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Let x and y be two vectors:

X:[X1,---,Xn]T, V:[Y17"'7}/n]T

Their inner product is defined as

A LT d *
(Xy)=x"y=Y Xy«

where T and «* represent transpose and complex conjugate, respectively.
The norm (magnitude, length) of a vector x is defined as

I = (x,)"/2 = =1/ Z Xk 2

where | x| represents the absolute value if (real x) or norm (complex x) of x. x
is normalized if ||x|| = 1.
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Two vectors x and y are orthogonal to each other if and only if their inner
product is zero. For normalized orthogonal vectors, we have

A1 jfx=X
(xay)Sxy{ 0 Ifx#y
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Rank, Trace, Determinant, Transpose and Inverse of a
Matrix

Let A be an N x N square matrix:

anr a2 - aN
a a - a
A— 21 22 oN
ant an2 - anN | nyxn
where
a;
agj
an;

is the jth column vector and

@i aj2 -+ ain]

is the ith row vector.

Chapter IV(d) Gonzalo R. Arce Spring, 2013 4/36



The N rows span the row space of A and the N columns span the column
space of A. The dimensions of these two spaces are the same and called the
rank of A:

R=rank(A) <N

The determinant of A is denoted by det(A) = |A| and we have
|AB| = |A| [B|

rank(A) < N if and only if det(A) = 0.
The trace of A is defined as the sum of its diagonal elements:

N
tr(A) = Z aji
i=1
The transpose of a matrix A, denoted by A', and

=]
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For any two matrices A and B, we have
(AB)" =BTAT
If AB = BA =1, where | is an identity matrix, then B = A~ is the inverse of A.
A~ exists iff det(A) £ 0, i.e., rank(A) = N.
For any two matrices A and B,
(AB) ' =B A"

and
(AHT = (AT)"

"
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|
Hermitian Matrix and Unitary Matrix

A is a Hermitian matrix iff A*T = A.

When a Hermitian matrix A is real (A* = A), it becomes symmetric, AT = A.
A is a unitary matrixiff A*TA=1,i.e., A*T =A""

WThen a 11Jn|tary matrix A is real (A* = A), it becomes an orthogonal matrix,
A=A
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The columns (or rows) of a unitary matrix A are orthonormal, i.e. they are
both orthogonal and normalized, i.e.,

) Af 1 dfi=]
(ai,aj)Z;aikajk:&/:{ 0 ifi#j

Any Hermitian matrix A (symmetric if real) can be converted to a diagonal
matrix A by a particular unitary (orthogonal if real) matrix &:

> TAD =A

where A is a diagonal matrix.

=]
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-
Unitary Transforms

For the unitary matrix A (A~' = A*T), define a unitary transform
X=[xq, -, %

¥ aj’ Xy
y=| 2 | =ATx= a;T X (forw. transf.)
L In ] ay XN
X1 Y1
X= X2 —Ay = | AW }/2 =Y ,yia; (nvtrans.)
L XN N

When A = A* is real, A~' = AT, this is an orthogonal transform.
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The first equation above is the forward transform and can be written as:
yi=aTx=(a;x Za,jx,

The transform coefficient y; = (a;,x) (an inner product) represents the
projection of vector x onto the ith column vector a; of the transform matrix A.

"
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The second equation is the inverse transform

N
X=Y8iYi
i=1

X is a linear combination of the N column vectors a;,as, - -- ,ay of the matrix
A. Geometrically, x is a point in the N-D space spanned by these N
orthonormal basis vectors. Each coefficient y; is the projection of x onto the
corresponding basis a;.

A A3
ye(X AR~

T~ o X=¥iA1 1Y 0Ast Y343

50X AD
oS AL
Ve
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A N-dimensional space can be spanned by the column vectors of any unitary
matrix.
Examples:

@ When A=I1=[-- e;---]is an identity matrix, we have

where ;= [0,---,0,1,0,---,0]7 is the ith column of | with the ith element
equal 1 and all other 0.

"
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@ When ap , = wim,n] = e /2#™/N 'we obtain the DFT. The nth column
vector w, of W = [wg,--- ,wy_1] represents a sinusoid of a frequency
nfy, and the corresponding y, = (X,Wp) represents the magnitude |y,
and phase Zy; of this nth frequency component. The Fourier transform
y = Wx represents a rotation of the coordinate system.

=]
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Geometrically, a unitary transform y = Ax is a rotation of the vector X about
the origin. It also does not change the vector’s length:

‘Y|2 — y*Ty — (A*TX)*T(A*TX) — X*TAA*TX — X*TX — ‘X|2
as AA'T =AAT =1

Parseval’s relation: the total energy of the signal is preserved under a unitary
transform.

=]
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Some other features of the signal may be changed. If x is a random vector
with mean m, and covariance X:

my, = E(x), Zy=E(xx")—m,m]
then y = A7x has the following

m, = E(y) = E(ATx) = ATE(x) = ATm,

T, = E(yy")-mym) =E[ATx)(AT%)T]—(ATmy)(ATm,)"
= EAT(xx")A]—A"m,m]A =AT[E(xx") —m,m]]A
= AT5,A

=]
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|
Eigenvalues and Eigenvectors

For any matrix A, if there exist a vector ¢ and a value A such that
Ap=21¢

then A and ¢ are called the eigenvalue and eigenvector of A. To obtain A,
rewrite the above equation as

(Al=A)p =0

which is a homogeneous equation system. To find its non-zero solution for ¢,
we require
[Al—A|=0

Solving this Nth order equation of A, we get n eigenvalues {1+, ,An}.

