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|
The Discrete Fourier Transform

Given the sampled signal:
gs(x) = g(x)Zmdé(x — mX)

We can represent:

Gs(u) [ " gs(x)e 2 dx
- / " G(X)EmS(x — mX)e 2" gy
— T / " g(X)8(x — mX)e 27 iy

_ ng(mx) e—271'umX
— ngmef27rumX
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|
The Discrete Fourier Transform

If we take M samples of Gs(u) over the period u=0to u=1/X, or u= 47,
forn=0,1,...,M—1; this results in

Gm(n) = M lgme2™/M n=01,. .M-1.
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|
The Discrete Fourier Transform

If we take M samples of Gs(u) over the period u=0to u=1/X, or u= 47,
forn=0,1,...,M—1; this results in

Gm(n) = M lgme2*™/M n—01,.M-1.
A more intuitive notation for the DFT is
G(u) =M Tg(x)e 2™/M y—0,1,..M-1.
g(x) = %Zﬁ";& G(u)e® /M x=0,1,..M—1.
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@ Note that the resolution in frequency depends on the duration of the
signal sampled (duration= MX).

@ Resolution in frequency: 4y
The entire frequency range is given by

R

Mux = x ()
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In 2-dimensions the DFT is

G(u,v) = EQ”;OT}’)’;Jg(x,y)e’z”(“’(/’v’“f"/”) u=0,1,.M—1;v=0,1,.N—1.

’
g(x,y)= WZ{‘I”:‘JZL’)’:‘J G(u, v)e?mWx/MivyIN) x — 01, . .M—1;y=0,1,..N—1.
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Some Properties

@ Translation

glx,y)e#m oM o G(u—up)
Example: for up = M/2

gx.y)(=1)* « G(u-M/2)
Example in 2D: for up = M/2,vo = M/2

g )N Gu—M/2,v—M/2)

Chapter IV(c) Gonzalo R. Arce Spring, 2013 6/83



@ Translation

g(x—Xo,¥ —Yo)

"
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@ Translation

9(x—X0.y ~¥o) ¢ G(u,v)e F2rCou/Myov/

Chapter IV(c) Gonzalo R. Arce Spring, 2013 7183



@ Translation

gx—x0,y—yo) ¢ G(u,v)e 2mou/Mtyov/M)

@ Magnitude and Phase: Since the DFT is complex
G(u,v) = |G(u,v)|?"")

where:
|G(u, V)| = [(Re(u,v))?+ (Im(u, v))?]"/? £ Fourier spectrum

Im(u,v)
Re(u,v)

¢(u,v) = arctan ( ) £ Phase angle

@ Power spectrum
P(u,v) =|G(u,v)|? = [(Re(u, v))? + (Im(u,v))?] L
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FIGURE 4.26 Phase angle array corresponding (a) to the image of the centered rectangle
in Fig. 4.24(a), (b) to the translated image in Fig. 4.25(a), and (c) to the rotated image in
Fig. 4.25(c).

¥
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FIGURE 4.27 (a) Woman. (b) Phase angle. (¢) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman. ]
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alfe] i
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|
Four different forms of the Fourier transform

Non-periodic, continuous time function x(t), continuous, non-periodic
spectrum X(f) This is the most general form of Fourier transform.

X(f) :/ X(t)e*j?ﬂftdt’ x(t) = / X(f)e/?m‘tdf
Alternatively, as o = 2xf, we have

X(a)):/:ox(t)e*/'w’dt, x(t 2L/ 0)e®do

x(1) X(f)

{ f

continuous, non-periodic, real non-periodic, continuous, sy mmetric

=]
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Non-periodic, discrete time function x[n], continuous, periodic spectrum Xg(f)
The discrete time function is a sample sequence. Time interval between
consecutive samples x[m] and x[m+ 1] is ty = 1/F, where F is the sampling
rate, which is also the period of the spectrum in the frequency domain.

