

ELEG404/604: Imaging & Deep Learning Gonzalo R. Arce

Department of Electrical and Computer Engineering University of Delaware

Chapter I: Image Formation

Single Lens Reflex Camera (SLR)

Why not Use Sensors Without Optics?

all sensor points would record similar colors

э

Equivalence of Dürer's Glass and Camera Obscura (Contents of Whiteboard)

- both devices compute <u>2D planar geometric projections</u>,
 i.e. projections along straight lines through a point and onto a plane
 - the images differ only in scale (and a reflection around the origin)

Pinhole Photography

- no distortion
 - straight lines remain straight
- infinite depth of field
 everything is in focus

In response to a question I didn't hear clearly, I may have incorrectly affirmed that pinhole images will exhibit chromatic aberration. They will exhibit diffraction artifacts, which we'll talk about next week, but not chromatic aberration, which refers to artifacts specifically produced by lenses.

(Bami Adedoyin)

Effect of Pinhole Size

Effect of Pinhole Size

The Lensbaby Obscura duo

≣ ∽९℃ 12/57

Replacing the Pinhole with a Lens

Replacing the Pinhole with a Lens

Photograph made with small pinhole

- a photographic camera produces the same 2D planar geometric projection as a *camera obscura*
 - a lens replaces the pinhole, and film or a digital sensor becomes the picture plane
 - rotating the camera (and lens) around the lens's center adds or removes vanishing points

(London)

Daguerrotype

- invented in 1836 by Louis Daguerre
- lenses focus light, better chemicals!

Lenses

- focus light
- magnify objects

Nimrud lens - 2700 years old

Geometrical Optics

 parallel rays converge to a point located at focal length *f* from lens

- rays going through center of lens are not deviated
 - hence same perspective as pinhole

Gauss's Ray Tracing Construction

Changing the Focus Distance

- to focus on objects at different distances, move sensor relative to lens
- in a handheld camera, one actually moves the lens, not the sensor

by convention, the "focus distance" is on the object side of the lens

WELAWARE

Changing the Focal Length

 weaker lenses have longer focal lengths

- to keep the same object in focus, move the sensor further back
- focused image of tree is located slightly beyond the focal length

Changing the Focal Length

 if the sensor size is constant, the field of view becomes smaller

Focal Length and Field of View

NIVERSITY OF ELAWARE

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ■ のへで 25/57

Focal Length and Field of View

< □ ▶ < 圕 ▶ < 壹 ▶ < 壹 ▶ Ξ の Q @ 26/57

Field of View

Hubble - what's the focal length?

Lenses - Aberrations

Lenses - Aberrations

Sharp Image

Blurred Image due to optical aberrations

Changing the Sensor Size

- if the sensor size is smaller, the field of view is smaller too
- smaller sensors either have fewer pixels, or smaller pixels, which are noisier

シマで 31/57

Changing the Focal Length Versus Changing the Viewpoint

+ but moving back changes perspective relationships

Effect of Focal Length on Portraits

+ standard "portrait lens" is 85mm

Exposure

- + $H = E \times T$
- + exposure = irradiance × time
- ✤ irradiance (E)
 - amount of light falling on a unit area of sensor per second
 - controlled by aperture
- ◆ exposure time (T)
 - in seconds
 - controlled by shutter

Single Lens Reflex Camera

かへで 37/57

(London)

Someone asked why SLRs can't use electronic shutters like cell phones. My answer could have been clearer. They can and do for the live electronic (non-optical) viewfinder, as I showed in lecture, but these images have low resolution. For snapshots, which utilize the full resolution of the sensor, it's impossible to read off this many pixels fast enough to accomplish short shutter speeds, the focal plane distortion would be severe.

- loud
- ◆ fast (max 1/4000)
- ✤ in focus
- + distorts motion

∽ **へ** ⁽~ 38/57

- ♦ quiet
- slow (max 1/500s)
- out of focus
- need one per lens

Jacques-Henri Lartigue, Grand Prix (1912)

Shutter Speed

- controls how long the sensor is exposed to light
- + linear effect on exposure until sensor saturates
- denoted in fractions of a second:
 1/2000 1/1000 1/2000 1/107 1/00 1/2000
 - 1/2000, 1/1000,...,1/250, 1/125, 1/60,...,15, 30, B(ulb)
- normal humans can hand-hold down to 1/60 second
 - *rule of thumb:* longest exposure = 1 / f
 e.g. 1/180 second for a 180mm lens

using 35mm equivalent focal length

Main Side-Effect of Shutter Speed

Useful Shutter Speeds

Useful Shutter Speeds

Useful Shutter Speeds

How Fast is a Volleyball Spike?

derive required shutter speed from length of motion blur
5 pixels in 1/800sec ⇒ 1 pixel in 1/4000 sec !

