ELEG 467/667 - Imaging and Audio Signal Processing

Gonzalo R. Arce

Chapter IV(d)

Department of Electrical and Computer Engineering University of Delaware Newark, DE, 19716 Spring 2013

Ch	apte	er IV	(d)

Gonzalo R. Arce

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let **x** and **y** be two vectors:

$$\mathbf{x} = [x_1, \cdots, x_n]^T, \quad \mathbf{y} = [y_1, \cdots, y_n]^T$$

Their inner product is defined as

$$(\mathbf{x},\mathbf{y}) \stackrel{\triangle}{=} {\mathbf{x}^*}^T \mathbf{y} = \sum_{k=1}^n x_k^* y_k$$

where T and * represent transpose and complex conjugate, respectively. The *norm* (magnitude, length) of a vector x is defined as

$$\|\mathbf{x}\| \stackrel{\triangle}{=} (\mathbf{x}, \mathbf{x})^{1/2} = \sqrt{\sum_{k=1}^{n} |x_k|^2}$$

where |x| represents the absolute value if (real *x*) or norm (complex *x*) of *x*. **x** is normalized if $||\mathbf{x}|| = 1$.

С			

< ロ > < 同 > < 回 > < 回 >

Two vectors \mathbf{x} and \mathbf{y} are *orthogonal* to each other if and only if their inner product is zero. For normalized orthogonal vectors, we have

$$(\mathbf{x}, \mathbf{y}) = \delta_{xy} \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } \mathbf{x} = \mathbf{x} \\ 0 & \text{if } \mathbf{x} \neq \mathbf{y} \end{cases}$$

Rank, Trace, Determinant, Transpose and Inverse of a Matrix

Let **A** be an $N \times N$ square matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdot & a_{1N} \\ a_{21} & a_{22} & \cdot & a_{2N} \\ \cdot & \cdot & \cdot & \cdot \\ a_{N1} & a_{N2} & \cdot & a_{NN} \end{bmatrix}_{N \times N}$$

where

$$\left[egin{array}{c} a_{1j} \ a_{2j} \ \dots \ a_{Nj} \end{array}
ight]$$

is the jth column vector and

$$[a_{i1} a_{i2} \cdots a_{iN}]$$

Gonzalo

is the ith row vector.

Chapter IV(d)

R. Arce		
---------	--	--

The N rows span the *row space* of **A** and the N columns span the *column space* of **A**. The dimensions of these two spaces are the same and called the *rank* of **A**:

$$R = rank(\mathbf{A}) \leq N$$

The *determinant* of *A* is denoted by $det(\mathbf{A}) = |\mathbf{A}|$ and we have

 $|\mathbf{AB}| = |\mathbf{A}| |\mathbf{B}|$

 $rank(\mathbf{A}) < N$ if and only if $det(\mathbf{A}) = 0$.

The trace of A is defined as the sum of its diagonal elements:

$$tr(\mathbf{A}) = \sum_{i=1}^{N} a_{ii}$$

The *transpose* of a matrix \mathbf{A} , denoted by \mathbf{A}^{T} , and

	ər i	

For any two matrices A and B, we have

$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

If AB = BA = I, where I is an identity matrix, then $B = A^{-1}$ is the *inverse* of A. A^{-1} exists iff $det(A) \neq 0$, i.e., rank(A) = N. For any two matrices A and B,

$$(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

and

$$(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}$$

Hermitian Matrix and Unitary Matrix

A is a *Hermitian matrix* iff $\mathbf{A}^{*T} = \mathbf{A}$. When a Hermitian matrix A is real ($\mathbf{A}^* = \mathbf{A}$), it becomes *symmetric*, $\mathbf{A}^T = \mathbf{A}$. A is a *unitary matrix* iff $\mathbf{A}^{*T} \mathbf{A} = \mathbf{I}$, i.e., $\mathbf{A}^{*T} = \mathbf{A}^{-1}$. When a unitary matrix A is real ($\mathbf{A}^* = \mathbf{A}$), it becomes an *orthogonal matrix*, $\mathbf{A}^T = \mathbf{A}^{-1}$. The columns (or rows) of a unitary matrix **A** are *orthonormal*, i.e. they are both orthogonal and normalized, i.e.,

$$(\mathbf{a}_{i},\mathbf{a}_{j}) = \sum_{k} a_{ik}^{*} a_{jk} = \delta_{ij} \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Any Hermitian matrix **A** (symmetric if real) can be converted to a diagonal matrix Λ by a particular unitary (orthogonal if real) matrix Φ :

$$\Phi^{*T}\mathbf{A}\Phi = \Lambda$$

where Λ is a diagonal matrix.