The discrete time function can be written as

oo

x(t)="Y x[m]&(t—mt)

Mm=—co

=]
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and its transform is:

oo

; +F/
X=(F) = meﬁanmto, / e/27rfmtodf
F() m;_wx[ ] T F F/2

(m=0,+1,42,---)
The spectrum is periodic:
Xp(f+KF) = Xe(f+k/to) = Y. x[m]e /2r(I /oMo — X (f)
m=—oo

(for k = +1,42,---) because /27K — 1,

x[m]

. —t u— F= Iftn—l-l
discrete E periodic -

=]
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Periodic, continuous time function xr(t), discrete, non-periodic spectrum X|[n]
This is the Fourier series expansion of periodic functions. The time period is
T, and the interval between two consecutive frequency components is

fo =1/T, and its transform is:

X[n] = 17_/T)(7-(1‘)(.;.*J'Zﬂm‘otdt7 xr(t) = Z X[n]e/Zﬂnfot
N=—oco

n=0,+1,42 ...
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The discrete spectrum can also be represented as:

Z X[n8(f — nfy)

N=——o0

The time function is periodic:

xr(t+KT) =xr(t+k/l)= Y, Xlnje 2Rb(tk/%) — ot

N=—co

(for k=+1,£2,--)

X[n]

— T ——p —-vnlq—

periodic 1T discrete

=]
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Periodic, discrete time function x[m], discrete, periodic spectrum X[n]
This is the discrete Fourier transform (DFT).

N-1 . N—1 )
X[n] = lT Z X[m]e*IZnnmfoto7 x[m] _ 1? Z X[n}e/Znnmfoto
m=0 n=0

mn=01,--- N—-1
Here N is the number of samples in the period T, which is also the number of
frequency components in the spectrum:
T 1/fy F

"o 1F h
We therefore also have TF = N and tyfy = 1/N.

X, [n]

' 1
t i " f
' —-—: tn:-— ' U e —— 1

: b fa=UT )

I ! F=1/ !
. \— F=l/to —=;

periodic, discrete ! di i =
iscrete, periodic
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The DFT can be redefined as

1 N-1
— Z X[ —mn127r/N Z WmnX
1 N—-1
Z X mn127r/N Z menx[ ]
n=0

mn=0,1,--- N—-1

where wy 2 e/2%/N /\/N. The time function and its spectrum are periodic:
x[m+ kN] = x[m] and X[n+ kN] = X[n].
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The forward and inverse DFT can be written as:

1 N—1 . N—1
Xinj=— Y x{mje=™2x/N — Y winx[m],
WA, =

1 N—-1 ) N-1
x[m = —= Y Xinje™?2®/N =} w mX|n|
mn=0,1,--- ,N—1
Here we have defined

wmn 2 i(eijH/N)mn wEmn — i(e,'zﬂ/N)mn

VN ’ VN

and w*™ s its complex conjugate of w™". We further define an N x N matrix

w_[: i :]
: : : NxN

where w™ is the element in the mth row and nth column of W.
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|
W is symmetric (w™ = w"™™)
wh=w

and the rows (or columns) of W are orthogonal:

N-1 N—1
(W, Wp) = Z wkmkn — l Z (e/27r/N)mk(efj27;/N)nk
k=0 N &

. 2/ Ny (m—n)k = [ 1 m=n
Zel 6’””{0 m+#n

as
@ It m=n, (e2*/N)("=mk — 1 and (W, w,) =1,
@ If m=# n, the summation becomes:

N-1 1— (ej27r(n—m)/N)N

2n(n—m)/N\k __
kz%)(el " ) = 1 — g@2a(n—-m)/N

We see that W is a unitary matrix (and symmetric):
W —w =W ®
Gonzalo R. Arce Spring, 2013 20/83



|
Matrix Form of the 1-D DFT

Define the two N-long vectors:

X[0] x[0]

1>

X[N—1] X[N—1]

Nx1 Nx1

The DFT can then be written more conveniently as a matrix-vector
multiplication:

x[0]
' =Wx

X[N—1]
g
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|
Matrix Form of the 1-D DFT

and

x[0] X[0]

_ ejznm mn —WX=W"1X
vn | e .

