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Motivation

Over 50 hours of video content uploaded onto YouTube every minute!

People are watching everything from online content to TV and movies
online.

Cisco predicts that 90 percent of all Internet traffic will be video in the
near future.
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The Challenge
Blue Ray Video Content has:

30 frames/sec
1920 x 1080 pixels
3 x 8 bits per pixel

1.5 Gigabits/sec

LTE download rates (mobile) 100 Megabits/sec

15 Cell Phones needed
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Data compression involves encoding information using fewer bits than
the original representation.

Compression can be either lossy or lossless.

Lossless compression

Identify and eliminate statistical redundancy. No information is lost
(formal name is source coding)
Exploits statistical redundancy to represent data more concisely
An image may have areas of color that do not change locally;
instead of coding “red pixel, red pixel, ...” it is encoded as “279 red
pixels” (run-length encoding)
Many schemes to reduce file size by eliminating redundancy:
Lempel-Ziv (LZ) method used in PKZIP, Gzip and PNG.
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Lossy data compression is the converse

Some loss of information. Human eye is more sensitive to subtle
variations in luminance than to variations in color.

JPEG image compression rounds off nonessential bits of information.

Trade-off between information lost and the size reduction.

Lossy image compression used to increase storage capacities with
minimal degradation of picture quality.

DVDs use the lossy MPEG-2 Video codec for video compression.
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(a) JPEG Q=100 Compression
2.6→1

(b) JPEG Q=50 Compression
15→1

(c) JPEG Q=10 Compression
46→1
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Fundamentals

n1 and n2: the number of information-carrying units in two data sets that
represent the same information.
RD : Relative data redundancy of the first data set (n1)

RD = 1− 1
CR

CR : Compression ratio

CR =
n1

n2

n2 = n1 á CR = 1,RD = 0
The first representation contains no redundant data.

n2� n1 á CR Ô ∞,RD Ô 1
significant compression and highly redundant data

n2� n1 á CR Ô 0,RD Ô −∞

data expansion
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Fundamentals

CR : (0,∞)
RD : (−∞,1)

Compression ratio 10 (or 10:1) means that the fist data set has 10 bits for
every 1 bit in the second or compressed data set.

The corresponding redundancy of 0.9 implies that 90% of the data in the first
data set is redundant.

Three basic data redundancies

coding redundancy

interpixel redundancy

psychovisual redundancy

(Image Compression) Gonzalo R. Arce Spring, 2013 8 / 95



Coding Redundancy

rk : the gray levels of an image[0,1]
pr (rk ) : probability that each rk occurs

L : the number of gray levels
nk : the number of times that the kth gray level appears in the image
n : the total number of pixels in the image

l(rk ) : the number of bits used to represent each value of rk

Lavg : the average number of bits required to represent each pixel

(1)

pr (rk ) =
nk

n
k = 0,1,2, . . . .L−1 (2)

Lavg =
L−1

∑
k=0

l(rk )pr (rk ) (3)

The total number of bits required to code an M×N image is

MNLavg
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Coding Redundancy
Natural m-bit binary code
→ Lavg = m

Code 1: Lavg = 3 bits

Code 2: Lavg =
7

∑
k=0

l2(rk )pr (rk )

= 2(0.19)+2(0.25)+2(0.21)+3(0.16)+4(0.08)
+5(0.06)+6(0.03)+6(0.02)
= 2.7 bits
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Coding Redundancy

CR = 3/2.7 = 1.11
Approximately 10% of the data in code 1 is redundant.

RD = 1− 1
1.11

= 0.099

The histogram of the image and l2(rk ).
These two functions are inversely proportional.
The shortest code words in code 2 are assigned to the gray levels that occur
most frequently.
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Coding Redundancy

Assigning fewer bits to the more probable gray levels than to the less
probable ones achieves data compression.

→ variable-length coding

Coding redundancy is present when the codes assigned to a set of events
are not selected to take full advantage of the events probabilities.
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Interpixel Redundancy

Left and right images
have identical histograms.

The codes representing the
gray levels of each image
have nothing to do with the
correlation between pixels.

Correlations
result from the geometric
relationships between
the objects in the image.
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Interpixel Redundancy

The value of any given pixel can be somewhat predicted from the value
of its neighbors.

Information carried by individual pixels is relatively small.

Much of visual contribution of a single pixel to an image is redundant.
spatial redundancy
interframe redundancy
interpixel redundancy
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Interpixel Redundancy

To reduce the interpixel redundancies, the image must be transformed
into a more efficient format.
Ex the differences between adjacent pixels can be used to represent an
image.

Reversible mapping
(the original image elements can be reconstructed)
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Interpixel Redundancy

(d) Run-length encoded data.

