Imaging spectroscopy for cultural heritage and conservation

Roxanne Radpour, Ph.D. Assistant Professor, Art Conservation | ECE radpour@udel.edu ELEG 404/604

I. Illuminating Heritage

1

- Understanding the artist's intent
 - The workshops in operation
 - Materials acquisition and trade
 - Knowledge transfer and mobility
- Connecting imagery to societal context
 - Understanding of the natural world (i.e. behavior of light / optics)

I. Illuminating Heritage

- Documentation and investigation
 - provides a history of the object
 - record new conservation interventions on the object
- Physical and chemical stability
 - \rightarrow diagnostics to inform condition
- New visualizations, i.e. accurate digital reconstructions (2D and 3D)

2

History of Remote Sensing (origin of HSI/MSI)

- Mid 19th century first aerial photography
- 1960s multi- and hyperspectral imaging spectrometers began dominating space and airborne land surveys
- Jet Propulsion Laboratory's (JPL) AVIRIS (Airborne Visual Infrared Imaging Spectrometer) revolutionized HSI applications in remote sensing (1984)

Gary A Shaw and Hsiao-Hua K Burke. Spectral imaging for remote sensing. Lincoln Laboratory Journal, 14(1):3–28, 2003

L. Luo, et al. Remote Sensing of Environment 232 (2019) 111280

Introducing spectral imaging in cultural heritage and conservation

- 1) The objective to acquire color accurate images of paintings with high resolution details
- \rightarrow documentation

2nd generation camera of the VASARI project The National Gallery, London

Accurate color information

- "A system of colorimetry is basically a 'language' with which an observer may describe a color unambiguously and uniquely to distinguish it from all others."
 - <u>https://www.getty.edu/conservation/publications_resources/pdf_publications/pdf/color_science.pdf</u>
- CIE systems
 - CIE 1976 L*a*b*
 - https://www.xrite.com/-/media/xrite/files/whitepaper_pdfs/l10-001_a_guide_to_understanding_color_communication/l10-001_understand_color_en.pdf

Introducing spectral imaging in cultural heritage and conservation

- 1) The objective to acquire color accurate images of paintings with high resolution details
- \rightarrow unbiased, accurate documentation

2) Exploration of image processing methods to extract new painting details through false color analysis (RGB photography, infrared reflectography, and X-ray radiography)

 \rightarrow statistical analyses to discriminate between materials and identify differences between images

2nd generation camera of the VASARI project, The National Gallery, London (high resolution monochrome digital camera with filters)

Cosentino, Antonino. "A practical guide to panoramic multispectral imaging." *e-conservation Magazine* 25 (2013): 64-73.

Terminology

- Multiband imaging: images captured in broad, wavelength bands using filters in front of a modified or monochrome camera
- Multispectral imaging spectroscopy: Spectral bands are broad (tens of nm) and few. Here, images are measured with respect to reference reflectance standards. Spectral signature is comprised of discrete points and noncontiguous
- Imaging spectroscopy (IS): image collection technique where hundreds of images are collected in narrow spectral bands, producing contiguous spectral profiles in each spatial pixel of the image scene.

Cosentino, Antonino. "A practical guide to panoramic multispectral imaging." *e-conservation Magazine* 25 (2013): 64-73.

Terminology

- Multiband imaging: images captured in broad, wavelength bands using filters in front of a modified or monochrome camera
- Multispectral imaging spectroscopy: Spectral bands are broad (tens of nm) and few. Here, images are measured with respect to reference reflectance standards. Spectral signature is comprised of discrete points and noncontiguous

Terminology

- Multiband imaging: images captured in broad, wavelength bands using filters in front of a modified or monochrome camera
- Multispectral imaging spectroscopy: Spectral bands are broad (tens of nm) and few. Here, images are measured with respect to reference reflectance standards. Spectral signature is comprised of discrete points and noncontiguous
- Imaging spectroscopy (IS): image collection technique where hundreds of images are collected in narrow spectral bands, producing contiguous spectral profiles in each spatial pixel of the image scene.