X[N—-1]

X[N—1]
The computational complexity of the 1-D DFT is O(N?), which, as we will see

later, can be reduced to O(N log.>N) by the Fast Fourier Transform (FFT)
algorithm.
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N
Matrix Form of the 2D DFT
Reconsider the 2D DFT:

1 N—-1 M- 2 o
X mne/”M e 2R
=5 Ll § Jel
X'k,n]
i e 2" for 0O<mk<N—1, 0<nI<N—1
X'k n]éLNi‘jx[m ne /2" (n=0,1,--- ,N—1)
y \/mmzo , PR ’

The summation above is with respect to the row index m and the column
index n is a fixed parameter, this expression is a one-dimensional Fourier
transform of the nth column of [x], which can be written in column vector
(vertical) form as:
X' =W*x,
for all columns n=0,--- ,N—1.
Gonzalo R. Arce Spring, 2013 23/83
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Matrix Form of the 2D DFT

Putting all these N columns together, we can write
(X0, X'no1] =W [Xo, -+, Xn_1]

or more concisely
X =Wx

where W is a M by N Fourier transform matrix.
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|
Matrix Form of the 2D DFT

X[k, = \FZN J X[k, nje /2™ The sum is with respect to the column index

n and the row index number k is fixed, this is a one-dimensional Fourier

transform of the kth row of X’, which can be written in row vector (horizontal)
form as

X[ =X[WT (k=0,---,N—1)

Putting all these N rows together, we can write

xJ X'
— w
X/(H X//(/—1

(W is symmetric: W7 = W), or more concisely

X=XW
=
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|
Matrix Form of the 2D DFT

But since X' = Wx, we have
X=WxW

Hence the 2D DFT can be implemented by transforming all the rows of x and
then transforming all the columns of the resulting matrix. The order of the row
and column transforms is not important.

Similarly, the inverse 2D DFT can be written as

X =W*XW*
Again note that W is a symmetric Unitary matrix:
W—1 _ W*T — W#

The complexity of 2D DFT is O(N®) which can be reduced to O(N?logxN) if
FFT is used.
E=
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The Fast Fourier Transform - FFT (1D)

The DFT pair is given by

N—1

X(k)= Y x(me H* k=0, ,N-1 (@)
n=0
1 N—1 i2m

x(n)=+ Y X(k)e"™  n=0,... N—1 ©)
N k=0

The computational complexity for each point of the DFT is:
@ (N—1) Complex multiplications
@ (N—1) Complex additions
Hence for N points in the sequence we have:
@ O[N(N—1)] Complex multiplications
@ O[N(N—1)] Complex additions

Consider the decimation in time FFT algorithm.
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Divide the DFT in even and odd terms:

(/21 (N2)-1 .
X(k)= Y x@rWE*+ Z x@r+ 1w
=0

r=0

4
(N/2)-1 (N/2)-1 @
= Y x@nWE*+wy§ Y x(r+1)WEk

r=0 r=0

21 _i( 2% )k
Notice W'k = e /W2 = ¢ i(#%) :W,(,"/2

Hence
(N/2)—1 (N/2)-1
X(k)=Y x@NWg,+Ws Y x@r+1)Wy, k=01, N—1
r=0 r=0
N —point DFT N —point DFT
()
X(k)=G(k)+ WEH(k)  k=0,1,--- ,N—1 (6)
But G(k) and H(k) are periodic in . ®
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For instance

X(1)=G()+WiH(1)

X(5) = G(5) + WRH(5)

=G(1)+ WyH(1)

Each of the G(k) and H(k) are N/2 DFT’s; however, these can be computed

using N/4 point DFT’s and so on.
For instance the N/2 point DFT:

)
x(2)

=9
»(¥)

Can be found as:

Chapter IV(c)
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It self each 2 point DFT:

Al
L=

=
% (¢) .

