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The Karhunen-Loeve Transform

A unitary transform represents a rotation of the signal vector in a particular
N-dimensional space. Is one transform better than others and is there a best
basis space?

The principal component analysis (PCA) and the associated Karhunen-Loeve
Transform (KLT) will shed light to these questions.
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Samples from a random signal x(t), xm (m = 0, · · · ,N−1), form the vector

x = [x0, · · · ,xN−1]
T ,

with mean vector and covariance matrix given by

mx
4
= E(x) = [E(x0), · · · ,E(xN−1)]

T = [µ0, · · · ,µN−1]
T

Σx
4
= E [(x−mx )(x−mx )

T ] = E(xxT )−mxmx
T =

 .. .. ..

.. σ2
ij ..

.. .. ..


with σ2

ij
4
= E(xixj)−µi µj being the covariance of xi and xj . For i = j , we have

σ2
i
4
= E(xi −µi)

2 = E(x2
i )−µ2

i .
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If the signal is

Complex, the covariance matrix is Hermitian, i.e., Σ∗Tx = Σx .

Real, then Σ∗x = Σx is real and symmetric ΣT
x = Σx .

The correlation matrix of X is defined as

Rx
4
= E(xxT ) =

 .. .. ..
.. rij ..
.. .. ..


where rij = E(xixj) = σ2

ij +µi µj .
Since σij = σji and rij = rji , both ΣX = ΣT

X and Rx = RT
x are symmetric.
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For y = AT x, the mean and covariance are given by

my = E(y) = E(AT x) = AT E(x) = AT mx

Σy = E(yyT )−my mT
y

= E [(AT x)(AT x)T ]− (AT mx )(AT mx )
T

= E [AT (xxT )A]−AT mxmT
x A

= AT [E(xxT )−mxmT
x ]A (1)

= AT
ΣxA (2)
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Karhunen-Loeve Transform (KLT)

Let φk be the eigenvector corresponding to the kth eigenvalue λk of the
covariance matrix Σx , i.e.,

Σx φk = λk φk (k = 0, · · · ,N−1) · · · · · · · · ·· · · σij · · ·
· · · · · · · · ·

 φk

= λk

 φk

 (k = 0, · · · ,N−1)

where the eigenvectors φi ’s are orthogonal:

< φi ,φj >= φ
T
i φ
∗
j =

{
1 i = j
0 i 6= j
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We then form an N×N unitary (orthogonal if x is real) matrix Φ

Φ
4
= [φ0, · · · ,φN−1]

satisfying

Φ
∗T

Φ =


φ ∗T0
φ ∗T1
· · ·

φ ∗TN−1

[ φ0 φ1 · · · φN−1
]
= I.

Hence,
Φ
−1 = Φ

∗T
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The N eigenequations above can be combined into:

Σx Φ = ΦΛ

 · · · · · · · · ·· · · σij · · ·
· · · · · · · · ·

 [φ0, · · · ,φN−1] = [φ0, · · · ,φN−1]


λ0 0 · · · 0

0 λ1 0
...

... 0
. . . 0

0 · · · 0 λN−1


where Λ is a diagonal matrix Λ = diag(λ0, · · · ,λN−1).

Multiplying ΦT = Φ−1 on both sides, Σx can be diagonalized:

Φ
∗T

Σx Φ = Φ
−1

Σx Φ = Φ
−1

ΦΛ = Λ
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Define a unitary Karhunen-Loeve Transform of x as:

y =


y0
y1
...
yN−1

= Φ
∗T x =


φ ∗T0
φ ∗T1
...
φ ∗TN−1

x

where the ith component yi of the transform vector is the projection of x onto
φi :

yi =< φi ,x >= φ
∗T
i x

Left multiplying Φ = (Φ∗T )−1 on both sides of the transform y = Φ∗T x, we get
the inverse transform:

x = Φy = [φ0,φ1, · · · ,φN−1]


y0
y1
...
yN−1

=
N−1

∑
i=0

yiφi

The vector x is then represented in an N-dimensional space spanned by the
N eigenvector basis set φi (i = 0, · · · ,N−1).
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KLT Completely Decorrelates the Signal

Among all possible orthogonal transforms, KLT is optimal in that

The KLT completely decorrelates the signal

The KLT maximally compacts the energy (information) contained in the
signal.
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To see the first property, consider the mean vector my and covariance matrix
Σy of y = ΦT x:

my = Φ
T mx

Σy = E(yyT )−my mT
y (3)

= E [(ΦT x)(ΦT x)T ]− (ΦT mx )(Φ
T mx )

