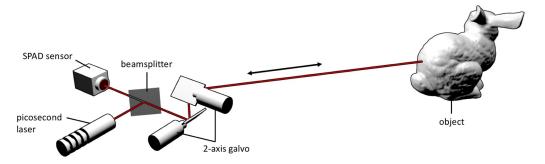
Neural volume

Elapsed training time: 9 seconds

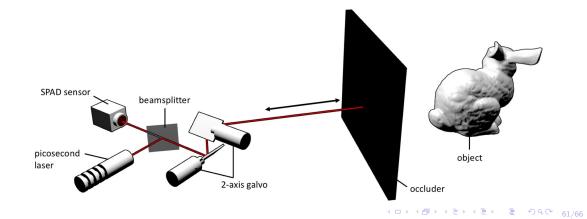
Gigapixel Image Generation Learns a signed distance function in 3D space whose zero level-set represents a 2D surface

- Reconstruct a volumetric radiance-anddensity field from 2D Images
- Learns a denoised radiance and density field directly from a volumetric path tracer

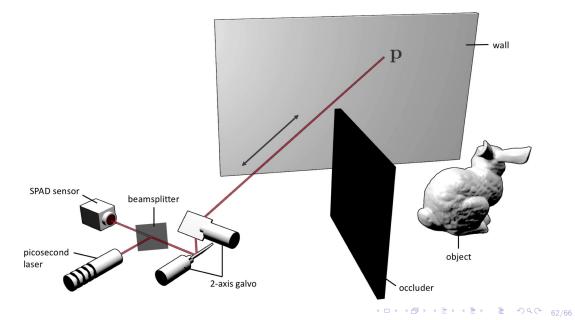
< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ Q @ 58/66

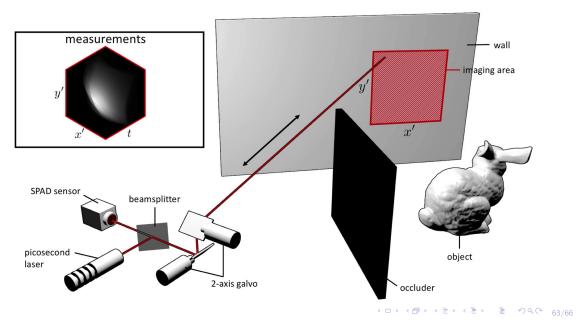


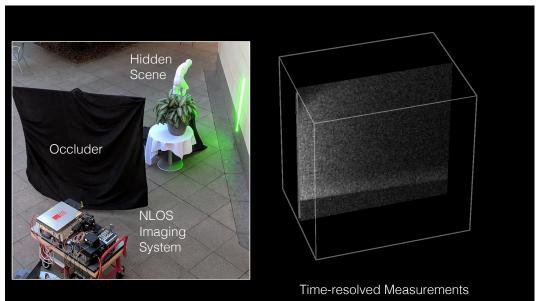
AI Computer Rendering

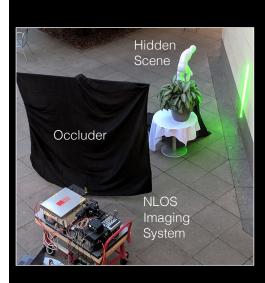


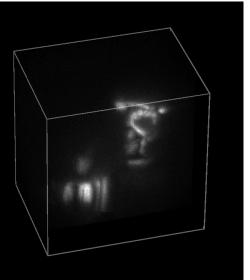
The quality of the scene becomes more precise as training proceeds. Video











3D Reconstruction

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 65/66

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 4 で 66/66

References

- ► Top Tech 2023, IEEE Spectrum Special Report.
- Gonzales, R. C., & Wintz, P. (1987). Digital image processing. Addison-Wesley Longman Publishing Co., Inc..