If N = 2° (a power of 2), then we have log,N = b decompositions. At each
stage we have N complex multiplications and additions. Hence the total

number of complexity operations is:

@ O(Niog>N) multiplications.
@ O(Nlog-N) additions

=]

Chapter IV(c) Gonzalo R. Arce Spring, 2013 32/83



X

st0)
wy
wi wy
) X
[
wi
wi
XN BT
wy
wi
wj
H6 X
wi w§
wi
(1) X
e
wy
wy
x(5) X(s)
Il': I‘,=
wi
x(3y X6
wi wh
wy
x{n xXm
i wE wi
=

FIGURE 10-5. Complete llow graph for an FFT developed by applying decimation
inlime (N = 8),

Chapter IV( Gonzalo R. Arce Spring, 2013 33/83



-
CALCULATION OF THE 2-D DFT

1. Direct Calculation

The direct calculation of the 2-D DFT is the double sum:

Ny—1 Np—1

X(ki, ko) = Z Y x(ny,n2)w k1 Wn2k2
=0 n,=0 (8)
0§k1 < N;—1
0<hko<N,-—1

where wy = e# The evaluation of one sample of X(k1, ko) requires Ny No
complex multiplications and Ny N> complex additions.

Thus, since there are Ny N, points. The complexity is in the order of [N2N3]. "
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2. Row-Column Decomposition

The 2-D DFT can be written as:

Ny—1 [No—1 B B
n, n
X(k1,k2 Z Z X n1,n2 WN2 2 WN1 1

4
=0 No=!

G(ny.k2)

Ny—1
X(k17k2 Z G n‘I?k2)WN1

I710

Chapter IV(c) Gonzalo R. Arce

(10)

Spring, 2013 35/83



Hence
oy i “L) a Nl
“y <7
-
Wz \17 _ »
P T
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The complexity here is as follow:
Ni(1DNo pt. DFT5) + No(1D Ny pt. DFT) = N; N§ + N_2N12
or Ny N2(N1 —‘y—Nz)

3. Row column FFT

If Ny and N, are powers of 2 then each 1D DFT can be computed with a
1D FFT. Recall they each Npt1D FFT has a complexity Nlog N.

Hence, the complexity is reduced to:

N1N2|OQN2+N2N1 |OgN1 =N1N2|Og(N2N1) (11)
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To get a feeling for a numerical savings involved consider a
1024 x 1024 2D DFT.

Cairect = 2%° ~ 10'2 complex multiplications
Cr/cdirect = 2% ~ 109 complex multiplications
Crjcrrr = 10 x 220 ~ 107 complex multiplications

If it would take 1 day to process a 2D direct, then it would take 1 sec with the
r/c FFT!

=]
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Linear Convolution Via DFT

@ Recall in one dimension

N—1 .
X(k)=Y x(me2™n/N k=01, N-1.
n=0

@ The N x N unitary DFT matrix W is given by

1
W — Wun}
{W N
@ Circular convolution Theorem: If

xo(n) = ¥ h(n— K)oxy (K). 0 < n< N—1
k=0
then
DFT{x2(n)}n = DFT{h(n)}nDFT{x1(n)}n L]

Chapter IV(c) Gonzalo R. Arce Spring, 2013 39/83



-
Linear Convolution via DFT (l)

——T e

C eeogm

[t

convolution of
two discrete
functions. Right:
convolution of the
same functions,
taking into
account the
implied
periodicity of the
DFT. Note in (j)
how data from
adjacent periods
corrupt the result
of convolution.

fim)

him)

Gonzalo R. Arce

fim)

P TEW,

LT ) X
~ poga
Fourier tr; wm
computti
Spring, 2013
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Linear Convolution via DFT (ll)

L]
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Linear Convolution via DFT Algorithm

The linear convolution of two sequences {h(n)}"—1 and {x(n)}N" can be

obtained by the following algorithm:
1. Define M>P+N

2. Define h(n) and x(n) as the M zero extended sequences of h(n) and
x(n) respectively
3. Compute ¥ (k) = H(k)X(k), where H(k) = DFT{h(n)}y and

X (k)= DFT{x(n)}n
4. Take the inverse DFT of Y(k) to obtain y(n)
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Two Dimensional DFT