=]
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Substituting each A; back into the equation system, we get the corresponding
eigenvector ¢;.

A[¢17"' 7¢N} = [l1¢17"' 7A'N¢N]

MM 0O - O

0 A - O
:[¢17"',¢N] . .2 . .

0 0 - Ay
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In a more compact form A® = ®A or
> AD=A

where

(D:[¢17"'7¢N]

and
A= dlag[l‘]v 7AN]

The trace and determinant of A can be obtained from its eigenvalues

N
tr(A) = Z Ak
k=1

and
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AT has the same eigenvalues and eigenvectors as A.

A™ has the same eigenvectors as A, but its eigenvalues are {A",--- | A["},
where m is a positive integer.

This is also true for m= —1, i.e., the eigenvalues of A~" are {1/A¢,---,1/An}.
If A is Hermitian (symmetric if A is real), all the A;’s are real and all
eigenvectors ¢;'s are orthogonal:

(01, 9)) = &j

=]
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If all ¢;’s are normalized, matrix ® is unitary (orthogonal if A is real):
q)—1 — ¢*T

and we have
O AP =D TAD = A

The matrix A can be decomposed to be expressed as

M .. 0O of

N
A=0ADT =gy, -, ¢p] = Y %o/
i=1
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|
Hadamard Matrix

The Kronecker product of two matrices A = [aji]mxn and B = [bj]x, is defined

as
A aB - a;B
AxB=
amB - amnB mkxnl

In general, A B #B®A.
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The Hadamard Matrix is defined recursively as below:

A1 1 1
el ]
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o T e R T
1T -1 -1 -1 -1 1 1
I e T

For example,
1 1 1 1
B 1 [Hy H ] 1111
HZ_H1®H1_\@[H1 _H }_\/z 11 -1 -
1 -1 -1 1
11 1 1 111
I R e
] 1 11 =1 =1 1 1 =1
H, H 1T -1 -1 1 1 =1 -1
H3:H1®H2:ﬁ[|'|z *Hi}:% 1 111 =1 =1 =1
1
1

The first column following the array is the index numbers of the N = 8 rows,
and the second column represents the sequency (the number of
zero-crossings or sign changes) in each row.

=]
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Hadamard
otrdered

Walsh (sequency)
ordered

o [

— 1 1 1

1 1
1

1
[

2
—
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seglteHcy natiral or Hadawmand dyadic ar Paley

adapted from Wolfram, 5. A New Kind af Science.
Wolfram Media, p. 1073, 20020

]
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The Hadamard matrix can also be obtained by defining its element in the kth
row and mth column of H as

n—1
hlk, m] = (=1)E0 5im = T (= 1)K™ = h[m, k] (k,m=0,1,--,N—1)
i=0

where ]
n7 .
k=Y k2'=(knp-1kn2---kiko)2 (ki=0,1)
i=0
n—1

m=Y m2' = (mp_1my_---mimg) (m;=0,1)
i=0

i.e., (Kn_1Kn_2---kikg)2 and (m,_1mn_o---mymgp)» are the binary
representations of k and m, respectively. Obviously, n = logo N.
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H is real, symmetric, and orthogonal:
H=H"=H" =H"'
It defines the transform pair:
X=Hx, x=HX

where the forward and inverse transforms are identical.
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|
Fast Walsh-Hadamard Transform (Hadamard Ordered)

Since any orthogonal matrix defines a transform, the Walsh-Hadamard

transform pair is
X = Hx
x = HX

where x = [x[0],x[1],---,x[N—1]]T and X = [X[0], X[1],---, X[N —1]] are the
signal and spectrum vectors. The kth element of the transform is

N—1 N1 o
Xk = Zoh[k’m}x[m} = ZOX[m] [g(—nmfk,-

The complexity of WHT is O(N?). Similar to FFT algorithm, we can derive a
fast WHT algorithm with complexity of O(NlogoN).

"
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Assume n=3 and N =2"=8. An N = 8 point WHT}, of the signal x[m] is
X[0] x[0]

X[3] :[:z _:z} X[3]

SIMEIMETINE:
X X X-
x| M2 | iz | 2| x| P2 | xiz) 1)
X[3] x[3) x[7] xi[3]
where
xi[i) 2 x[)+x[i+4] (i=0,--,3) 2)

=]
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The second half of the X is

MEIREINE:
X X X
xie) | ~Me| xi2 | M| xel | M| g @
X[7 X8 A7 (7
where
i+ 4) 2 xl) - xli+4) (=03 @
]
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What we have done is converting a WHT of size N = 8 into two WHTs of size
N/2 = 4. Continuing this process recursively, we can rewrite Eq. (1) as the
following

X[0] x1(0]
X[] | _ [ H; H; ] x[1]
X[2] Hi —Hy x1[2]
X[3] x1(3]

"
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This equation can again be separated into two halves. The first half is

58 ) 28] w25
- =0 A0 -] e
where
Xoli] £ X[l + xa[i+2] (i=0,1) @)
-
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The second half is

EEIRAN RN o
pt- IR RIS IR

where
Xeli+2] 2 xy[i] - x4[i+2] (i=0,1) (10)
o
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|
X[4] through X[7] of the second half can be obtained similarly.

X[0] = x2[0] + X2 (1] (11)

and

X[1] = x2(0] — x2[1] (12)
Summarizing the above steps of Equations we get the Fast WHT algorithm as
illustrated below.

x[m] x1 x2 XK
o
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