Women's volleyball

(Canon 1DIII, 1/800 second)

Aperture

- + irradiance on sensor is proportional to
 - square of aperture diameter A
 - inverse square of distance to sensor (~ focal length f)

Irradiance on Sensor (Contents of Whiteboard)

- As the diameter A of the aperture doubles, its area (hence the light that can get through it) increases by 4× (first drawing).
- Think of the lens as a collection of pinholes, each having a fixed angular field of view (cone in 2nd drawing) determined by the lens design.
- A certain amount of light gets through each pinhole. By conservation of energy, that light will fall on whatever sensor is placed in its path.
- If the distance to the sensor is doubled, the area intersecting the cone increases by 4x, so the light falling per unit area decreases by 4x.

Aperture

- irradiance on sensor is proportional to
 - square of aperture diameter A
 - inverse square of distance to sensor (~ focal length f)
- so that aperture values give irradiance regardless of focal length, aperture number N is defined relative to focal length

$$N = \frac{f}{A}$$

- f/2.0 on a 50mm lens means the aperture is 25mm
- f/2.0 on a 100mm lens means the aperture is 50mm
- \therefore low F-number (N) on long telephotos require fat lenses

Example F-number Calculations (Contents of Whiteboard)

- A relative aperture size (called F-number or just N) of 2 is sometimes written f/2, reflecting the fact that the absolute aperture (A) can be computed by dividing focal length (f) by the relative aperture (N).
- As this drawing shows, doubling both the absolute aperture diameter (A) and the focal length (f) cancel; leaving the same relative aperture size (N). In this example, both lenses are f/2.

Aperture

As Florian Kainz pointed out during lecture (and Peter Sherman explained in the dory). Fstops are used by videographers in place of F-stops (or N) because they include light loss due to transmission through the lens. Fstops let you compute exposure more accurately, but you need F-stops to compute depth of field.

- irradiance on sensor is proportional to
 - square of aperture diameter A
 - inverse square of distance to sensor (~ focal length f)
- so that aperture values give irradiance regardless of lens, aperture number N is defined relative to focal length

$$N = \frac{f}{A}$$

- f/2.0 on a 50mm lens means the aperture is 25mm
- f/2.0 on a 100mm lens means the aperture is 50mm
 iow F-number (N) on long zooms require fat lenses
- + doubling N reduces A by 2×, hence light by 4×
 - going from f/2.0 to f/4.0 cuts light by $4 \times$
 - to cut light by $2\times$, increase N by $\sqrt{2}$

つへで 51/57

- Q. Does an f/2 cell phone lens gather as much light from each patch of the scene as an f/2 SLR lens?
- a smaller lens is accompanied by a smaller focal length, in order to keep the angular field of view constant
- + thus, N (=f/A) stays constant
- + for each scene patch, a smaller lens gathers less light
- but due to the smaller focal length, it concentrates this light into a smaller area on the sensor
- thus, the amount of light per unit area stays constant
- a smaller focal length is accompanied by smaller pixels, in order to keep the pixel count constant
- so the scene patch covers the same number of pixels, but they are smaller, hence fewer photons, hence noisier

Main Side-Effect of Aperture

- depth of field
- + doubling N (two f/stops) doubles depth of field

Depth of Field

http://photographywisdom.con

Depth of field (briefly) This figure isn't quite right; we'll fix it next week

- a point in the scene is focused at a point on the sensor
- if we move the sensor in depth, the point becomes blurred
- if it blurs too much, it exceeds our allowable *circle of confusion*
- the zone in which it's sharp enough is called the *depth of focus*
- this corresponds in the scene to a *depth of field*
- halving the aperture diameter doubles the depth of field

References

Slides are adapted from Gordon Wetzstein - Digital Photography I
 Slides adapted from Marc Levoy - Lectures on Digital Photography