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Why

study sampling theory?

+ Why do | sometimes get moiré artifacts in my images?

What d

Is Appl

What is an antiahiasing filter?
How many megapixels 1s enough?

How do I compute circle of confusion for depth of field?

) “

e’s “Retina Display” just hype?

o MTF curves in lens reviews mean?

What ¢
Which

il e SRS

oes Photoshop do when you downsize/upsize?

1s better: more pixels or more bits per pixel?




Outhne

+ frequency representations of images

e filtering, blurring, sharpening

e MTF as a measure of sharpness In 1Images

+ resolution and human perception

&0
° t]

he spatial resolution of typical display media

he acuity of the human visual system

° t]

he right way to compute circle of contusion ( C)

+ sampling and aliasing

e aliasing in space and time

e prefiltering using convolution to avoid aliasing

e prefiltering and sampling in cameras and Photoshop

+ sampling versus quantization




Frequency representations

(Foley)

sin(x)

sin(9x)
9

+ asum of sine waves, each of different wavelength ( frequency )
and height (amplitude ), can approximate arbitrary functions

+ to adjust horizontal position ( phase ), replace with cosine
waves, or use a mixture of sine and cosine waves




Frequency representations

+ Fourier series: any continuous, integrable, periodic function
can be represented as an infinite series of sines and cosines

feeE= % + i [an cos(nx) + b, sin(nx)]

1

n

+ asum of sine waves, each of different wavelength ( frequency )
and height (amplitude ), can approximate arbitrary functions

+ to adjust horizontal position ( phase ), replace with cosine
waves, or use a mixture of sine and cosine waves




Fourier transforms of images

0 gives angle of sinusoid

r gives spatial frequency

brightness gives amplitude

of sinusoid present in image

% In Matlab:

image = double(imread('flower.tif'))/255.0;
fourier = fftshift(fft2(ifftshift(image)));
fftimage = log(max(real(fourier),0.0))/20.0;

complete spectrum
1S two 1mages -

sines and cosines

I ————

1mage spectrum




A typical photograph

spectrum




An 1image with higher frequencies

spectrum

aad 2P,

1mage




Blurring in the Fourier domain
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Original flower

spectrum




Sharpening in the Fourier domain

spectrum




Q. What does this filtering operation do?

spectrum




1on do?

Ing operation

. What does this filter

spectrum

1mage
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Blurring in x, sharpening in y

1mage spectrum
argh, astigmatism!
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Describing sharpness in images:
the modulation transfter function (MTF)

Bar pattern, Sine pattern,

50 = 1e+004 Ip/mm; flens = 61 Ip/mm; lord = 2

Amplitude

1l

(imatest.com

Line pairs per mm; MTF = 50%,10% @ 61, 183/mm

+ the amount of each

spatial frequency that can
be reproduced by an
optical system

loss may be due to
misfocus, aberrations,
diffraction,
manufacturing defects,
nose smudges, etc.

MTF is contrast at each
frequency relative to
original signal




Two ditterent MTF curves

+ 1n one curve, contrast stays high, but drops off at a
relatively low resolution

+ 1n the other curve, higher-resolution features are
preserved, but contrast i1s lower throughout
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Sharpness versus contrast

50 = 1e+004 Ip/mm; flens = 61 Ip/mm; lord = 2

Bar pattern, Sine pattern,

Sine p: l |
Bdl I)ﬂ" ||||||||
Bar patté |

Amplitude

R
w
=
=
0 . :
10 1 2 . |
10" 10°
Line pairs per mm; MTF = 50%,10% @ 61, 183/mm fossiof. Contrast
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Restoring images

This slide contained an incorrect set
of images when | showed it in class.
I have replaced the images here.

7
I)()()I’
(cambridgeincolour.com) -
resolution
— oor
Orlglnal p
contrast

In practice, since blurring and loss of contrast both involve attenvation of
high frequencies (although to different extents), and restoration involves
boosting those attenuated frequencies, then both sharpening and restoration
of contrast should produce both some amount of ringing and and some amount
of noise enhancewment. In these slides the ringing is evident, but not the noise
enhancement. We would have to blow the images up to see the noise.
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Blurring

see the ringing?

restored




Recap

+ any image can be equivalently represented by its Fourier
transform, a.k.a. frequency or spectral representation

e weighted sum of sine and cosine component images

e each having a frequency, amplitude, and orientation in the plane

+ filtering, for example blurring or sharpening, can be implemented
by amplifying or attenuating selected frequencies

e 1.e. modifying the contrast of selected sine or cosine components
relative to others, while maintaining same average over all components

e attenuating high frequencies = low-pasos-filtering = blurring

e attenuating low frequencies = high-pass filtering = sharpening
+ MTF measures preservation of frequencies by an optical system

 subjective image quality depends on both sharpness and contrast

 both can be restored, but at a price (in ringing or noise)