Imaging spectroscopy: the system

sample

Multiple band spectral and spatial data acquisition

measured

separately

depending on

its composition

Table 1 Characteristics of multispectral and hyperspectral imaging systems used in conservation

References	Detectors	Spectral range (nm)	Dispersing device / number of filters or bands	Applications
50	Vidicon PbO-PbS	400-1000	Broadband filters	Paintings
12 51	CCD Vidicon PbO-PbS PtSi Ge	400–2.500	Optical filters	IR reflectography
24, 52	Vidicon PbO-PbS	400-1600	Optical filters / 29	Paintings, pigments
53, 54	CCD	400–1000	Optical filters / 62, 14 LCTF / 15–20 bands	Rock art, pigments, inscriptions
43	CCD	400-1700	PGP / 256 bands	Semi-precious stones
55-57	CCD	650-1040	LCTF / 40 bands	Paintings, pigments
36, 58–60	CCD	380-1000	Optical filters / 33	Paintings, palimpsests, manuscripts, marble
61, 62	CCD	400–700	LCTF / 31 bands	Paintings, colour reproduction, metamerism
63	CCD Vidicon PbO-PbS InGaAs HgCdTe	800–2.500	Cut-off filters	IR reflectography
64	CCD	400-700	Broadband filters	Gems, metamerism
65	CCD PtSi	450–1600	Optical filters / 8 VNIR, 3 SWIR	Paintings, pigments
66	Vidicon PbO-PbS	400-2200	Optical filters / 29	Drawings
67, 68	CCD	400–700 450–1000	Broadband filters / 7 Broadband filters / 12	Paintings (conservation, documentation, archiving)
69, 70	CCD	400-1000	Broadband filters / 13	Paintings (conservation, documentation, archiving)
71	CCD	400–1000	Interference filters / 13	Paintings, pigment identification
72	CCD	400-1000	Optical filters / 5	Paintings
73	CCD	400-700	LCTF / 31 bands	Paintings, documentation
74	CCD	380-1100	Tuneable light source	Documents, inks

VNIR (400-1000 nm) Image sensor types:

- EMCCD
- sCMOS
- CMOS
- CCD

https://www.e-consystems.com/blog/camera/technology/theultimate-image-sensor-guide-emccd-vs-scmos-vs-cmos-vs-ccd/

SWIR (1000-2500 nm) Image sensor types:

- InGaAs
- Quantum dot
- Vidicon tubes (photoconductive layer)
- MCT

Filters or dispersing components

Fischer, Christian, and Ioanna Kakoulli. "Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications." *Studies in Conservation* 51.sup1 (2006): 3-16.

Data collection and storage

Hagen, Nathan A., and Michael W. Kudenov. "Review of snapshot spectral imaging technologies." *Optical Engineering* 52.9 (2013): 090901.

Imaging spectroscopy for analysis of paintings

Simultaneous spatial and chemical data collection \rightarrow hundreds of images + spectra

- Painting materials identification/characterization
 - Binders
 - Pigments
- Object condition and history
 - Degradation products
 - Alterations
 - Hidden depictions
- New object visualizations
 - Material maps
 - Color reconstructions
 - Revival of imagery

Current condition of Van Gogh's Field with Irises near Arles

1-12.

painting production technology and the vogue in Greco-Roman

Digital reconstruction of Van Gogh's Field with Irises near Arles

Kirchner, Eric, et al. 'Digitally reconstructing Van Gogh's Field with Irises near Arles part 3: Determining the original colors." Color Research & Application 43.3 (2018): 311-327.

