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The Discrete Fourier Transform

Given the sampled signal:

gs(x) = g(x)Σmδ (x −mX )

We can represent:

Gs(u) =
∫

∞

−∞

gs(x)e−2πuxdx

=
∫

∞

−∞

g(x)Σmδ (x −mX )e−2πuxdx

= Σm

∫
∞

−∞

g(x)δ (x −mX )e−2πuxdx

= Σmg(mX )e−2πumX

= Σmgme−2πumX
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The Discrete Fourier Transform

If we take M samples of Gs(u) over the period u = 0 to u = 1/X , or u = n
MX ,

for n = 0,1, ...,M−1; this results in

Gm(n) = Σ
M−1
m=0gme−2πmn/M n = 0,1, ...M−1.

A more intuitive notation for the DFT is

G(u) = Σ
M−1
x=0 g(x)e−2πux/M u = 0,1, ...M−1.

g(x) =
1
M

Σ
M−1
u=0 G(u)e2πux/M x = 0,1, ...M−1.
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Note that the resolution in frequency depends on the duration of the
signal sampled (duration= MX ).

Resolution in frequency: 1
MX

The entire frequency range is given by

M
1

MX
=

1
X

(1)
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In 2-dimensions the DFT is

G(u,v) = Σ
M−1
x=0 Σ

N−1
y=0 g(x ,y)e−2π(ux/M+vy/N) u = 0,1, ...M−1;v = 0,1, ...N−1.

g(x ,y)=
1

MN
Σ

M−1
u=0 Σ

N−1
u=0 G(u,v)e2π(ux/M+vy/N) x =0,1, ...M−1;y =0,1, ...N−1.
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Some Properties

Translation

g(x ,y)ej2πu0x/M ↔ G(u−u0)

Example: for u0 = M/2

g(x ,y)(−1)x ↔ G(u−M/2)

Example in 2D: for u0 = M/2,v0 = M/2

g(x ,y)(−1)(x+y) ↔ G(u−M/2,v −M/2)
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Translation

g(x −x0,y −y0)

↔ G(u,v)e−j2π(x0u/M+y0v/M)

Magnitude and Phase: Since the DFT is complex

G(u,v) = |G(u,v)|ejϕ(u,v)

where:

|G(u,v)|= [(Re(u,v))2 +(Im(u,v))2]1/2 , Fourier spectrum

ϕ(u,v) = arctan
( Im(u,v)

Re(u,v)

)
, Phase angle

Power spectrum

P(u,v) = |G(u,v)|2 = [(Re(u,v))2 +(Im(u,v))2]
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Four different forms of the Fourier transform

Non-periodic, continuous time function x(t), continuous, non-periodic
spectrum X (f ) This is the most general form of Fourier transform.

X (f ) =
∫

∞

−∞

x(t)e−j2πftdt , x(t) =
∫

∞

−∞

X (f )ej2πftdf

Alternatively, as ω = 2πf , we have

X (ω) =
∫

∞

−∞

x(t)e−jωtdt , x(t) =
1

2π

∫
∞

−∞

X (ω)ejωtdω
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Non-periodic, discrete time function x [n], continuous, periodic spectrum XF (f )
The discrete time function is a sample sequence. Time interval between
consecutive samples x [m] and x [m+1] is t0 = 1/F , where F is the sampling
rate, which is also the period of the spectrum in the frequency domain.
The discrete time function can be written as

x(t) =
∞

∑
m=−∞

x [m]δ (t−mt0)

Chapter IV(c) Gonzalo R. Arce Spring, 2013 13 / 83



and its transform is:

XF (f ) =
∞

∑
m=−∞

x [m]e−j2πfmt0 , x [m] =
1
F

∫ +F/2

−F/2
XF (f )ej2πfmt0df

(m = 0,±1,±2, · · ·)

The spectrum is periodic:

XF (f +kF ) = XF (f +k/t0) =
∞

∑
m=−∞

x [m]e−j2π(f+k/t0)mt0 = XF (f )

(for k =±1,±2, · · · ) because e±j2πmk = 1.
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Periodic, continuous time function xT (t), discrete, non-periodic spectrum X [n]
This is the Fourier series expansion of periodic functions. The time period is
T , and the interval between two consecutive frequency components is
f0 = 1/T , and its transform is:

X [n] =
1
T

∫
T

xT (t)e−j2πnf0tdt , xT (t) =
∞

∑
n=−∞

X [n]ej2πnf0t

n = 0,±1,±2, · · ·
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The discrete spectrum can also be represented as:

X (f ) =
∞

∑
n=−−∞

X [n]δ (f −nf0)

The time function is periodic:

xT (t +kT ) = xT (t +k/f0) =
∞

∑
n=−∞

X [n]e−j2πnf0(t+k/f0) = xT (t)

(for k =±1,±2, · · · )
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Periodic, discrete time function x [m], discrete, periodic spectrum X [n]
This is the discrete Fourier transform (DFT).