The two dimensional DFT of an N x N image is a separable transform defined
as

N—1N-1
=Y Y f(mmwi"wy, 0<k,I<N-1
m=0 n=0

and the inverse transform is defined as

N—1N-1
x(m,n) Xuvw MW 0<mn<N-1.
N2 ) N N

Chapter IV(c) Gonzalo R. Arce Spring, 2013 43/83



]
Two Dimensional Linear Convolution

@ The DFT of the two dimensional circular convolution of two arrays is the
product of their DFTs, i.e., if
N—1 N—1
y(mny=Y Y h(m—m' n—n)cu(m,n), 0 <mn<N-1

m'=0n"=0

then
DFT{y(m,n)}n = DFT{h(m,n)}yDFT{u(m,n)}n
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Two Dimensional Linear Convolution

@ The DFT of the two dimensional circular convolution of two arrays is the
product of their DFTs, i.e., if

N-1 N—1
y(mny=Y Y h(m—m' n—n)cu(m,n), 0 <mn<N-1

m'=0n"=0

then
DFT{y(m,n)}n = DFT{h(m,n)}yDFT{u(m,n)}n

@ Extensions to linear filtering can be done using zero padding
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Two dimensional Example of Zero Padding

58— 8 ab

T 7 [

Incorrect

Hlustration of the

need for function

padding.

{a) Result of

performing 2-13

convolution

without padding.

(b} Proper

Zero padding function paddis

Missing (¢) Correct

convolution

[ B & result.
B+D-1—+ | ’) |

Result of fillering in the frequency domain without Properly extended (padded) image

properly padding the inputimages

One of the two
Correct original images

p——

A+C-1
Y

Correct

P=A+C-1
t Q=B+D-1
I o N}
Resull of fillering in the frequency domuaia with
properly padded aput images.
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Example of Image DFT (I)

() Original (b) Clipped magnitude, nonordered

(¢) Log magnitude, nonordered (d) Log magnitude, ordered
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Example of Image DFT (ll)

— Y

(centered)spectrum

l spatial signal

We can center the DFT by premultiplying image U by the array (—1)™*"
N—1N—1
x(k+N/2,1+N/2) = N ) men 1)mHn kM

m=0 n=
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Example of Image DFT (lll)

@ Scanning Electron Microscope (SEM)
image of IC board

@ Edges correspond to high frequencies

@ Note directionality of edges
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Energy Compaction (I)

aaaaaaadd

ab

FIGURE (a) An image of size 500 X 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radii values of 5, 15, 30, 80, and 230, which enclose 92.0,
94.6.96.4, 98.0, and 94.5% of the image power. respectively.

=]

Chapter IV(c) Gonzalo R. Arce Spring, 2013 49 /83



-
Energy Compaction (1)
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Ideal Low Pass Filters (I)

H(u,v) Hiu,v)

s Ty Diu,v)
D,
abc
FIGURE (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displaved as an

image. (c) Filter radial cross section.

=]
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Ideal Low Pass Filters (ll)

f(x) [F )| ab
AK cd

oM FIGURE  {a)A

. discrete function

K points of M points. and

(b) its Fourier
spectrum. (¢) A
discrete function
with twice the

: ™ T - > U ]

M points 1 F M points 1 number of

NONZero points,
|F(u)| and (d) its Fourier
24K spectrum.
M
f(x)
2K points

M points T ; M points g E
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ILPF Example

@ Isolated spatial domain points
represent fine details

@ Convolution simply replicates
sincs

e Width of sinc controls
blurring

e Positive and negative values
of sinc cause ringing

e One dimensional signals are
scan lines

ab
cd

FIGURE (a) A frequency-domain ILPF of radius 5. (b) Corresponding spatial
filter {note the ringing). (c) Five impulses in lomain, simulating the values F
of five pixels. (d) Convolution of (b) and (c) in the spatial domain. -
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Filtering in the Frequency Domain

Frequency domain filtering operation

Fourier
transform

Filter
function
Hu.v)

Inverse
Fourier
transform

F(u,v)

i

f(x.y)
Input
image

Chapter IV(c)

Hiw, v)F(u, v)

Post-
processing

g(x,y)
Enhanced
image
=
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Low Pass and High Filtering Example

Hu, v)

\ o Origin

”’/\r
ab

- e

cd filter output

FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b) Result of lowpass filtering the image in Fig. 4.4(a). E.
(c) A two-dimensional highpass filter function. (d) Result of highpass filtering the image in Fig. 4.4(a). -
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Low Pass Filters

Lowpass filters. Dy is the cutoff frequency and » is the order of the Butterworth filter.