< ロ > < 同 > < 回 > < 回 >

Unitary Transforms

For the unitary matrix **A** ($\mathbf{A}^{-1} = \mathbf{A}^{*T}$), define a *unitary transform* $\mathbf{x} = [x_1, \dots, x_n]^T$:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_N \\ y_N \end{bmatrix} = \mathbf{A}^{*T} \mathbf{x} = \begin{bmatrix} \mathbf{a}_1^{*T} \\ \mathbf{a}_2^{*T} \\ \cdots \\ \mathbf{a}_N^{*T} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_N \end{bmatrix}, \text{ (forw. transf.)}$$
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_N \end{bmatrix} = \mathbf{A} \mathbf{y} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_N \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_N \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_N \end{bmatrix} = \sum_{i=1}^n y_i \, \mathbf{a}_i \quad (\text{inv. trans.})$$

When $\mathbf{A} = \mathbf{A}^*$ is real, $\mathbf{A}^{-1} = \mathbf{A}^T$, this is an orthogonal transform.

イロト イポト イヨト イヨト

The first equation above is the forward transform and can be written as:

$$\mathbf{y}_i = \mathbf{a}_i^{*T} \mathbf{x} = (\mathbf{a}_i, \mathbf{x}) = \sum_{j=1}^N a_{i,j}^* \mathbf{x}_j$$

The transform coefficient $y_i = (\mathbf{a}_i, \mathbf{x})$ (an inner product) represents the projection of vector \mathbf{x} onto the ith column vector \mathbf{a}_i of the transform matrix \mathbf{A} .

イロト イヨト イヨト イヨト

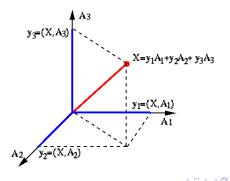
Spring, 2013

10/36

The second equation is the inverse transform

$$x_j = \sum_{i=1}^N a_{j,i} y_i$$

x is a linear combination of the *N* column vectors $\mathbf{a}_i, \mathbf{a}_2, \dots, \mathbf{a}_N$ of the matrix **A**. Geometrically, **x** is a point in the N-D space spanned by these *N* orthonormal basis vectors. Each coefficient y_i is the projection of **x** onto the corresponding basis \mathbf{a}_i .



A N-dimensional space can be spanned by the column vectors of *any* unitary matrix.

Examples:

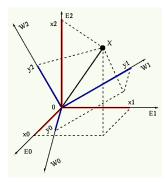
• When $\mathbf{A} = \mathbf{I} = [\cdots, \mathbf{e}_i, \cdots]$ is an identity matrix, we have

$$\mathbf{x} = \sum_{i=1}^{N} y_i \mathbf{a}_i = \sum_{i=1}^{N} x_i \mathbf{e}_i$$

where $\mathbf{e}_i = [0, \dots, 0, 1, 0, \dots, 0]^T$ is the ith column of **I** with the ith element equal 1 and all other 0.

イロト イポト イヨト イヨト

• When $a_{m,n} = w[m,n] = e^{-j2\pi mn/N}$, we obtain the DFT. The nth column vector \mathbf{w}_n of $\mathbf{W} = [\mathbf{w}_0, \cdots, \mathbf{w}_{N-1}]$ represents a sinusoid of a frequency nf_0 , and the corresponding $y_n = (\mathbf{x}, \mathbf{w}_n)$ represents the magnitude $|y_n|$ and phase $\angle y_n$ of this nth frequency component. The Fourier transform $\mathbf{y} = \mathbf{W}\mathbf{x}$ represents a rotation of the coordinate system.