T

= E [ΦT (xxT )Φ]−Φ
T mxmT

x Φ

= Φ
T [E(xxT )−mxmT

x ]Φ

= Φ
T

Σx Φ = Λ

= diag[λ0,λ1, · · · ,λN−1] (4)
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The above can be written in matrix form:

Σy =

 · · · · · · · · ·· · · σij · · ·
· · · · · · · · ·

= Φ
T

Σx Φ = Λ =


λ0 0 · · · 0
0 λ1 · · · 0
· · · · · · · · · · · ·
0 0 · · · λN−1



=


σ2

0 0 · · · 0
0 σ2

1 · · · 0
· · · · · · · · · · · ·
0 0 · · · σ2

N−1


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Hence:

After the KLT, the covariance matrix of the signal y = ΦT x is
diagonalized, i.e., the covariance σij = 0 between yi and yj is always
zero.

The signal is completely decorrelated.

The variance of yi is the same as the ith eigenvalue of the covariance
matrix of x, i.e., σ2

i = λi .

Chapter IV(e) Gonzalo R. Arce Spring, 2013 17 / 53



Energy Compaction of the KLT

Here we show that the KLT maximally compacts the signal energy into a
small number of components.

Let A be an arbitrary orthogonal matrix satisfying A−1 = AT , and represent A
in terms of its column vectors ai ,

A = [a0, · · · ,aN−1], or AT =

 aT
0
...

aT
N−1

 .
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A then defines an orthogonal transform as

y =

 y0
...

yN−1

= AT x =

 aT
0
...

aT
N−1

x

where the ith component of y is yi = aT
i x. The inverse transform is:

x = Ay = [a0, · · · ,aN−1]

 y0
· · ·

yN−1

=
N−1

∑
i=0

yiai
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The variances of the signal components before and after the KLT transform
are:

σ
2
xi
= E [(xi −µxi )

2]
4
= E(exi ), and σ

2
yi
= E [(yi −µyi )

2]
4
= E(eyi )

where exi

4
= (xi −µxi )

2 is the energy in the ith component, and the trace
matrix trΣx represents the total energy

The total energy in x = trΣx =
N−1

∑
i=0

σ
2
xi
=

N−1

∑
i=0

E(exi )
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Since tr(AB) = tr(BA),

trΣy = tr(ΦT
Σx Φ) = tr(ΦT

ΦΣx ) = trΣx

The total energy of the signal is thus conserved after the KLT transform.

However, the energy distribution among all N components can be very
different before and after the KLT transform.
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Define the energy contained in the first m < N components after the
transform y = AT x as

Pm(A)
4
=

m−1

∑
i=0

E [(yi −µy1)
2] =

m−1

∑
i=0

σ
2
yi
=

m−1

∑
i=0

E(eyi )

Pm(A) will be maximized if and only if (iff) the transform matrix is the same as
that of the KLT:

Pm(Φ)≥ Pm(A).

The KLT is optimal in compacting the energy into a few components of the
transformed signal.
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Consider

Pm(A)
4
=

m−1

∑
i=0

E(yi −µy1)
2 =

m−1

∑
i=0

E [aT
i (x−mxi ) aT

i (x−mxi )]

=
m−1

∑
i=0

E [aT
i (x−mxi ) (x−mxi )

T ai ]

=
m−1

∑
i=0

aT
i E [(x−mxi )(x−mxi )

T ]ai

=
m−1

∑
i=0

aT
i Σxai
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The objective is to find a transform matrix A such that

argmax
A

Pm(A) subject to: aT
j aj = 1 (j = 0, · · · ,m−1)

The constraint aT
j aj = 1 is to guarantee that the column vectors in A are

normalized. This constrained optimization problem can be solved using
Lagrange multipliers by letting the following partial derivative be zero:

∂

∂ai
[Pm(A)−

m−1

∑
j=0

λj(aT
j aj −1)] =

∂

∂ai
[
m−1

∑
j=0

(aT
j Σxaj −λjaT

j aj +λj)]

=
∂

∂ai
[aT

i Σxai −λiaT
i ai ]

∗
= 2Σxai −2λiai = 0

The column vectors of A must then be the eigenvectors of Σx :

Σxai = λiai (i = 0, · · · ,m−1)
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The transform matrix must be

A = [a0, · · · ,aN−1] = Φ = [φ0, · · · ,φN−1]

where φi ’s are the orthogonal eigenvectors of Σx corresponding to
eigenvalues λi (i = 0, · · · ,N−1):

Σx φi = λiφi , i.e. φ
T

Σx φi = λiφ
T
i φi = λi
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The optimal transform is thus the KLT with

Pm(Φ) =
m−1

∑
i=0

φ
T
i Σx φi =

m−1

∑
i=0

λi

where the eigenvalue λi of Σx is also the energy contained in the i th
component.