X [n] =
1
T

N−1

∑
m=0

x [m]e−j2πnmf0t0 , x [m] =
1
F

N−1

∑
n=0

X [n]ej2πnmf0t0

m,n = 0,1, · · · ,N−1

Here N is the number of samples in the period T , which is also the number of
frequency components in the spectrum:

N =
T
t0

=
1/f0
1/F

=
F
f0

We therefore also have TF = N and t0f0 = 1/N.
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The DFT can be redefined as

X [n] =
1√
N

N−1

∑
m=0

x [m]e−mnj2π/N =
N−1

∑
m=0

wmn
N x [m],

x [m] =
1√
N

N−1

∑
n=0

X [n]emnj2π/N =
N−1

∑
n=0

w−mn
N X [n]

m,n = 0,1, · · · ,N−1

where wN
4
= e−j2π/N/

√
N. The time function and its spectrum are periodic:

x [m+kN] = x [m] and X [n+kN] = X [n].
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The forward and inverse DFT can be written as:

X [n] =
1√
N

N−1

∑
m=0

x [m]e−mnj2π/N =
N−1

∑
m=0

wmn
N x [m],

x [m] =
1√
N

N−1

∑
n=0

X [n]emnj2π/N =
N−1

∑
n=0

w−mn
N X [n]

m,n = 0,1, · · · ,N−1

Here we have defined

wmn 4=
1√
N
(e−j2π/N)mn, w∗mn =

1√
N
(ej2π/N)mn

and w∗mn is its complex conjugate of wmn. We further define an N×N matrix

W =

 . . .
. wmn .
. . .


N×N

where wmn is the element in the mth row and nth column of W.
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W is symmetric (wmn = wnm)
WT = W

and the rows (or columns) of W are orthogonal:

〈wm,wn〉=
N−1

∑
k=0

w∗kmwkn =
1
N

N−1

∑
k=0

(ej2π/N)mk (e−j2π/N)nk

=
1
N

N−1

∑
k=0

(ej2π/N)(m−n)k ∗= δmn =

{
1 m = n
0 m 6= n

as

If m = n, (ej2π/N)(n−m)k = 1 and 〈wm,wn〉= 1,

If m 6= n, the summation becomes:

N−1

∑
k=0

(ej2π(n−m)/N)k =
1− (ej2π(n−m)/N)N

1−ej2π(n−m)/N = 0

We see that W is a unitary matrix (and symmetric):

W∗T = W∗ = W−1
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Matrix Form of the 1-D DFT

Define the two N-long vectors:

X 4=


X [0]
.
.

X [N−1]


N×1

, x 4=


x [0]
.
.

x [N−1]


N×1

The DFT can then be written more conveniently as a matrix-vector
multiplication:

X =


X [0]
.
.

X [N−1]

=
1√
N

 . . .

. (e−j2π/N)mn .

. . .




x [0]
.
.

x [N−1]

= Wx
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Matrix Form of the 1-D DFT

and

x =


x [0]
.
.

x [N−1]

=
1√
N

 . . .

. (ej2π/N)mn .

. . .




X [0]
.
.

X [N−1]

= W∗X = W−1X

The computational complexity of the 1-D DFT is O(N2), which, as we will see
later, can be reduced to O(N log2N) by the Fast Fourier Transform (FFT)
algorithm.
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Matrix Form of the 2D DFT
Reconsider the 2D DFT:

X [k , l ] =
1√
N

N−1

∑
n=0

[
1√
M

M−1

∑
m=0

x [m,n]e−j2π
mk
M ]︸ ︷︷ ︸

X ′[k ,n]

e−j2π
nl
N

=
1√
N

N−1

∑
n=0

X ′[k ,n]e−j2π
nl
N for 0≤m,k ≤N−1, 0≤ n, l ≤N−1

X ′[k ,n]
4
=

1√
M

N−1

∑
m=0

x [m,n]e−j2π
mk
M (n = 0,1, · · · ,N−1)

The summation above is with respect to the row index m and the column
index n is a fixed parameter, this expression is a one-dimensional Fourier
transform of the nth column of [x ], which can be written in column vector
(vertical) form as:

X′n = W∗xn

for all columns n = 0, · · · ,N−1.
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Matrix Form of the 2D DFT

Putting all these N columns together, we can write[
X′0, · · · ,X′N−1

]
= W [x0, · · · ,xN−1]

or more concisely
X′ = Wx

where W is a M by N Fourier transform matrix.
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Matrix Form of the 2D DFT

X [k , l ] = 1√
N ∑

N−1
n=0 X ′[k ,n]e−j2π

nl
N The sum is with respect to the column index

n and the row index number k is fixed, this is a one-dimensional Fourier
transform of the kth row of X′, which can be written in row vector (horizontal)
form as

XT
k = X′Tk WT , (k = 0, · · · ,N−1)

Putting all these N rows together, we can write
XT

0
.
.

XT
N−1

=


X′T0
.
.

X′TN−1

W

(W is symmetric: WT = W), or more concisely

X = X′W
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Matrix Form of the 2D DFT

But since X′ = Wx, we have
X = WxW

Hence the 2D DFT can be implemented by transforming all the rows of x and
then transforming all the columns of the resulting matrix. The order of the row
and column transforms is not important.
Similarly, the inverse 2D DFT can be written as

x = W∗XW∗

Again note that W is a symmetric Unitary matrix:

W−1 = W∗T = W∗

The complexity of 2D DFT is O(N3) which can be reduced to O(N2log2N) if
FFT is used.
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The Fast Fourier Transform - FFT (1D)

The DFT pair is given by

X (k) =
N−1

∑
n=0

x(n)e−j 2π

N nk k = 0, . . . ,N−1 (2)

x(n) =
1
N

N−1

∑
k=0

X (k)ej 2π

N nk n = 0, . . . ,N−1 (3)

The computational complexity for each point of the DFT is:

(N−1) Complex multiplications

(N−1) Complex additions

Hence for N points in the sequence we have:

O[N(N−1)] Complex multiplications

O[N(N−1)] Complex additions

Consider the decimation in time FFT algorithm.
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Divide the DFT in even and odd terms:

X (k) =
(N/2)−1

∑
r=0

x(2r)W 2rk
N +

(N/2)−1

∑
r=0

x(2r +1)W (2r+1)k
N

=
(N/2)−1

∑
r=0

x(2r)W 2rk
N +W k

N

(N/2)−1

∑
r=0

x(2r +1)W 2rk
N

(4)

Notice W 2rk
N = e−j 2π

N 2rk = e−j
(

2π

N/2

)
rk
= W rk

N/2
Hence

X (k) =
(N/2)−1

∑
r=0

x(2r)W rk
N/2︸ ︷︷ ︸

N
2 −point DFT

+W k
N

(N/2)−1

∑
r=0

x(2r +1)W rk
N/2︸ ︷︷ ︸

N
2 −point DFT

k = 0,1, · · · ,N−1

(5)

X (k) = G(k)+W k
NH(k) k = 0,1, · · · ,N−1 (6)

But G(k) and H(k) are periodic in N
2 .
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For instance

X (1) = G(1)+W 1
NH(1) (N = 8)

X (5) = G(5)+W 5
NH(5)

= G(1)+W 5
NH(1)

(7)

Each of the G(k) and H(k) are N/2 DFT’s; however, these can be computed
using N/4 point DFT’s and so on.
For instance the N/2 point DFT:

Can be found as:
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It self each 2 point DFT:

If N = 2b (a power of 2), then we have log2N = b decompositions. At each
stage we have N complex multiplications and additions. Hence the total

number of complexity operations is:

O(Nlog2N) multiplications.

O(Nlog2N) additions

Chapter IV(c) Gonzalo R. Arce Spring, 2013 32 / 83



Chapter IV(c) Gonzalo R. Arce Spring, 2013 33 / 83



CALCULATION OF THE 2-D DFT

1. Direct Calculation

The direct calculation of the 2-D DFT is the double sum:

X (k1,k2) =
N1−1

∑
n1=0

N2−1

∑
n2=0

x(n1,n2)w
n1k1
N1

wn2k2
N2

0≤ k1 ≤ N1−1
0≤ k2 ≤ N2−1

(8)

where wN = e
−j2π

N The evaluation of one sample of X (k1,k2) requires N1N2

complex multiplications and N1N2 complex additions.

Thus, since there are N1N2 points. The complexity is in the order of [N2
1 N2

2 ].