Chapter IV(d)

Gonzalo R. Arce

Spring, 2013 13 / 36

Geometrically, a unitary transform $\mathbf{y} = \mathbf{A}\mathbf{x}$ is a rotation of the vector X about the origin. It also does not change the vector's length:

$$|\mathbf{y}|^2 = \mathbf{y}^{*T}\mathbf{y} = (\mathbf{A}^{*T}\mathbf{x})^{*T}(\mathbf{A}^{*T}\mathbf{x}) = \mathbf{x}^{*T}\mathbf{A}\mathbf{A}^{*T}\mathbf{x} = \mathbf{x}^{*T}\mathbf{x} = |\mathbf{x}|^2$$

as $AA^{*T} = AA^{-1} = I$.

Parseval's relation: the total energy of the signal is preserved under a unitary transform.

・ロト ・ 四ト ・ ヨト ・ ヨト

Spring, 2013

14/36

Some other features of the signal may be changed. If **x** is a random vector with mean \mathbf{m}_x and covariance Σ_x :

$$\mathbf{m}_{\mathbf{x}} = \boldsymbol{E}(\mathbf{x}), \quad \boldsymbol{\Sigma}_{\mathbf{x}} = \boldsymbol{E}(\mathbf{x}\mathbf{x}^{T}) - \mathbf{m}_{\mathbf{x}}\mathbf{m}_{\mathbf{x}}^{T}$$

then $\mathbf{y} = \mathbf{A}^T \mathbf{x}$ has the following

$$\mathbf{m}_{y} = \boldsymbol{E}(\mathbf{y}) = \boldsymbol{E}(\mathbf{A}^{T}\mathbf{x}) = \mathbf{A}^{T}\boldsymbol{E}(\mathbf{x}) = \mathbf{A}^{T}\mathbf{m}_{x}$$

$$\Sigma_{y} = E(\mathbf{y}\mathbf{y}^{T}) - \mathbf{m}_{y}\mathbf{m}_{y}^{T} = E[(\mathbf{A}^{T}\mathbf{x})(\mathbf{A}^{T}\mathbf{x})^{T}] - (\mathbf{A}^{T}\mathbf{m}_{x})(\mathbf{A}^{T}\mathbf{m}_{x})^{T}$$

$$= E[\mathbf{A}^{T}(\mathbf{x}\mathbf{x}^{T})\mathbf{A}] - \mathbf{A}^{T}\mathbf{m}_{x}\mathbf{m}_{x}^{T}\mathbf{A} = \mathbf{A}^{T}[E(\mathbf{x}\mathbf{x}^{T}) - \mathbf{m}_{x}\mathbf{m}_{x}^{T}]\mathbf{A}$$

$$= \mathbf{A}^{T}\Sigma_{x}\mathbf{A}$$

Chapter IV(d)

イロン イロン イヨン イヨン

Eigenvalues and Eigenvectors

For any matrix **A**, if there exist a vector ϕ and a value λ such that

$$\mathbf{A}\phi = \lambda\phi$$

then λ and ϕ are called the *eigenvalue* and *eigenvector* of **A**. To obtain λ , rewrite the above equation as

$$(\lambda \mathbf{I} - \mathbf{A})\phi = \mathbf{0}$$

which is a homogeneous equation system. To find its non-zero solution for ϕ , we require

$$\lambda \mathbf{I} - \mathbf{A} = 0$$

Solving this *N*th order equation of λ , we get *n* eigenvalues { $\lambda_1, \dots, \lambda_N$ }.