Binding media map of funerary portrait

Delaney, John K., et al. "Macroscale multimodal imaging reveals ancient Egypt." Scientific reports 7.1 (2017):

Reflectance Imaging Spectroscopy (RIS)

Diffuse reflectance spectroscopy (400 to 2500 nm) – *molecular information*

Example: Visible to Near-Infrared image cube 400 - 950 nm (217 spectral bands)

Master of the Cypresses, "Initial S with King David as Scribe", 1964.8.1218 Rosenwald Collection, NGA

<mark>Find</mark> characteristic reflectance spectra <mark>(endmembers)</mark> Map the spatial <mark>pixels</mark> with similar spectrum

Target

Lens

Detector

Spectrometer

Lout, s

 $L_{out, d}(\lambda_1)$

 $-out.d(\lambda_2)$

Detector

What materials make up characteristic reflectance spectrum?

Visible-to-near-infrared (VNIR, 400-1000 nm)

- Locations of peaks, absorptions, and inflections (which is a change in the slope of an increasing or decreasing curve) in the diffuse reflectance spectra correspond to electronic transitions
 - Charge transfer (e.g. Fe ochres)
 - d-d orbital transitions due to crystal field splitting
 - Valence to conduction band transitions (semiconductor pigments)
 - Delocalized molecular orbitals (lake pigments)

Visible-to-near-infrared (VNIR, 400-1000 nm)

- Locations of peaks, absorptions, and inflections (which is a change in the slope of an increasing or decréasing curve) in the diffuse reflectance spectra correspond to electronic transitions
 - Charge transfer (e.g. Fe ochres)
 - d-d orbital transitions due to crystal field splitting
 - Valence to conduction band transitions (semiconductor pigments)
 - Delocalized molecular orbitals (lake pigments)

Types of pigments reflectance spectroscopy can identify in the VNIR: Madder lake Cinnabar

- Minerals
- Dye-based colorants (e.g. lakes)
- Semiconductor pigments
- Synthetic, inorganic/organic hybrid pigments

Red lead

Green earth

Malachite

Lapis Lazuli

Egyptian blue

Ochres

Radpour, Roxanne, et al. "Identification and mapping of ancient pigments in a Roman Egyptian funerary portrait by application of reflectance and luminescence imaging spectroscopy." *Heritage Science* 10.1 (2022): 1-16.

Reflectance Imaging Spectroscopy

Hematite (red ochre) - Fe₂O₃

Lead white (cerussite) - PbCO₃

Copper carboxylate - Cu(O₂CR)₂

Madder lake - 1,2 & 1,2,4 HAQ (hydroxyanthraquinone)

Natrojarosite - NaFe³⁺₃[(SO₄)₂(OH)₆

Goethite (yellow ochre) - FeO(OH)

Example: Visible to Near-Infrared image cube 400 - 1000 nm (200 spectral bands)

Figurative painting from the House of Aion, Paphos, Cyprus (1st – 4th C AD)

Peak emission ~ 930 nm

Find characteristic reflectance spectra (endmembers)

Map the spatial pixels with similar spectrum!

What materials exhibit this characteristic emission?

Radpour, Roxanne. *Advanced imaging spectroscopy and chemical sensing in archaeometry and archaeological forensics*. University of California, Los Angeles, 2019.

Luminescent ancient pigments

Egyptian blue

2nd derivative LIS endmembers

Multi-modal imaging spectroscopy to reveal ancient painting production

Pb

Fe

Ca

Cu

Delaney, J. K., Dooley, K. A., Radpour, R., & Kakoulli, I. (2017). Macroscale multimodal imaging reveals ancient painting production technology and the vogue in Greco-Roman Egypt. Scientific reports, 7(1), 15509.

Short-Wave Infrared (1000 – 2500 nm)

- Pigments with unique SWIR signatures e.g. azurite, malachite, green earths, cobaltbased pigments, lead white
- Binding media e.g. tempera, animal skin glue, wax

Dooley, Kathryn A., et al. "Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy." *Analyst* 138.17 (2013): 4838-4848.