Questions?
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Spatial resolution of display media

pitch = A x %E density = 1/A x

+ Example #1: Macbook Air (laptop)
e 900 pixels on 7”7 high display
e A x =7"/900 pixels = 0.0078" /pixel

Line printers are 300 dpu.
This 1s why we don't like

+ Example #2: I{indle 2 é_s sd(:meﬁne pointed ogt
e 800 pixels on 4.8” high display d n'»'é P;;e:‘vxilmgoggo'dpi.

=1/ A= =162 dpi
+ Example #3: 1D4d iPad3
2048 . 1 W4 pixels on 7.8” high display ’
o 1/A x - 13§ dpi 263




Spatial frequency on the retina

assume the minimum i p
eriod p of a sine =14
peros > = =
wave 1s a black-white —— ,
pixel pair (“line pair”) o ,
|<7 viewing distance d

+ Example #1: Macbook Air viewed at d = 18"
e 900 pixels on 7” high display, p =2 x 0.0078”
e retinal arc 8 = 2 arctan (p /2d) = 0.05°
e spatial frequency on retina 1/0 = 20 cycles per degree

Q. What is the acuity of the human visual system?

21
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Human spatial sensitivity
(Campbell-Robson Chart)

i

(neurovision.berkeley.edu)

|




Human spatial sensitivity

Human Contrast Sensitivity

1000 F— : : : (horizontal axis
; not comparable
to 1mage on
> previous slide)
= 100}
@
o
& _ cutoff is at
7
§ 10 + Visible Stimuli : about 50 Cycles
s 5 per degree
= :
: ok

0.1 1 10
Spatial Frequency (cycles/degree)

23 (psych.ndsu.nodak.edu)




Spatial frequency on the retina

assume the minimum i 9
period p of a sine — <> ; ——
wave 1s a black-white T , e :
ixel pair
e |<7 viewing distance d

+ Example #1: Macbook Air viewed atd = 18"
e 900 pixels on 7” high display, sop =2 x 0.0078"
e retinal arc 8 = 2 arctan (p /2d) = 0.05°
e spatial frequency on retina 1/0 = 20 cycles per degree

\ not nearly as high

as human acuity

— ——
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Vida biv e

i

(Graham Flint)

Balboa Park, San Diego

(original 1s 40K x 20K pixels, Gates Hall print 1s 72” x 36”)




Spatial frequency on the retina

assume the minimum | s B
period p of a sine <>
wave 1s a black-white = = , |

1xel pair == : w
= |<— viewing distance d >

+ Example #1: Macbook Air viewed atd = 18"
e 900 pixels on 7" high display, p =2 x 0.0078”
e retinal arc @ = 2 arctan (p / 2d) = 0.05°
e spatial frequency on retina 1/0 = 20 cycles per degree

+ Example #2: gigapixel photo viewed at d = 48" Hﬁcriiniﬁ;n

e 20,000 pixels on 36” high print, p =2 x 0.0018” S S=S
e spatial frequency on retina 1/0 = 232 cycles per degree

26




Spatial frequency on the retina

UUUUUUUUUUUUUU

assume the minimum

period p of a sine == <> ; :€:
e

wave 1s a black-white

pixel pair .. :
|<7 viewing distance d >

+ Example #2: gigapixel photo viewed at d = 48”
e 20,000 pixels on 36” high print, p =2 x 0.0018”
e spatial frequency on retina 1/60 = 232 cycles per degree

+ Example #3: 1Pad Pro
e 2048 pixels on 7.8” high display, p =2 % 0.0038”

resolution
e 1/A x = 263 dpi > |

o if viewed at 18", spatial frequency on retina = 4/ cycles per degree

almost retina

W
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Human acuity & circle of confusion

+ the maximum allowable circle of confusion ( C) in a
photograph can be computed from human spatial acuity
projected onto the intended display medium

o depends on viewing distance As someone pointed out, a good
rule of thuwmb is to assume that

the viewing distance is 3 x the
pig’rure height. 0bviously.’rhis
+ Example: photographic print viewed at 12”  Will depend on aspect ratio

7

e max human acuity on retina //0 = 50 cycles per degree

e minimum detectable retinal arc 8 = 0.02°

e minimum feature size p =2 X 127 X tan (0/2) = 0.0042” (0.1mm)