1 bit for the type (black or white)
10 bits for the length (0∼ 1023)

Only 88 bits (8∗ (1+10))
are needed to represent
the 1024 bits of binary data.

Entire 1024x343 section
is reduced to 12,166 runs.

(Image Compression) Gonzalo R. Arce Spring, 2013 16 / 95



Interpixel Redundancy

As 11 bits are required to represent each run-length pair, the resulting
compression ratio and corresponding relative redundancy are

CR =
(1024)(343)(1)
(12166)(11)

= 2.63 (4)

and

RD = 1− 1
2.63

= 0.62 (5)
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Psychovisual Redundancy

The eye does not respond with equal sensitivity to all visual information.

Certain information has less importance than other information in normal
visual processing.
→ psychovisually redundant

It can be eliminated without significantly impairing the quality of image
perception.

Elimination of psychovisually redundant data results in a loss of
quantitative information, commonly done by quantization.
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Coding Redundancy

Improved Gray Scale (IGS)

(a) 8-bit (256 levels)
(b) 4-bit (16 levels) -
Contouring
(c) IGS quantization
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Fidelity Criteria

Two classes of criteria:
(1) Objective fidelity criteria

Cost function can be expressed as a function of the original image and the
compressed and subsequently decompressed output image, it is an objective
fidelity criterion.

(2) Subjective fidelity criteria

f (x ,y): an input image
f̂ (x ,y): approximation of f (x ,y) resulting from compression and subsequently
decompressing the input.
e(x ,y): the error between f (x ,y) and f̂ (x ,y).
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Fidelity Criteria

e(x ,y) = f̂ (x ,y)− f (x ,y) (6)
Total error between the two images (size M×N) is

M−1

∑
x=0

N−1

∑
y=0

[
f̂ (x ,y)− f (x ,y)

]
(7)

The root-mean-square error , erms is

erms =

[
1

MN

M−1

∑
x=0

N−1

∑
y=0

[
f̂ (x ,y)− f (x ,y)

]2
]1/2

(8)

The mean-square signal-to-noise ratio of the compressed-decompressed
image,

SNRms =

M−1

∑
x=0

N−1

∑
y=0

f̂ (x ,y)2

M−1

∑
x=0

N−1

∑
y=0

[
f̂ (x ,y)− f (x ,y)

]2
(9)
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Fidelity Criteria

Most decompressed images ultimately are viewed by humans.
→ measuring image quality by the subjective evaluations of a human
observer often is more appropriate.

Evaluations made using an absolute rating scale or by means of
side-by-side comparisons.
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Elements of Information Theory

Is there a minimum amount of data that is sufficient to describe completely an
image without loss of information?

→ Information theory

1. Homework due soon.

2. Midterm exam next class.
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Measuring Information

An event E that occurs with probability P(E) is said to contain

I(E) = log2
1

P(E)
=− log2 P(E) information bits.

I(E): self-information of E .

If P(E) = 1 → I(E) = 0 (no information) no uncertainty is associated with
the event.

If P(E) = 0.99 → some small amount of information.

If P(E) = 1/2, I(E) =− log2 1/2, or 1 bit.
→ ex. Flipping a coin and communicating the result
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The Information Channel

The average information per source output is

Shannon Entropy:

H(z) =−
L−1

∑
j=1

P(aj) logP(aj) (10)

where aj is gray level j , and L is the number of gray levels.

Defines the average amount of information bits obtained per single
source output.

If magnitude increases
→ more uncertainty and thus more information

If symbols are equally probable, the entropy is maximized and the source
provides the greatest possible average information per source symbol.
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Using Information Theory

A method of estimating the information content is to construct a relative
frequency of occurrence of the gray levels.

Model the probabilities of the source using the gray-level histogram.

First-order estimate
entropy = 1.81 bits/pixel or 58 total bits
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Using Information Theory

Better estimation: Examine the relative frequency of pixel blocks in the
sample image.

Second order estimate
the resulting entropy estimate is 2.5/2, or 1.25 bits/pixel

As block size approaches infinity, the estimate approaches the source’s true
entropy.
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Variable-Length Coding

Used to reduce coding redundancy.

A variable-length code assigns the shortest possible code words to the
most probable gray levels.
Huffman coding

Yields the smallest possible number of bits per source symbol.

The resulting code is optimal for a fixed value of n, subject to the
constraint that the source symbols be coded one at a time.

two steps :-
- source reduction
- code assignment

(Image Compression) Gonzalo R. Arce Spring, 2013 28 / 95



Variable-Length Coding
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Variable-Length Coding
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The Huffman code

Yields the smallest possible number of unique code symbols per source
symbol.

Step 1.