Chapter IV(c) Gonzalo R. Arce Spring, 2013 34 / 83



2. Row-Column Decomposition

The 2-D DFT can be written as:

X (k1,k2) =
N1−1

∑
n1=0

[
N2−1

∑
n2=0

x(n1,n2)w
n2k2
N2

]
︸ ︷︷ ︸

G(n1,k2)

wn1k1
N1

(9)

X (k1,k2) =
N1−1

∑
n1=0

G(n1,k2)w
n1k1
N1

(10)
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Hence
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The complexity here is as follow:

N1(1D N2 pt .DFTs)+N2(1D N1 pt .DFT ) = N1N2
2 +N2N2

1

or N1N2(N1 +N2)

3. Row column FFT

If N1 and N2 are powers of 2 then each 1D DFT can be computed with a
1D FFT . Recall they each N pt 1D FFT has a complexity N logN.

Hence, the complexity is reduced to:

N1N2 logN2 +N2N1 logN1 = N1N2 log(N2N1) (11)
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To get a feeling for a numerical savings involved consider a
1024×1024 2D DFT .

Cdirect = 240 ≈ 1012 complex multiplications
Cr/c direct = 231 ≈ 109 complex multiplications

Cr/c FFT = 10×220 ≈ 107 complex multiplications

If it would take 1 day to process a 2D direct, then it would take 1 sec with the
r/c FFT!!
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Linear Convolution Via DFT

Recall in one dimension

X (k) =
N−1

∑
n=0

x(n)e−j2πkn/N , k = 0,1, . . . ,N−1.

The N×N unitary DFT matrix W is given by

W=

{
1√
N

wun
N

}
Circular convolution Theorem: If

x2(n) =
N−1

∑
k=0

h(n−k)cx1(k), 0≤ n ≤ N−1

then
DFT{x2(n)}N = DFT{h(n)}NDFT{x1(n)}N
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Linear Convolution via DFT (I)
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Linear Convolution via DFT (II)
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Linear Convolution via DFT Algorithm

The linear convolution of two sequences {h(n)}P−1
n=0 and {x(n)}N−1

n=0 can be
obtained by the following algorithm:

1. Define M ≥ P +N

2. Define h̃(n) and x̃(n) as the M zero extended sequences of h(n) and
x(n) respectively

3. Compute Ŷ (k) = Ĥ(k)X̂ (k), where Ĥ(k) = DFT{h̃(n)}M and
X̂ (k) = DFT{x̃(n)}M

4. Take the inverse DFT of Ŷ (k) to obtain y(n)

Chapter IV(c) Gonzalo R. Arce Spring, 2013 42 / 83



Two Dimensional DFT

The two dimensional DFT of an N×N image is a separable transform defined
as

X (u,v) =
N−1

∑
m=0

N−1

∑
n=0

f (m,n)wkm
N w ln

N , 0≤ k , l ≤ N−1

and the inverse transform is defined as

x(m,n) =
1

N2

N−1

∑
k=0

N−1

∑
l=0

X (u,v)w−km
N w−ln

N , 0≤m,n ≤ N−1.
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Two Dimensional Linear Convolution

The DFT of the two dimensional circular convolution of two arrays is the
product of their DFTs, i.e., if

y(m,n) =
N−1

∑
m′=0

N−1

∑
n′=0

h(m−m′,n−n′)cu(m′,n′), 0≤m,n ≤ N−1

then
DFT{y(m,n)}N = DFT{h(m,n)}NDFT{u(m,n)}N

Extensions to linear filtering can be done using zero padding
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Two dimensional Example of Zero Padding
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Example of Image DFT (I)
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Example of Image DFT (II)

We can center the DFT by premultiplying image U by the array (−1)m+n

x(k +N/2, l +N/2) =
1
N

N−1

∑
m=0

N−1

∑
n=0

x(m,n)(−1)m+nwkm
N w ln

N
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Example of Image DFT (III)

Scanning Electron Microscope (SEM)
image of IC board

Edges correspond to high frequencies

Note directionality of edges
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Energy Compaction (I)
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Energy Compaction (II)
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Ideal Low Pass Filters (I)
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Ideal Low Pass Filters (II)
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ILPF Example

Isolated spatial domain points
represent fine details

Convolution simply replicates
sincs

Width of sinc controls
blurring
Positive and negative values
of sinc cause ringing
One dimensional signals are
scan lines
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Filtering in the Frequency Domain
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Low Pass and High Filtering Example
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Low Pass Filters