+ assume 5” x 7” print and Canon 5D III (5660 x 3840 pixels)

e 5”7/ 3840 pixels = 0.0013"/pixel (0.03mm)
o therefore, blur can be 3.2 pixels wide before print appears blurry
e C = 6.3u per pixel on camera x 3.2 pixels = 20.2u




Recap

+ spatial resolution of display media 1s measured by

e pitch (distance between dots or pixels) or density (dots per inch)

+ effect on human observers is measured by
e retinal angle (degrees of arc) or frequency (cycles per degree)

e depends on viewing distance

+ human spatial acuity 1s about 50 cycles per degree
e depends on contrast

e convert back to pitch to obtain circle of confusion for depth of field,
and this conversion depends on viewing distance

Questions?

9




Sampling and aliasing

abstract function

spatial aliasing in images

—

m““l“‘

A
v
>

- <

(http://ptolemy.eecs.berkeley.edu/eecs20/week 13/moire.html)

+ alasing 1s high frequencies masquerading as low
frequencies due to insutficiently closely spaced samples

30




Sampling and aliasing

abstract function spatial aliasing in images

m““l‘ll

(http://ptolemy.eecs.berkeley.edu/eecs20/week 13/moire.html)

temporal aliasing temporal aliasing in audio

240 pm 8 )4
r € \ start I stop ] scale l 440

A sinusoid and its samples @
1.0 R T T T T T T T T _

05
oo

05

-10L
00 05 1.0 1.5 20 25 30 35 40
Time in seconds x10*

(http://www.michaelbach.de/ot/mot wagonWheel/index.html) (http://ptolemy.eecs.berkeley.edu/eecs20/week 13/aliasing.html)

il
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Fourier analysis of aliasing

AT

+ Nyquist-Shannon sampling theorem: a function having
frequencies no higher than n can be completely determined by
samples spaced 1 / 2n apart

fsampling = 2 X ]Ccutoﬂ
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Retinal sampling rate

+ the human retina consists of discrete sensing cells
+ therefore, the retina performs sampling

+ 1f observed human cutott 1s 50 cycles per degree,
then i1ts sampling rate must be > 100 samples per degree

+ this agrees with observed retinal cell spacing!

spacing between [,,M cone
cells 1s 1p = 30 arc-seconds

ATy

(Cornsweet)
© Marc Levoy
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Vernier aCU.it.y (a.k.a. hyperacuity)

+ we can detect jaggies as small as

5 second

s of retinal arc (1/720°)

e even t

hough our cells are spaced

30 seconds apart

 to make such jaggies invisible, the
1Pad Pro display would need to be
15K pixels vertically 1!

| didn't show this slide during
lecture, but | discussed it, so |
might as well include the slide here.

7
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Aliasing 1n photography

+ alens creates a focused image on the sensor

+ suppose the sensor measured this image at points on a
2D grid, but ignored the imagery between points?

e a.k.a. pont vampling
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Simulation of point sampling

THE GOBBLING CLUTTONS

ONCE UPON A TIME, WALDO

EMBARKED UPON A FANTASTIC

JOURNEY. FIRST, AMONGC A

THRONG OF COBBLING CLUTTONS.

HE MET WIZARD WHITEBEARD, WHO
COMMANDED HIM TO FIND A SCROLL AND
THEN TO FIND ANOTHER AT EVERY STAGE OF
HIS JOURNEY. FOR WHEN HE HAD FOUND

12 SCROLLS, HE WOULD UNDERSTAND THE
TRUTH ABOUT HIMSELF.

IN EVERY PICTURE FIND WALDO. WOOF (BUT

ALL YOU CAN SEE IS HIS TAIL). WENDA. WIZARD

WHITEBEARD, ODLAW, AND THE SCROLL. THEN

FIND WALDO'S KEY. WOOF'S BONE (IN THIS SCENE

IT'S THE BONE THAT'S NEAREST TO HIS TAIL).

WENDA'S CAMERA. AND ODLAW'S BINOCULARS.
w > O e S

THERE ARE ALSO 25 WALDO WATCHERS. EACH OF

WHOM APPEARS ONLY ONCE SOMEWHERE IN

THE FOLLOWING 12 PICTURES. AND ONE MORE
THING! CAN YOU FIND ANOTHER CHARACTER,
NOT SHOWN BELOW, WHO APPEARS ONCE IN
EVERY PICTURE EXCEPT THE LAST?




