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Let x and y be two vectors:

x = [x1, · · · ,xn]
T , y = [y1, · · · ,yn]

T

Their inner product is defined as

(x,y) 4= x∗T y =
n

∑
k=1

x∗k yk

where T and ∗ represent transpose and complex conjugate, respectively.
The norm (magnitude, length) of a vector x is defined as

‖x‖ 4= (x,x)1/2 =

√
n

∑
k=1
|xk |2

where |x | represents the absolute value if (real x) or norm (complex x) of x . x
is normalized if ‖x‖= 1.
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Two vectors x and y are orthogonal to each other if and only if their inner
product is zero. For normalized orthogonal vectors, we have

(x,y) = δxy
4
=

{
1 if x = x
0 if x 6= y
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Rank, Trace, Determinant, Transpose and Inverse of a
Matrix
Let A be an N×N square matrix:

A =


a11 a12 · a1N
a21 a22 · a2N
· · · ·

aN1 aN2 · aNN


N×N

where 
a1j
a2j
...
aNj


is the jth column vector and

[ai1 ai2 · · · aiN ]

is the ith row vector.
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The N rows span the row space of A and the N columns span the column
space of A. The dimensions of these two spaces are the same and called the
rank of A:

R = rank(A)≤ N

The determinant of A is denoted by det(A) = |A| and we have

|AB|= |A| |B|

rank(A)< N if and only if det(A) = 0.
The trace of A is defined as the sum of its diagonal elements:

tr(A) =
N

∑
i=1

aii

The transpose of a matrix A, denoted by AT , and
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For any two matrices A and B, we have

(AB)T = BT AT

If AB = BA = I, where I is an identity matrix, then B = A−1 is the inverse of A.
A−1 exists iff det(A) 6= 0, i.e., rank(A) = N.
For any two matrices A and B,

(AB)−1 = B−1A−1

and
(A−1)T = (AT )−1
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Hermitian Matrix and Unitary Matrix

A is a Hermitian matrix iff A∗T = A.
When a Hermitian matrix A is real (A∗ = A), it becomes symmetric, AT = A.
A is a unitary matrix iff A∗T A = I, i.e., A∗T = A−1.
When a unitary matrix A is real (A∗ = A), it becomes an orthogonal matrix,
AT = A−1.
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The columns (or rows) of a unitary matrix A are orthonormal, i.e. they are
both orthogonal and normalized, i.e.,

(ai ,aj) = ∑
k

a∗ik ajk = δij
4
=

{
1 if i = j
0 if i 6= j

Any Hermitian matrix A (symmetric if real) can be converted to a diagonal
matrix Λ by a particular unitary (orthogonal if real) matrix Φ:

Φ
∗T AΦ = Λ

where Λ is a diagonal matrix.
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Unitary Transforms

For the unitary matrix A (A−1 = A∗T ), define a unitary transform
x = [x1, · · · ,xn]

T :

y =


y1
y2
· · ·
yN

= A∗T x =


a∗T1
a∗T2
· · ·
a∗TN




x1
x2
· · ·
xN

 , (forw. transf.)

x =


x1
x2
· · ·
xN

= Ay =

 a1 a2 · · · aN




y1
y2
· · ·
yN

= ∑
n
i=1 yi ai (inv. trans.)

When A = A∗ is real, A−1 = AT , this is an orthogonal transform.
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The first equation above is the forward transform and can be written as:

yi = a∗Ti x = (ai ,x) =
N

∑
j=1

a∗i ,jxj

The transform coefficient yi = (ai ,x) (an inner product) represents the
projection of vector x onto the ith column vector ai of the transform matrix A.

Chapter IV(d) Gonzalo R. Arce Spring, 2013 10 / 36



The second equation is the inverse transform

xj =
N

∑
i=1

aj ,i yi

x is a linear combination of the N column vectors ai ,a2, · · · ,aN of the matrix
A. Geometrically, x is a point in the N-D space spanned by these N
orthonormal basis vectors. Each coefficient yi is the projection of x onto the
corresponding basis ai .
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A N-dimensional space can be spanned by the column vectors of any unitary
matrix.
Examples:

When A = I = [· · · ,ei , · · · ] is an identity matrix, we have

x =
N

∑
i=1

yiai =
N

∑
i=1

xiei

where ei = [0, · · · ,0,1,0, · · · ,0]T is the ith column of I with the ith element
equal 1 and all other 0.
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When am,n = w [m,n] = e−j2πmn/N , we obtain the DFT. The nth column
vector wn of W = [w0, · · · ,wN−1] represents a sinusoid of a frequency
nf0, and the corresponding yn = (x,wn) represents the magnitude |yn|
and phase ∠yn of this nth frequency component. The Fourier transform
y = Wx represents a rotation of the coordinate system.
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Geometrically, a unitary transform y = Ax is a rotation of the vector X about
the origin. It also does not change the vector’s length:

|y|2 = y∗T y = (A∗T x)∗T (A∗T x) = x∗T AA∗T x = x∗T x = |x|2

as AA∗T = AA−1 = I.
Parseval’s relation: the total energy of the signal is preserved under a unitary
transform.
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Some other features of the signal may be changed. If x is a random vector
with mean mx and covariance Σx :

mx = E(x), Σx = E(xxT )−mxmT
x

then y = AT x has the following

my = E(y) = E(AT x) = AT E(x) = AT mx

Σy = E(yyT )−my mT
y = E [(AT x)(AT x)T ]− (AT mx )(AT mx )

T

= E [AT (xxT )A]−AT mxmT
x A = AT [E(xxT )−mxmT

x ]A
= AT

ΣxA
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Eigenvalues and Eigenvectors

For any matrix A, if there exist a vector φ and a value λ such that

Aφ = λφ

then λ and φ are called the eigenvalue and eigenvector of A. To obtain λ ,
rewrite the above equation as

(λ I−A)φ = 0

which is a homogeneous equation system. To find its non-zero solution for φ ,
we require

|λ I−A|= 0

Solving this Nth order equation of λ , we get n eigenvalues {λ1, · · · ,λN}.
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Substituting each λi back into the equation system, we get the corresponding
eigenvector φi.

A[φ1, · · · ,φN ] = [λ1φ1, · · · ,λNφN ]

= [φ1, · · · ,φN ]


λ1 0 · 0
0 λ2 · 0
· · · ·
0 0 · λN


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In a more compact form AΦ = ΦΛ or

Φ
−1AΦ = Λ

where
Φ = [φ1, · · · ,φN ]

and
Λ = diag[λ1, · · · ,λN ]

The trace and determinant of A can be obtained from its eigenvalues

tr(A) =
N

∑
k=1

λk

and

det(A) =
N

∏
k=1

λk
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AT has the same eigenvalues and eigenvectors as A.
Am has the same eigenvectors as A, but its eigenvalues are {λ m

1 , · · · ,λ m
n },

where m is a positive integer.
This is also true for m =−1, i.e., the eigenvalues of A−1 are {1/λ1, · · · ,1/λN}.
If A is Hermitian (symmetric if A is real), all the λi ’s are real and all
eigenvectors φi ’s are orthogonal:

(φi ,φj) = δij
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If all φi ’s are normalized, matrix Φ is unitary (orthogonal if A is real):

Φ
−1 = Φ

∗T

and we have
Φ
−1AΦ = Φ

∗T AΦ = Λ

The matrix A can be decomposed to be expressed as

A = ΦΛΦ
T = [φ1, · · · ,φN ]

 λ1 ... 0
... ... ...
0 ... λN

 φT
1
...

φT
N

=
N

∑
i=1

λiφiφ
T
i
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Hadamard Matrix

The Kronecker product of two matrices A = [aij ]m×n and B = [bij ]k×l is defined
as

A⊗B 4
=

 a11B · · · a1nB
· · · · · · · · ·
am1B · · · amnB


mk×nl

In general, A⊗B 6= B⊗A.
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The Hadamard Matrix is defined recursively as below:

H1
4
=

1√
2

[
1 1
1 −1

]
Hn = H1⊗Hn−1 =

[
Hn−1 Hn−1
Hn−1 −Hn−1

]
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For example,

H2 = H1⊗H1 =
1√
2

[
H1 H1
H1 −H1

]
=

1√
4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



H3 = H1⊗H2 =
1√
2

[
H2 H2
H2 −H2

]
=

1√
8



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1



0 0
1 7
2 3
3 4
4 1
5 6
6 2
7 5

The first column following the array is the index numbers of the N = 8 rows,
and the second column represents the sequency (the number of
zero-crossings or sign changes) in each row.
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The Hadamard matrix can also be obtained by defining its element in the kth
row and mth column of H as

h[k ,m] = (−1)∑
n−1
i=0 ki mi =

n−1

∏
i=0

(−1)ki mi = h[m,k ] (k ,m = 0,1, · · · ,N−1)

where

k =
n−1

∑
i=0

ki2i = (kn−1kn−2 · · ·k1k0)2 (ki = 0,1)

m =
n−1

∑
i=0

mi2i = (mn−1mn−2 · · ·m1m0)2 (mi = 0,1)

i.e., (kn−1kn−2 · · ·k1k0)2 and (mn−1mn−2 · · ·m1m0)2 are the binary
representations of k and m, respectively. Obviously, n = log2N.
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H is real, symmetric, and orthogonal:

H = H∗ = HT = H−1

It defines the transform pair:

X = Hx, x = HX

where the forward and inverse transforms are identical.
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Fast Walsh-Hadamard Transform (Hadamard Ordered)

Since any orthogonal matrix defines a transform, the Walsh-Hadamard
transform pair is {

X = Hx
x = HX

where x = [x [0],x [1], · · · ,x [N−1]]T and X = [X [0],X [1], · · · ,X [N−1]]T are the
signal and spectrum vectors. The k th element of the transform is

X [k ] =
N−1

∑
m=0

h[k ,m]x [m] =
N−1

∑
m=0

x [m]
n−1

∏
i=0

(−1)mi ki

The complexity of WHT is O(N2). Similar to FFT algorithm, we can derive a
fast WHT algorithm with complexity of O(Nlog2N).
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Assume n = 3 and N = 2n = 8. An N = 8 point WHTh of the signal x [m] is
X [0]
.

X [3]
X [4]
.

X [7]

=

[
H2 H2
H2 −H2

]


x [0]
.

x [3]
x [4]
.

x [7]


This equation can be separated into two parts. The first half of the X vector is

X [0]
X [1]
X [2]
X [3]

= H2


x [0]
x [1]
x [2]
x [3]

+H2


x [4]
x [5]
x [6]
x [7]

= H2


x1[0]
x1[1]
x1[2]
x1[3]

 (1)

where
x1[i ]

4
= x [i ]+x [i +4] (i = 0, · · · ,3) (2)
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The second half of the X is
X [4]
X [5]
X [6]
X [7]

= H2


x [0]
x [1]
x [2]
x [3]

−H2


x [4]
x [5]
x [6]
x [7]

= H2


x1[4]
x1[5]
x1[6]
x1[7]

 (3)

where
x1[i +4]

4
= x [i ]−x [i +4] (i = 0, · · · ,3) (4)
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What we have done is converting a WHT of size N = 8 into two WHTs of size
N/2 = 4. Continuing this process recursively, we can rewrite Eq. (1) as the
following 

X [0]
X [1]
X [2]
X [3]

=

[
H1 H1
H1 −H1

]
x1[0]
x1[1]
x1[2]
x1[3]


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This equation can again be separated into two halves. The first half is[
X [0]
X [1]

]
= H1

[
x1[0]
x1[1]

]
+H1

[
x1[2]
x1[3]

]
(5)

= H1

[
x2[0]
x2[1]

]
=

[
1 1
1 −1

][
x2[0]
x2[1]

]
=

[
x2[0]+x2[1]
x2[0]−x2[1]

]
(6)

where
x2[i ]

4
= x1[i ]+x1[i +2] (i = 0,1) (7)
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The second half is[
X [2]
X [3]

]
= H1

[
x1[0]
x1[1]

]
−H1

[
x1[2]
x1[3]

]
(8)

= H1

[
x2[2]
x2[3]

]
=

[
1 1
1 −1

][
x2[2]
x2[3]

]
=

[
x2[2]+x2[3]
x2[2]−x2[3]

]
(9)

where
x2[i +2]

4
= x1[i ]−x1[i +2] (i = 0,1) (10)
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X [4] through X [7] of the second half can be obtained similarly.

X [0] = x2[0]+x2[1] (11)

and
X [1] = x2[0]−x2[1] (12)

Summarizing the above steps of Equations we get the Fast WHT algorithm as
illustrated below.
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