Radpour, Roxanne, et al. "Identification and mapping of ancient pigments in a Roman Egyptian funerary portrait by application of reflectance and luminescence imaging spectroscopy." *Heritage Science* 10.1 (2022): 1-16

Fig. 3 Characteristic absorptions in the short-wave infrared at 1730, 1763, 2310, and 2352 due to CH₂ bending and stretching modes identify beeswax as the binding medium

Binding media – animal skin glue and lipid-based materials (e.g. egg tempera, drying oils, wax)

Angel Gabriel in "The Annunciation with Saint Francis and Saint Louis of Toulouse", Cosimo Tura

Binding media - Wax

~ 2312 nm and 2352 nm

Asymmetric/symmetric stretching and bending of $CH_2 (\nu + \delta)$

Note the slight shift in wavelength values from lipidic stretches in egg tempera

Delaney, J. K., Dooley, K. A., Radpour, R., & Kakoulli, I. (2017). Macroscale multimodal imaging reveals ancient painting production technology and the vogue in Greco-Roman Egypt. *Scientific reports*, *7*(1), 15509.

(a) Color image of the portrait; (b) reflectance spectral endmembers; (c) continuum removed endmembers which were used in the mapping; (d) chemical map of spectral signatures from endmembers in Fig. <u>3c</u>.

Search for underdrawings

Delaney, John K., et al. "Visible and infrared imaging spectroscopy of paintings and improved reflectography." *Heritage Science* 4 (2016): 1-10.

Picasso's *The Tragedy* (1903). Chester Dale collection, 1963.10.196, National Gallery of Art, Washington, DC

Timeres

Mapping Conservation Interventions

Color detail

Broadband IR reflectogram (1000-1700 nm)

IR False Color at 1650, 1400, and 1050 nm for RGB

Delaney, John K., et al. "Visible and infrared imaging spectroscopy of paintings and improved reflectography." *Heritage Science* 4 (2016): 1-10.

Gypsum (CaSO₄·2H₂O) mapping

 \rightarrow Potential environmental monitoring tool

Wavelength (nm)

Wavelength (nm)

0.30 ² 0.020 وال 0.25 reflectance, **Reflectance factor** 0.015 ~1445 nm 0.20 0.010 1445, 1492, 1540 nm đ 0.15 0.005 2nd derivative 0.000 ~1492 nm 0.10 ~1540 nm -0.005 0.05 2000 1440 1460 1480 1500 1520 1540 1560 1400 1600 1800

Characteristic triplet signature in the SWIR:

1st overtone vibrations of hydroxyl groups

Taking the 2nd derivative removes the continuum (overall background) and we can effectively map this triplet signature across the image scene.

Motivation for new approaches to make labeled pigment maps

- Multivariant statistical methods are not robust or need too much manual intervention
 - Days/weeks to analyze some paintings
 - Based on linear mixing model not an accurate representation of paintings
- Researchers have sought to use Kubelka Munk Theory to directly fit reflectance spectra from reflectance image cubes
 - Needs large libraries of K, S values and a priori knowledge of the paint layers
- In Remote Sensing use of AI, more specifically Neural Networks (NN) have been used to solve non-linear spectral unmixing problems.
 - Major challenges is training sets... paintings offer limited number of training sets, want thousands and have 10's of paintings
- Objective: leverage the fact that a given artistic school often uses a consistent palette, with characteristic painting mixtures and paint layers
 - Build a robust training library from a small number of paintings from such a school

"An alternative approach to mapping pigments in paintings with hyperspectral reflectance image cubes using artificial intelligence"

Used 4 illuminations to train the NN and 1 to test, all from the *Laudario of Sant' Agnese* (c. 1340)

Tania Kleynhans, et al., Herit Sci 8, 84 (2020).

"An alternative approach to mapping pigments in paintings with hyperspectral reflectance image cubes using artificial intelligence"

"An alternative approach to mapping pigments in paintings with hyperspectral reflectance image cubes using artificial intelligence"

Tania Kleynhans, et al., Herit Sci 8, 84 (2020).