Simulation of point sampling
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Prefiltering to avoid aliasing

+ before sampling, remove (or at least attenuate) sine waves
of frequency greater than half the sampling rate

1

f e replace removed
cutoff 2 sampling

waves with their
average intensity
(gray in this case)

unfiltere prefiltered partially

pre-filtered
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Methods for prefiltering

+ method #1: frequency domain

1. convert image to frequency domain

2. remove frequencies above feuoy (replace with gray)
3. convert back to spatial domain
4

. perform point sampling as before

e conversions are slow

 not clear how to apply this method to images as they enter a camera

+ method #2: spatial domain
1. blur image using convolution

2. perform point sampling as before

e direct and faster

e equivalent to method #1 (proof is beyond scope of this course)




Convolution in 1D

+ replace each input value with a weighted sum of itself
and 1ts neighbors, with weights given by a hlter function

o)

fizlagled = ) flkl-glx—k]

k=—OO

input signal f]x] 1 e e e e ) 1

filter g[x] 9=l

output f[x] * g[x]

40
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Convolution in 1D

+ replace each input value with a weighted sum of itself
and 1ts neighbors, with weights given by a hlter function

fizlagled = ) flkl-glx—k]

input signal f]x] 1 e e e e ) 1

1 9 notice that the filter
gets flipped when applied

L T— S

output f[x] * g[x] 7




Convolution in 1D

+ replace each input value with a weighted sum of itself
and 1ts neighbors, with weights given by a hlter function

o)

fizlagled = ) flkl-glx—k]

k=—OO

input signal f]x] 1 e e e e ) 1

output f[x] * g[x] =

42




Convolution in 1D

+ replace each input value with a weighted sum of itself
and 1ts neighbors, with weights given by a hlter function

o)

fizlagled = ) flkl-glx—k]

k=—OO

input signal f]x] 1 e e e e ) 1

output f[x] * g[x] e

43
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More convolution formulae

+ 1D discrete: defined only on t

flx]=*g

he integers

3= S/

k=—00

- glx — k]

+ 1D continuous: defined on the real line

f@gx) = [ f@) glx-T)dr

(FLASE DR

https://sites.google.com/a/google.com/
digital-photography/applets/spatial-
convo lution
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More convolution formulae

+ 1D discrete: defined only on the integers

flElEalel =y iE el

k=—0
+ 1D continuous: defined on the real line

To simulate astigmatism,

foeg = [ f@) s-mdr

two columns (i.e. -0.04)

and change the wmiddle
column to0 +0.36. | muffed

+ 2D discrete: defined on the X, y integer grid  ihisionarglesture,

E Ef[l il- glx—i,y - j]

=—00 j=-00

+ 2D continuous: defined on the x,y plane

o0

fx,y)* g(x,y) = f ff(rl,r2)°g(x—rl,y—rz)drldrz

7

fIx,y]= glx,y]




Prefiltering reduces ahasing

P s

TN
s

-
H

Al

every 4" pixel in x and y convolved by 4x4 pixel rect,
then sampled every 4th pixel

46
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Prefiltering & sampling in photography

+ photography consists of convolving the focused image

by a 2D rect hlter, then sampling on a 2D grid
e each point on this grid is called a pexel

+ 1if convolution 1s followed by sampling, you only need to
compute the convolution at the sample positions

e for a rect filter of width equal to the sample spacing,
this 1s equivalent to measuring the average intensity
of the focused 1mage 1n a grid of abutting squares

e this 1s exactly what a digital camera does

+ the rect width should roughly match the pixel spacing

e much narrower would leave aliasing in the image

e much wider would produce excessive blurring in the image




Prefiltering & sampling in photography
(contents of whiteboard)
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Puring lecture | said that the microlenses
in a camera play a role in prefiltering the
image. This is true, but it’s only part of
the story; cameras also contain a separate
anti-aliasing filter. 1 will describe both,
and compare their roles, on Wednesday.
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The Fuji X-Trans sensor mosaic was
wmentioned during lecture. It is described
here: https:/en.wikipedia.org/wiki/
Bayer_filter. This design reduces Moire
artifacts for some scenes (containing
reqular patterns), but increases image
noise. A good discussion is at: http:/
www.dpreview.com/forums/post/
40260980. In computer graphics, spatially
jittered sampling for ray tracing makes a
similar tradeoff - of aliasing for noise.