Chapter	IV	(d)
Unapier	10	(4)

Substituting each λ_i back into the equation system, we get the corresponding eigenvector ϕ_i .

$$\mathbf{A}[\phi_1, \cdots, \phi_N] = [\lambda_1 \phi_1, \cdots, \lambda_N \phi_N]$$
$$= [\phi_1, \cdots, \phi_N] \begin{bmatrix} \lambda_1 & 0 & \cdot & 0\\ 0 & \lambda_2 & \cdot & 0\\ \cdot & \cdot & \cdot & \cdot\\ 0 & 0 & \cdot & \lambda_N \end{bmatrix}$$

3 > 4 3

1

In a more compact form $\mathbf{A}\Phi = \Phi\Lambda$ or

$$\Phi^{-1}\mathbf{A}\Phi = \Lambda$$

where

$$\Phi = [\phi_1, \cdots, \phi_N]$$

and

$$\Lambda = diag[\lambda_1, \cdots, \lambda_N]$$

The trace and determinant of A can be obtained from its eigenvalues

$$tr(\mathbf{A}) = \sum_{k=1}^{N} \lambda_k$$

and

$$det(\mathbf{A}) = \prod_{k=1}^{N} \lambda_k$$

pter i	

イロト イヨト イヨト イヨト

A^T has the same eigenvalues and eigenvectors as A.

A^{*m*} has the same eigenvectors as **A**, but its eigenvalues are $\{\lambda_1^m, \dots, \lambda_n^m\}$, where *m* is a positive integer.

This is also true for m = -1, i.e., the eigenvalues of \mathbf{A}^{-1} are $\{1/\lambda_1, \dots, 1/\lambda_N\}$. If **A** is Hermitian (symmetric if **A** is real), all the λ_i 's are real and all eigenvectors ϕ_i 's are orthogonal:

$$(\phi_i, \phi_j) = \delta_{ij}$$

Chapter IV(d)

Spring, 2013

19/36

If all ϕ_i 's are normalized, matrix Φ is unitary (orthogonal if **A** is real):

$$\Phi^{-1} = {\Phi^*}^7$$

and we have

$$\Phi^{-1}\mathbf{A}\Phi = \Phi^{*T}\mathbf{A}\Phi = \Lambda$$

The matrix A can be decomposed to be expressed as

$$\mathbf{A} = \Phi \Lambda \Phi^{T} = [\phi_{1}, \cdots, \phi_{N}] \begin{bmatrix} \lambda_{1} & \dots & 0\\ \dots & \dots & \dots\\ 0 & \dots & \lambda_{N} \end{bmatrix} \begin{bmatrix} \phi_{1}^{T}\\ \dots\\ \phi_{N}^{T} \end{bmatrix} = \sum_{i=1}^{N} \lambda_{i} \phi_{i} \phi_{i}^{T}$$

Chapter IV(d)

Gonzalo R. Arce

Spring, 2013 20 / 36

The *Kronecker product* of two matrices $\mathbf{A} = [a_{ij}]_{m \times n}$ and $\mathbf{B} = [b_{ij}]_{k \times l}$ is defined as

$$\mathbf{A} \otimes \mathbf{B} \stackrel{\triangle}{=} \begin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \cdots & \cdots & \cdots \\ a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}_{mk \times nl}$$

In general, $\mathbf{A} \otimes \mathbf{B} \neq \mathbf{B} \otimes \mathbf{A}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Hadamard Matrix is defined recursively as below:

$$\mathbf{H}_{1} \stackrel{\triangle}{=} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$
$$\mathbf{H}_{n} = \mathbf{H}_{1} \otimes \mathbf{H}_{n-1} = \begin{bmatrix} \mathbf{H}_{n-1} & \mathbf{H}_{n-1}\\ \mathbf{H}_{n-1} & -\mathbf{H}_{n-1} \end{bmatrix}$$

イロト イヨト イヨト イヨト

For example,

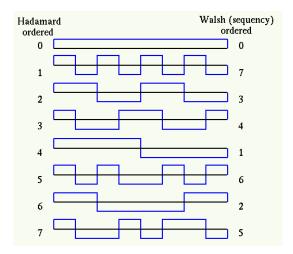
The first column following the array is the index numbers of the N = 8 rows, and the second column represents the *sequency* (the number of zero-crossings or sign changes) in each row.