Ideal Butterworth Gaussian

4] if D(u, v) > D, 1+ [’D{“‘ t*).ﬂ"ﬂ,]’e';

H(u,v) = {1 it D(u,v) = Dy H(u,v) = 1 H(u,v) = e DPuw)/2D%

@ D(u,v) is the distance from point (u, v) to the origin
@ Ideal filter can be implemented digitally but has undesired effects
@ Butterworth filter is a smooth approximation to ideal filter

@ Gaussian filter is a smooth function both in space and frequency

domains
Ll
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Butterworth Low Pass Filter

Frequency response:
]
1+ [D(u,v)/Do]?"

H(u,v) =

@ Order: n, Cutoff frequency: Dy
@ Smooth transfer function
e Minimizes ringing
e Order controls transition bandwidth

Hiu, v) H (u, v)
i

"
=Y 1.0}

it 0.5
4 e
u-
~y
=D{u, v)

1

"
abc E}
FIGURE (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an

image. (¢) Filter radial cross sections of orders 1 through 4
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@ Size 500 x 500
@ Filter order:2
@ Dy =5,15,30,80

and 230
Significantly

reduced ringing
compared to ILPF

Chapter IV(c)
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Butterworth Filter Example
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Spatial Domain Representation of Butterworth Filter

IInlI I"Ir\llI }ﬂ'-
| / ll ||

|
I [ \
I [ I-‘ \ \
j \ ! I\ | \
7 L7 AV vy

@ Cutoff frequency:5

@ Increasing filter order: 1,2,5 and 20
e Impulse response spreads, oscillations introduced

e Smoothing and ringing introduced
Spring, 2013
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Gaussian Low Pass Filter

H(u, v) Hiu, v)
i

v 10

Dy=10
~ Dy=20
/ Dy=40
XN~ Dy=10

0.667 +

' &
= Din, v)
'
u
abc
FIGURE (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter

radial cross sections for various values of Dy.

Frequency response:
H(u,v) = exp—D?(u,v)/2D?

@ Spatial domain also a gaussian function
@ No ringing
@ Less cutoof/transition control
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Gaussian Low Pass Filter Example

@ Dy =5,15,30,80
and 230

@ Not as much
smoothing

@ More gradual
transition band

@ No ringing

Chapter IV(c)
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Application Example

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yedr
2000.

@ Poor resolution sampled text

@ Scanned material, faxes
@ Broken text

@ Result of Gaussian low pass filtering: broken character segments are

joined

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yESr
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Cosmetic Smoothing of Images

abc

(a) Original, (b) GLPF with Dy = 100, and (c) GLPF with Dy = 80

@ Note reduction in skin lines "o
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Enhancement of Poorly Acquired Images

abc

FIGURE (a) Image showing prominent horizontal scan lines. (b) Result of filtering using a GLPF with
Iy, = 50. (c) Result of using a GLPF with Dy = 20. (Original image courtesy of NOAA.)
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Gaussian Filter with Zero Padding Example

-]

Chapter IV(c) Gonzalo R. Arce Spring, 2013 65/83



|
Spectral Representations of Sharpening Filters

@ Simple highpass .
representation w il

Hpp(u,v) =1—Hp(u,v)

@ Spectrally centered .
examples
o Ideal ’ R
o Butterworth i
e Gaussian i g .
b
def
Bhi ]
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High Pass Filters

Highpass filters. Dy is the cutoff frequency and » is the order of the Butterworth filter.

Ideal Butterworth Gaussian

it D(u,v) = D, 1

H(wv) = —————— Hiu.v) = 1 — e Dww)2D}
it D v) > Dy %) = T Do/ DG, O (. v) e

Hu vy =

abc

FIGURE Spatial representation of typical (a) ideal. (b) Butterworth, and (¢) Gaussian frequency domain
highpass filters, and corresponding intensity profiles through their centers.
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High Pass Filtering Example

Results of highpass filtering the image in Fig. 4.41(a) using an THPF with Dy = 30, 60, and 160

Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with Dy = 30, 60, and 160.