Upsizing/downsizing in Photoshop

+ resampling 1s the conversion of a discrete image into a
second discrete image having more or fewer samples

1. interpolate between samples using convolution
2. if downsizing, blur to remove high frequencies

3. point sample at the new rate

e these steps can be simplified into a single discrete convolution

As | mentioned briefly during lecture, steps 1 and 2 are both convolutions, and convolution
is associative. Thus, (ferl @ g = f @ (r ® ), where f is the input image, r is the
reconstruction filter (see next slide), and g is a blurring filter (such as are shown in the
online convolution applet). This equation says that the two filters r and g can be convolved
with each other, thereby producing a single filter, sometimes called the resampling filter p
(rho), which is larger in non-zero extent than either r or g, and that can be applied to the
input image, followed by point sampling at the new rate.

49
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Interpolation via convolution
(contents of whiteboard)

Hx) | A ==

+ 1f the input is a discrete (i.e. sampled) function, then convolution can
be treated as placing a vertically-scaled copy of the filter r(x) at each

sample position as shown, summing the results, and dividing by the
area under the filter (1.0 in the cases shown)

+ the effect is to interpolate between the samples, hence reconstructing a
continuous function from the discrete function




Upsizing by 16:1

nearest neighbor
(a.k.a. pixel replication)

bilinear




Downsizing by 1:6

aliasing !
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Recap

+ aliasing 1s high frequencies masquerading as low frequencies
due to insufhciently closely spaced samples

+ reduce alhasing by prefiltering the input before sampling

o implement by multiplication in the frequency domain
e or convolution in the spatial domain

e in the spatial domain, the prefilter 1s denoted g(x)

+ 1n digital photography:

e g(x) is a pixel-sized rect, thus averaging intensity over areas

e if the rect 1s too small, aliasing occurs; solve with antialiasing filter

Questions?




Sampling versus quantization

Creation of a Digital Image
Analog Image Digital Sampling Pixel Quantization

248 ﬂd'ﬂulm 08 nz'n? 251|255

248 [24[210] 93 | 81 [120[ 97 [s93]2s4
 |260]70|133] 84 [s37]120] v0a[s4s]253
241 11a|11a 307|134|138( 96 | 82 |163

T 1!!'121 113 124| 15| 90T7| 71 |978

234(106| 84 |25 a7 [+06{s25]s08]204
241 [20a|voafraaf 78 | 73 [sar[aesfasz
3[252[244]238] 178 198[24z]aso] 245

(b)

Figure 1

(http://learn.hamamatsu.com/articles/digitalimagebasics.html)

1-bit | 2-bit | 4-bit 5-bit 6-bit | 8-bit | 14-bit
(Canon)

+ an image 1s a function f(X)

e typically (x) = (x,y) and ]7 = (R,G,B)
+ we sample the domain (¥) of this function as pixels

+ we quantize the range / of this function as intensity levels

54




8 bits x R,G,B =
Example 24 bits per pixel

Canon 1
300mm,

55
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8 bits x R,G,B =
24 bits per pixel
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6 bits x R,G,B =
18 bits per pixel
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5 bits x R,G,B =
15 bits per pixel
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4 bits x R,G,B =
12 bits per pixel
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3 bits x R,G,B =
9 bits per pixel




256 colors (8 bits) uniformly

< " distributed across RGB cube,
Dltherlng patterned dithering in Photoshop




256 colors (8 bits) adaptively

< " distributed across RGB cube,
Dltherlng patterned dithering in Photoshop
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Dithering versus halttoning

dithering for display (on a screen)

e palette of a few hundred colors (uniform or adaptive)

o ﬂip some pixels in each neighborhood to the next
available color in the palette to approximate
intermediate colors when viewed from a distance

halftoning for printing (on paper)
e palette of only 3 or 4 colors (primaries)

° prmt each prlmary as a grld of dots, superlmposed _
but sh htl offset from the other prlmarles, and vary
dot size locally to approx1mate intermediate colors

both techniques are applicable to tull-color or
black and white imagery

both trade off spatial resolution to obtain more
colors, hence to avoid quantization (contouring) &mma




Dithering versus halftoning

No¥ %3 %
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binary dithering grayscale dithering

(see http://bisqwit.iki.fi/jutut/
colorquant/ for more examples)

o grayscale halftoning color halftoning
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Recap

+ Jampling describes where in its domain you measure a function
e for uniformly spaced samples, you can specity a vampling rate
e if the sampling rate is too low, you might sufter from aliasing

e you can reduce aliasing by prefiltering

+ quantization describes how you represent these measurements
e for uniformly spaced levels, you can specity a ¢t deptl
e if the bit depth is too low, you might suffer from contouring

e you can reduce contouring by dithering (if displaying the image on a
screen) or halftoning (if printing 1t on paper)

Questions?
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Shide credits

+ Pat Hanrahan

+

Cornsweet, T.N., Viwual Perception, Kluwer Academic Press, 1970.