If we choose those φ ′i s that correspond to the m largest eigenvalues of Σx :
λ0 ≥ λ1 ≥ ·· ·λm · · · ≥ λN−1, then Pm(Φ) will be maximized.
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The KLT can be used for data compression by reducing the dimensionality of
the data as follows:

Find the mean vector mx and covariance matrix Σx .

Find the eigenvalues λi of Σ, sorted in descending order, and their
corresponding eigenvectors φi (i = 0, · · · ,N−1).

Choose a lowered dimensionality m < N so that the percentage of
energy contained ∑

m−1
i=0 λi/∑

N−1
i=0 λi is no less than a given threshold

(e.g., 95%).
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Construct an N by m transform matrix composed of the m largest
eigenvectors of Σx :

Φm = [φ0, · · · ,φm−1]

and compute the KLT based on Φm:

y = Φ
T
mx

or  y0
· · ·

ym−1


m×1

=

 φT
0
· · ·

φT
m−1


m×N

 x0
· · ·

xN−1


N×1
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Since the dimensionality m of y is less than the dimensionality N of x, data
compression is attained.

This is a lossy compression with the error representing the percentage of
information lost: ∑

N−1
i=m λi/∑

N−1
i=0 λi .

But as these λi ’s are the smallest eigenvalues, the error is small (e.g., 5%).
Carry out inverse KLT for reconstruction:

x = Φmy x0
· · ·

xN−1


N×1

=
[

φ0 · · ·φm−1
]

N×m

 y0
· · ·

ym−1


m×1
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Geometric Interpretation of the KLT

Assume x = [x0, · · · ,xN−1]
T is a multivariate Gaussian vector with a joint

probability density function:

p(x0, · · · ,xN−1) = N(x,mx ,Σx ) =
1

(2π)N/2 |Σx |1/2 exp[−1
2
(x−mx )

T
Σ
−1
x (x−mx )]

where mx and Σx are the mean vector and covariance matrix of x

When N = 1, Σx and mx become σx and µx , and p(x) becomes the single
variable normal distribution:

p(x) = N(x ,µx ,σx ) =
1√

2πσ2
x

exp[− (x −µx )
2

2σ2
x

].
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The shape of this N-dimensional density is depicted by the iso-value
hyper-surface

(x−mx )
T

Σ
−1
x (x−mx ) = c1

where c1 is a constant. For N = 2, we have

(x−mx )
T

Σ
−1
x (x−mx ) = [x0−µx0 ,x1−µx1 ]

[
a b/2

b/2 c

][
x0−µx0
x1−µx1

]
= a(x0−µx0)

2 +b(x0−µx0)(x1−µx1)+c(x1−µx1)
2 = c1
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Here we have assumed

Σ
−1
x =

[
a b/2

b/2 c

]
The above quadratic equation represents an ellipse (instead of other
quadratic curves such as hyperbola and parabola) centered at mx = [µ0,µ1]

T ,
because Σ

−1
x and Σx are both positive definite, i.e.,∣∣∣Σ−1

x

∣∣∣= ac−b2/4 > 0
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For N > 2, N(x,mx ,Σx ) = c0 represents a hyper ellipsoid in N-dimensions.

The center and spatial distribution of this ellipsoid are determined by mx and
Σx .

The KLT y = ΦT x completely decorrelates x such that

Σy = Λ =


λ0 0 · · · 0
0 λ1 · · · 0
· · · · · · · · · · · ·
0 0 · · · λN−1

=


σ2

y0
0 · · · 0

0 σ2
y1
· · · 0

· · · · · · · · · · · ·
0 0 · · · σ2

yN−1


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Equation N(x,mx ,Σx ) = c0 becomes N(y,my ,Σy ) = c0, or

(y−my )
T

Σ
−1
y (y−my ) =

N−1

∑
i=0

(yi −µyi )
2

λi
=

N−1

∑
i=0

(yi −µyi )
2

σ2
yi

= c1

This equation represents a standard ellipsoid in the N-dimensional space.
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The KLT rotates the coordinate system so that the semi-principal axes of the
ellipsoid associated with the normal distribution are in parallel with φi , the
axes of the new coordinate system.

Moreover, the length of the semi-principal axis parallel to φi is equal to√
λi = σyi .
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Comparison with Other Orthogonal Transforms

Example 1 Consider a 256×256 image clouds where each row is treated as
an observation sample of a 1−D random vector x (with 256 components).
The various transforms y = AT x are applied to x, and the corresponding
covariance matrices Σy are compared.

Results for the DFT and WHT are very similar to that of DCT. A conversion
y = x0.3 has applied to the intensity of the images for covariance matrices for
the low values to be still visible.
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The energy compaction is illustrated in the following table showing the
number of components needed to keep a percentage of the energy.