Chapter IV(d)

Gonzalo R. Arce

Spring, 2013

23/36

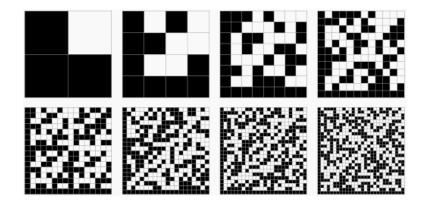


Chapter IV(d)

Gonzalo R. Arce

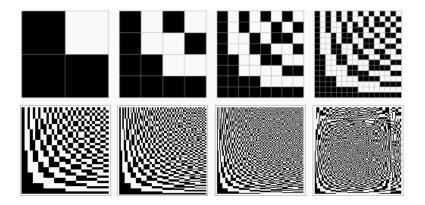
・ロト ・ 日 ト ・ 日 ト ・ 日

.



イロト イヨト イヨト イヨト

()

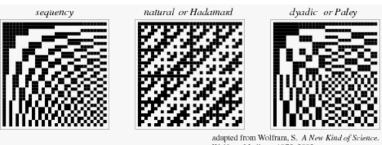


2 Spring, 2013 26/36

3

・ロト ・日下 ・ ヨト ・

-



Wolfram Media, p. 1073, 2002.

イロト イヨト イヨト イヨト

The Hadamard matrix can also be obtained by defining its element in the kth row and mth column of H as

$$h[k,m] = (-1)^{\sum_{i=0}^{n-1} k_i m_i} = \prod_{i=0}^{n-1} (-1)^{k_i m_i} = h[m,k] \quad (k,m=0,1,\cdots,N-1)$$

where

$$k = \sum_{i=0}^{n-1} k_i 2^i = (k_{n-1}k_{n-2}\cdots k_1k_0)_2 \quad (k_i = 0, 1)$$

$$m = \sum_{i=0}^{n-1} m_i 2^i = (m_{n-1} m_{n-2} \cdots m_1 m_0)_2 \quad (m_i = 0, 1)$$

i.e., $(k_{n-1}k_{n-2}\cdots k_1k_0)_2$ and $(m_{n-1}m_{n-2}\cdots m_1m_0)_2$ are the binary representations of *k* and *m*, respectively. Obviously, $n = log_2N$.

Chapter IV(d)

Gonzalo R. Arce

イロト イヨト イヨト イヨト

Spring, 2013

28/36

H is real, symmetric, and orthogonal:

$$\mathbf{H} = \mathbf{H}^* = \mathbf{H}^T = \mathbf{H}^{-1}$$

It defines the transform pair:

$$\mathbf{X} = \mathbf{H}\mathbf{x}, \quad \mathbf{x} = \mathbf{H}\mathbf{X}$$

where the forward and inverse transforms are identical.

э

29/36

Spring, 2013

Fast Walsh-Hadamard Transform (Hadamard Ordered)

Since any orthogonal matrix defines a transform, the Walsh-Hadamard transform pair is

$$X = Hx$$

 $x = HX$

where $\mathbf{x} = [x[0], x[1], \dots, x[N-1]]^T$ and $\mathbf{X} = [X[0], X[1], \dots, X[N-1]]^T$ are the signal and spectrum vectors. The *k*th element of the transform is

$$X[k] = \sum_{m=0}^{N-1} h[k,m] x[m] = \sum_{m=0}^{N-1} x[m] \prod_{i=0}^{n-1} (-1)^{m_i k}$$

The complexity of WHT is $O(N^2)$. Similar to FFT algorithm, we can derive a fast WHT algorithm with complexity of $O(Nlog_2N)$.

CI	ha	nt	٥r	1	1	'n	١
0	ia	μι	61		۷ (u	,

Assume n = 3 and $N = 2^n = 8$. An N = 8 point WHT_h of the signal x[m] is

$$\begin{bmatrix} X[0] \\ \vdots \\ X[3] \\ X[4] \\ \vdots \\ X[7] \end{bmatrix} = \begin{bmatrix} \mathbf{H}_2 & \mathbf{H}_2 \\ \mathbf{H}_2 & -\mathbf{H}_2 \end{bmatrix} \begin{bmatrix} x[0] \\ \vdots \\ x[3] \\ x[4] \\ \vdots \\ x[7] \end{bmatrix}$$