1. Sort the gray levels by decreasing probability.
2. Add the two smallest probabilities.
3. Sort the new value into the list.
4. Repeat until only two probabilities remain.

Step 2.

1. Give the code 0 to the highest probability, and the code 1 to the
lowest probability in the present node.

2. Go backwards through the tree and add 0 to the highest and 1 to the
lowest probability in each node until all gray levels have a unique
code.
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Variable-Length Coding

Lavg = (0.4)(1)+(0.3)(2)+(0.1)(3)+(0.1)(4)+(0.06)(5)+(0.04)(5)
= 2.2 bits/symbol

The entropy of the source is 2.14 bits/symbol.

The resulting Huffman code efficiency is 0.973.

Block code: each source symbol is mapped into a fixed sequence of bits.
Instantaneous: each code word in a string of code symbols can be decoded
without referencing succeeding symbols.
Uniquely decodable: any string of code symbols can be decoded uniquely.
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LZW Coding

Lempel-Ziv-Welch (LZW) coding assigns fixed length code words to
variable length sequences of source symbols but requires no a priori
knowledge of the probability of occurrence of the symbols to be
encoded.

LZW compression has been integrated into a various imaging file
formats, including the graphic interchange format (GIF), tagged image
file format (TIFF), and the portable document format (PDF).
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Lossless Predictive Coding
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Lossless Predictive Coding
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Lossy Compression

Lossy encoding is based on the concept of compromising the accuracy
of the reconstructed image in exchange for increased compression.

If the resulting distortion (which may or may not be visually apparent)
can be tolerated, the increase in compression can be significant.

10:1 to 50:1→ more than 100:1
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Lossy Predictive Coding

Predictors f̂ (x ,y) = 0.97f (x ,y −1) (11)

f̂ (x ,y) = 0.5f (x ,y −1)+0.5f (x −1,y) (12)

f̂ (x ,y) = 0.75f (x ,y −1)+0.75f (x −1,y)−0.5f (x −1,y −1) (13)

f̂ (x ,y) =
{

0.97f (x ,y −1) if 4h ≤4v
0.97f (x −1,y) otherwise (14)
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Lossy Predictive Coding
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Lossy Predictive Coding
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Difference coding

f (Xi) =

{
Xi if i = 0,
Xi −Xi−1 if i > 0.

(15)

E.g.,
Original 56 56 56 82 82 82 83 80 80 80 80
Codef (Xi) 56 0 0 26 0 0 1 −3 0 0 0

The code is calculated row by row.

Both run-length coding, and difference coding are reversible, and can be
combined with, e.g., Huffman coding.
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Example of combined difference and Huffman coding
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Huffman code of original image

Lavg = 3.1
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Huffman code of Difference image

Lavg = 2
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Transform Coding

Predictive coding techniques operate directly on image pixels and thus
are spatial domain methods.

Transform coding uses linear transforms (such as Fourier transform) to
map the image into a set of transform coefficients, which are then
quantized and coded.

A significant number of coefficients have small magnitudes and can be
coarsely quantized (or discarded entirely) with little image distortion.
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Unitary transform packs as much information as possible into the
smallest number of transform coefficients.

The quantization stage eliminates coefficients that carry the least
information.

The encoding process uses a variable length code to quantize
coefficients.
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Transform selection
Walsh-Hadamard transform (WHT)
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Transform selection
Discrete cosine transform (DCT)
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Three approximations of the 512 x 512 image:
1. Divide the original image into subimages of size 8 x 8,
2. Transforms
3. truncate 50% of the resulting coefficients (minimum magnitude).
4. inverse transform
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The information packing of DCT is superior to that of the DFT and WHT.

The Karhunen-Loeve transform (KLT) is the optimal transform.
→ the KLT minimizes the mean-square error for any input image and any
number of retained coefficients.

However, because the KLT is data dependent
→ the KLT is seldom used in practice for image compression.
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The DCT provides a good compromise between information packing
ability and computational complexity.

The DCT has become an international standard for transform coding.

The DCT has the advantages of having been implemented in a single
integrated circuit, packing the most information into the fewest
coefficients, and minimizing the blocklike appearance, called blocking
artifact, that results when the boundaries between subimages become
visible.
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Subimage size selection

Another significant factor affecting transform coding error is subimage
size.

The level of compression and computational complexity increase as the
subimage size increases.

The most popular subimage sizes are 8×8 and 16×16.
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Bit allocation
The overall process of truncating, quantizing, and coding the coefficients of a
transformed subimage is commonly called bit allocation.

Zonal coding implementation the retained coefficients are selected on
the basis of maximum variance.

Threshold coding implementation the retained coefficients are selected
on the basis of maximum magnitude.