Results of highpass filtering the image in Fig. 441(a) using a GHPF with D, = 30, 60, and 160.
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Application Example

@ Thumb print
@ Result of highpass filtering
@ Result of thresholding
-
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Laplacian Operator

@ Recall that
§{V2i(xy) } = (P + V) F(uv)

@ Then, the Laplacian operator is a filter with frequency response
H(u,v) = —(u?+v?)
@ If spectral centering is used then
V2H(x,y) > = [(u=N/2)+ (v~ N/2)?] F(u,v)
@ A sharpened image is given by:
g(x,y) = f(x,y) = V?f(x,y)

=5 {1 - (w-N/22+(v=N/2?) | Fum)}
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Laplacian in the Frequency and Spatial Domain

@ Highpass filter £
@ Spatial response /

o Restricted to
axis

@ Rotation invariant
response

e diagonals
can be
added

1|0 H

Chapter IV(c) Gonzalo R. Arce Spring, 2013 71/83




Laplacian Example

@ Shown

Original
Laplacian
Scaled
Laplacian
Enhanced
result

=
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Unsharp Masking

@ High-boost filtering
foo(X,y) = Af(X,y) — fp(X,¥)

@ Rearranging
fhb(xay) = (A_ 1)f(X,y) + fhp(xay)

@ Composite frequency response
Hpo(u,v) = (A=1) = Hpp(u,v)
@ High frequency emphasis
Hpte(u,v) = a+ bHpp(u,v)
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High-Boost Filtering Example

B
ao

(a) Input image.

obtained u
Eq. (4.4-17
=2.(d) S
but with
(Original
courtesy of

Shaffer,
Department of
Geological

¥
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High Frequency Emphasis Example

High frequency emphasis, a=0.5, b=2.0

ab

cd

(a) A chest X-ray
image. (b) Result
of Butterworth
highpass filtering.
(c) Result of high-
frequency
emphasis fillering,
(d) Result of
performing
histogram
equalization on
(c). (Original
image courtesy
Dr. Thomas

R Gest. Division
of Anatomical
Sciences,
University of
Michigan Medical
School.)

]
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Homomorphing Filtering

@ Recall illumination and reflectance image model
f(x,y)=i(x,y)r(x.y)

@ Not directly separable in the frequency domain
@ Solution:

_f'{.r._\'}IZ'\‘)‘ In l:') DFT l::> H(u,u]l:f‘)
=
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Homomorphing Filtering

Hiu, v)
i

Diu, v)

@ lllumination component
e Slow spatial variations (low frequencies)
@ Reflectance component
e Varies abruptly, especially at object borders (high frequencies)
@ Homomorphic filter characteristics =

o Attenuate illumination component (low freauencies)
Chapter IV(c)
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Bandreject/Bandpass Filters

Bandreject filters. W is the width of the band, [? is the distance D1, v) from the center of the filter, Dy is the
and 1 is the order of the Butterworth filter. We show [J instead of D{u, v) to simplify the

cutoff frequenc
notation in the table,

Tdeal Butterworth Gaussian

Hiu, vy = !

W w
0 ifDq,*TiD-;I],JrT

Hu.v) = L |: Dw i|7ﬂ Hnvy=1-¢T

D’ - Dy

1 otherwise

L]
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Bandreject Example (I)
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Bandreject Example (II)

@ Image example with nearly
periodic interference

@ Spectrum: energy in the vertical
axis represents the interference
pattern

@ Notch vertical filter

@ Result of filtering
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Bandpass Example

@ Same image as before

@ Result: interference pattern o
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Implementation Examples
{(u)

ANV
/
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Correlation Example

@ Correlation measures statistical
similarity

@ Common application: template
matching

@ Zero pad image and template

@ Multiply DFTs (conjugate image
DFTs)

@ Invert results

@ Find peaks location
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