To keep 99% of the total energy, 250 out of 256 components are needed for
no transform, 97 out of 256 are needed after the DCT, and 55 after the KLT.

Percentage 90 95 99 100
Identity 209 230 250 256 (all)
DCT 10 22 97 256 (all)
KLT 7 13 55 256 (all)
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All orthogonal transforms tend to decorrelate signals, and the KLT does
it optimally.

Orthogonal transforms tend to compact the energy into a small number
of components. For example, after the DFT most of the energy will be
concentrated in the DC component and a relatively small number of low
frequency components. The same is also true for DCT and WHT.
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Orthogonal transforms tend to reduce correlation when signals are
continuous and smooth. In other cases, orthogonal transforms may not
perform well, and the energy will not necessarily be compacted.

Example The left figure shows texture of sand, where the pixels are not
correlated as in the previous example, since the color of a grain of sand is not
related to those of the neighboring grains. The second image shows the
covariance matrix of the row vectors of the image. The 3rd and 4th figures
shows the covariances after DCT and KLT.
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Although the KLT is optimal, other transforms are widely used for two
reasons.

First, KLT transform matrix is composed of the eigenvectors of the
covariance matrix Σx , which can be estimated only if sufficient amount of
data is available.

Second, the computational cost for KLT is much higher than other
transforms,

We need to estimate the covariance matrix Σx and solve its
eigenvalue problem to obtain the transform matrix Φ.
Fast KLT transforms do not exist. The complexity of the transform is
O(N2), instead of Nlog2N for most of other transforms.
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Assume a set of N images of size K = rows×columns are to be stored or
transmitted.

The pixels of the same position in all these images are used to form a
N-dimensional vector and there are in total K such vectors.

Treating these vectors as random vectors, we can find their mean vector m
and covariance matrix Σ, and the KLT can be carried out to transform these
vectors into a lower dimensional space of m << N dimensions.
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Example:

Twenty images of faces:

Chapter IV(e) Gonzalo R. Arce Spring, 2013 42 / 53



The eigen-images after KLT:

Percentage of energy contained in the
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Reconstructed faces using 95% of the total information (15 out of 20
components):
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Singular Value Decomposition

Let a 2D image be represented by a matrix A = [aij ]M×N with rank equal to R .
Here we assume R ≤M ≤ N. Consider next the eigenvalue decompositions
for AT A and AAT

AAT ui = λ iui , AT Avi = λ ivi , (5)

where λi , are the eigenvalues of both AAT and AT A, for (i = 1,2, · · · ,R).
Since these matrices are symmetric, their eigenvectors are orthogonal:

uT
i uj = δij = vT

i vj = δij (6)

forming two orthogonal matrices U = [u1, · · · ,uN ]M×N and V = [v1, · · · ,vN ]N×N
such that

UUT = UT U = I, VVT = VT V = I. (7)
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Since there are only R non-zero eigenvalues, These matrices satisfy

UT (AAT )U = ΛM×M = diag[λ1, · · · ,λR ] (8)

and
VT (AT A)V = ΛN×N = diag[λ1, · · · ,λR ] (9)

The singular value decomposition (SVD) is of a matrix A is defined as

UT AV = Λ
1/2
M×M = diag[

√
λ1, · · · ,

√
λ R ] (10)
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From the properties of U and V, the inverse of the SVD decomposition is

A = UΛ
1/2VT = [u1, ...,uN]


√

λ1 ... 0
... ... ...

...
√

λR ...
... ... ...
0 ... 0

 [v1, ...,vN]
T (11)

= [
√

λ1u1
√

λ2u2...
√

λRuR ...0]


vT

1
vT

2
...

vT
N

 (12)

=


√

λ1u11v11 + ...+
√

λRuR1vR1
√

λ1u11v12 + ...+
√

λRuR1vR2 ...
... ... ...√

λ1u1M v11 + ...+
√

λRuRM vR1
√

λ2u1M v12 + ...+
√

λRuRM vR2 ...

 (13)

=
R

∑
i=1

√
λi [ui vT

i ]. (14)

The inverse SVD transform can be interpreted as the representation of
the image matrix A decomposed into a set of eigenimages

√
λi [uivT

i ]
of size M by N.
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Lenna Image, U, V and Singular Values
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First 10 eigen-images of the Lenna image
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Eigen-images (from 10 to 120 with increment of 10)
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First 10 Partial Sum Images
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Partial Sum Images (from 10 to 120 eigen-images with increment 10)

Chapter IV(e) Gonzalo R. Arce Spring, 2013 52 / 53



Reconstructed image for different ranks
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Absolute difference between the original and the reconstructed images
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