(Image Compression) Gonzalo R. Arce Spring, 2013 53 / 95



The threshold coding difference image of Fig.8.28(b) contains far less error
than the zonal coding difference image of Fig.8.28(d).
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Zonal coding

A single fixed mask for all subimages

Coefficients of maximum variance are located around the origin.

Threshold coding

Inherently adaptive where the location of the transform coefficients
retained for each subimage vary from one subimage to another.
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JPEG: Joint Photographic Experts Group
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JPEG: Image partition into 8×8 block
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JPEG: Image partition into 8×8 block

Discrete Cosine Transform

F (u,v)=
Λ(u)Λ(v)

4

7

∑
i=0

7

∑
j=0

cos
(2i +1)uπ

16
cos

(2i +1)uπ

16
f (i , j)

Λ(ξ ) =

{
1√
2

for ξ = 0
1 otherwise

Inverse Discrete Cosine Transform

f̂ (i , j) =
1
4

7

∑
u=0

7

∑
v=0

Λ(u)Λ(v)cos
(2i +1)uπ

16
cos

(2i +1)uπ

16
F (u,v)

Λ(ξ ) =

{
1√
2

for ξ = 0
1 otherwise
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2-D Discrete Cosine Transform
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DCT basis matrices

white is + value
black is - value
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JPEG example - coding
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JPEG example - decoding
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JPEG example - explanation
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JPEG process
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JPEG Details - quantization
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Typical normalization array, which is used in JPEG.

Array weighs each coefficient of a transformed subimage according to
heuristically determined perceptual or psychovisual importance.
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Compression ratio
12:1 19:1 30:1
49:1 85:1 182:1
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JPEG
Ex. 8×8 subimage with the JPEG baseline standard
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JPEG
Ex. 256 or 28 gray levels,→ level shifting by 128 or −27 gray levels
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JPEG
Ex. Transformed in accordance with the forward DCT for N = 8, becomes
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JPEG
JPEG used the normalization array to quantize the transformed array. The
scaled and truncated coefficients are

T̂ (0,0) = round
[

T (0,0)
Z (0,0)

]
= round

[
−415

16

]
=−26

(16)
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To decompress the JPEG compressed subimage,

(Image Compression) Gonzalo R. Arce Spring, 2013 74 / 95



Denormalization,

T (0,0) = T̂ (0,0)Z (0,0)
= (−26)(16)
=−416

(17)
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Inverse DCT,
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Level shifting each pixel by +27 (or +128),

The errors (the differences between the original and reconstructed
subimage) range from −14 to +11.
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25:1

52:1
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JPEG Details: Entropy Encoding of DC Components

Model: For photographs, DC value in each 8×8 block is often close to
previous block.

Coding Scheme: use Differential Pulse Code Modulation (DPCM):

Encode the difference between the current and previous 8x8 block.
Remember, encoding smaller numbers generally requires fewer
bits.
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JPEG Details - Entropy Encoding of DC Components

Figure : Size-Value Encoding Table

Example: If a DC component is 40, and the previous DC component is 48.
The difference is -8. Therefore 40 gets coded as: 1010111
0111: value representing -8
101: size from the same table reads 4
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JPEG Details - Entropy Encoding of AC Components

Model: after quantization, AC components for photographs have lots of
zeros, particularly in lower right triangle.

Coding scheme:
use Zig-Zag Scan - group non-zero low frequency coefficients
use Run Length Encoding (RLE) - (run, value) pairs
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Entropy Coding: Example
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JPEG default AC code for luminance
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JPEG compression results

(a) 231KB original 320 X 240 X 24bit (b) 74KB 3.24 : 1 compression
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JPEG compression results

(c) 231KB original 320 X 240 X 24bit (d) 38KB 6.08 : 1 compression
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JPEG compression results

(e) 231KB original 320 X 240 X 24bit (f) 11KB 21 : 1 compression
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Wavelet Coding

Difference between the wavelet image coding and transform coding is
the omission of subimage processing.

This eliminates the blocking artifact that characterizes DCT-based
approximations at high compression ratios.
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Wavelet Selection

The most widely used expansion functions for wavelet-based
compression are the Daubechies wavelets and biorthogonal wavelets.

The latter allow

useful analysis properties, like number of zero moments, to be
incorporated into the decomposition filters,
while important synthesis properties, like smoothness of
reconstruction, are built into the reconstruction filters.
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JPEG 2000

JPEG 2000 extends the initial JPEG standard to provide increased
flexibility in both the compression of continuous tone still images and
access to the compressed data.

portions of a JPEG 2000 compressed image can be extracted for
retransmission, storage, display, and/or editing.
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JPEG 2000
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25:1

52:1
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75:1

105:1
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Video Compression Standards
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