D(u,v) is the distance from point (u,v) to the origin

Ideal filter can be implemented digitally but has undesired effects

Butterworth filter is a smooth approximation to ideal filter

Gaussian filter is a smooth function both in space and frequency
domains

Chapter IV(c) Gonzalo R. Arce Spring, 2013 56 / 83



Butterworth Low Pass Filter
Frequency response:

H(u,v) =
1

1+[D(u,v)/D0]2n

Order: n, Cutoff frequency: D0

Smooth transfer function
Minimizes ringing
Order controls transition bandwidth

Chapter IV(c) Gonzalo R. Arce Spring, 2013 57 / 83



Butterworth Filter Example

Size 500×500

Filter order:2

D0 = 5,15,30,80
and 230

Significantly
reduced ringing
compared to ILPF
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Spatial Domain Representation of Butterworth Filter

Cutoff frequency:5

Increasing filter order: 1,2,5 and 20

Impulse response spreads, oscillations introduced
Smoothing and ringing introduced
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Gaussian Low Pass Filter

Frequency response:

H(u,v) = exp−D2(u,v)/2D2
0

Spatial domain also a gaussian function

No ringing

Less cutoof/transition control
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Gaussian Low Pass Filter Example

D0 = 5,15,30,80
and 230

Not as much
smoothing

More gradual
transition band

No ringing
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Application Example

Poor resolution sampled text
Scanned material, faxes
Broken text

Result of Gaussian low pass filtering: broken character segments are
joined
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Cosmetic Smoothing of Images

(a) Original, (b) GLPF with D0 = 100, and (c) GLPF with D0 = 80

Note reduction in skin lines
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Enhancement of Poorly Acquired Images
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Gaussian Filter with Zero Padding Example
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Spectral Representations of Sharpening Filters

Simple highpass
representation

Hhp(u,v) = 1−Hlp(u,v)

Spectrally centered
examples

Ideal
Butterworth
Gaussian
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High Pass Filters
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High Pass Filtering Example
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Application Example

Thumb print

Result of highpass filtering

Result of thresholding
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Laplacian Operator

Recall that
F
{

∇
2f (x ,y)

}
=−(u2 +v2)F (u,v)

Then, the Laplacian operator is a filter with frequency response

H(u,v) =−(u2 +v2)

If spectral centering is used then

∇
2f (x ,y)↔−

[
(u−N/2)2 +(v −N/2)2

]
F (u,v)

A sharpened image is given by:

g(x ,y) = f (x ,y)−∇
2f (x ,y)

= F−1
{[

1−
(
(u−N/2)2 +(v −N/2)2

)]
F (u,v)

}
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Laplacian in the Frequency and Spatial Domain

Highpass filter

Spatial response

Restricted to
axis

Rotation invariant
response

diagonals
can be
added
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Laplacian Example

Shown

Original
Laplacian
Scaled
Laplacian
Enhanced
result
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Unsharp Masking

High-boost filtering

fhb(x ,y) = Af (x ,y)− flp(x ,y)

Rearranging
fhb(x ,y) = (A−1)f (x ,y)+ fhp(x ,y)

Composite frequency response

Hhb(u,v) = (A−1)−Hhp(u,v)

High frequency emphasis

Hhfe(u,v) = a+bHhp(u,v)
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High-Boost Filtering Example
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High Frequency Emphasis Example

High frequency emphasis, a = 0.5, b = 2.0
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Homomorphing Filtering

Recall illumination and reflectance image model

f (x ,y) = i(x ,y)r(x ,y)

Not directly separable in the frequency domain

Solution:
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Homomorphing Filtering

Illumination component
Slow spatial variations (low frequencies)

Reflectance component
Varies abruptly, especially at object borders (high frequencies)

Homomorphic filter characteristics
Attenuate illumination component (low frequencies)
Amplify reflectance component (high frequencies)Chapter IV(c) Gonzalo R. Arce Spring, 2013 77 / 83



Bandreject/Bandpass Filters
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Bandreject Example (I)

Chapter IV(c) Gonzalo R. Arce Spring, 2013 79 / 83



Bandreject Example (II)

Image example with nearly
periodic interference

Spectrum: energy in the vertical
axis represents the interference
pattern

Notch vertical filter

Result of filtering
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Bandpass Example

Same image as before

Result: interference pattern
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Implementation Examples

Chapter IV(c) Gonzalo R. Arce Spring, 2013 82 / 83



Correlation Example

Correlation measures statistical
similarity

Common application: template
matching

Zero pad image and template

Multiply DFTs (conjugate image
DFTs)

Invert results

Find peaks location
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