This equation can be separated into two parts. The first half of the X vector is

$$\begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{bmatrix} = \mathbf{H}_2 \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix} + \mathbf{H}_2 \begin{bmatrix} x[4] \\ x[5] \\ x[6] \\ x[7] \end{bmatrix} = \mathbf{H}_2 \begin{bmatrix} x_1[0] \\ x_1[1] \\ x_1[2] \\ x_1[3] \end{bmatrix}$$
(1)

where

$$x_1[i] \stackrel{\triangle}{=} x[i] + x[i+4] \quad (i=0,\cdots,3)$$

ъ

(2)

The second half of the X is

$$\begin{bmatrix} X[4] \\ X[5] \\ X[6] \\ X[7] \end{bmatrix} = \mathbf{H}_2 \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix} - \mathbf{H}_2 \begin{bmatrix} x[4] \\ x[5] \\ x[6] \\ x[7] \end{bmatrix} = \mathbf{H}_2 \begin{bmatrix} x_1[4] \\ x_1[5] \\ x_1[6] \\ x_1[7] \end{bmatrix}$$

where

$$x_1[i+4] \stackrel{\triangle}{=} x[i] - x[i+4] \quad (i=0,\cdots,3)$$
 (4)

Chapter IV(d)

Gonzalo R. Arce

 →
 ■
 →
 ■
 →
 Q
 ○

 Spring, 2013
 32 / 36

イロト イヨト イヨト イヨト

(3)

.

What we have done is converting a *WHT* of size N = 8 into two *WHTs* of size N/2 = 4. Continuing this process recursively, we can rewrite Eq. (1) as the following

$$\begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{bmatrix} = \begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_1 \\ \mathbf{H}_1 & -\mathbf{H}_1 \end{bmatrix} \begin{bmatrix} x_1[0] \\ x_1[1] \\ x_1[2] \\ x_1[3] \end{bmatrix}$$

This equation can again be separated into two halves. The first half is

$$\begin{bmatrix} X[0] \\ X[1] \end{bmatrix} = \mathbf{H}_1 \begin{bmatrix} x_1[0] \\ x_1[1] \end{bmatrix} + \mathbf{H}_1 \begin{bmatrix} x_1[2] \\ x_1[3] \end{bmatrix}$$
(5)
$$= \mathbf{H}_1 \begin{bmatrix} x_2[0] \\ x_2[1] \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_2[0] \\ x_2[1] \end{bmatrix} = \begin{bmatrix} x_2[0] + x_2[1] \\ x_2[0] - x_2[1] \end{bmatrix}$$
(6)

where

$$x_{2}[i] \stackrel{\triangle}{=} x_{1}[i] + x_{1}[i+2] \quad (i=0,1)$$
(7)

イロト イヨト イヨト イヨト

2

34/36

Spring, 2013

Chapter IV(d)

The second half is

$$\begin{bmatrix} X[2] \\ X[3] \end{bmatrix} = \mathbf{H}_1 \begin{bmatrix} x_1[0] \\ x_1[1] \end{bmatrix} - \mathbf{H}_1 \begin{bmatrix} x_1[2] \\ x_1[3] \end{bmatrix}$$
(8)
$$= \mathbf{H}_1 \begin{bmatrix} x_2[2] \\ x_2[3] \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_2[2] \\ x_2[3] \end{bmatrix} = \begin{bmatrix} x_2[2] + x_2[3] \\ x_2[2] - x_2[3] \end{bmatrix}$$
(9)

where

$$x_2[i+2] \stackrel{\triangle}{=} x_1[i] - x_1[i+2] \quad (i=0,1)$$
(10)

.

35/36

2

Spring, 2013

< □ > < □ > < □ > < □ > < □ > < □ >

Chapter IV(d)

X[4] through X[7] of the second half can be obtained similarly.

$$X[0] = x_2[0] + x_2[1] \tag{11}$$

and

$$X[1] = x_2[0] - x_2[1] \tag{12}$$

< A >

э

36/36

ъ.

Spring, 2013

Summarizing the above steps of Equations we get the Fast WHT algorithm as illustrated below.

