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What is Restoration (vs. Enhancement)

Restoration attempts to recover an image that has been degraded by using a
priori knowledge of the degradation phenomenon.

Enhancement

Making pleasing images

Often no specific model of
the degradation

Ad hoc procedures

Restoration

Undoing (inverting)
and unwanted effect

Model-based approach

Optimality criteria
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Image Restoration Problem

(Restoration) Gonzalo R. Arce Spring, 2014 3 / 59



Image Restoration Problem
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Image Restoration Problem
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A Model of the Image Degradation/Restoration
Process

f (x ,y) : an input image

g(x ,y) : a degraded image

h(x ,y) : the degradation function

h(x ,y) : the additive noise

f̂ (x ,y) : an estimate of the original image

The more we know about h and h , the closer f̂ (x ,y) will be to f (x ,y)
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Degradation and Restoration Model

Degradation is taken to be a linear spatially invariant operator

g(x ,y) = h(x ,y)Ff (x ,y)+h(x ,y)

G(u,v) = H(u,v)F (u,v)+N(u,v)
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Noise Properties

Arises in acquisition, digitization, and transmission/storage processes

CCD cameras are affected by:

Light levels
Sensor temperature
Bad sensors

Transmission noise can be due to interference

Wireless transmission interference
Lost networking packets
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Noise Probability Density Functions

Gaussian (normal) PDF:

p(z) =
1p
2ps

e�(z�z)2/2s2

where z represents intensity, z is the mean value of z, and s is its
standard deviation.

Typically models electronics and sensor noise
Central Limit Theorem justification

Rayleigh PDF:

p(z) =

( 2
b
(z �a)e�(z�a)2/b for z � a

0 for z < a

z = a+
p

pb/4, s2 =
b(4�p)

4

Skewed distribution typically models range imaging noise
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Noise Probability Density Functions

Gamma PDF:

p(z) =

8
<

:

abzb�1

(b�1)!
(z �a)e�az for z � 0

0 for z < 0

z =
b
a
, s2 =

b
a2

Exponential PDF:

p(z) =
⇢

ae�az for z � 0
0 for z < 0

z =
1
a
, s2 =

1
a2

Both appropriate for laser imaging
Heavy-tailed distributios

samples contain frequent outliers
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Noise Probability Density Functions

Uniform PDF:

p(z) =

8
<

:

1
b�1

for a 6 z 6 b

0 otherwise

z =
a+b

2
, s2 =

(b�a)2

12

Impusive (salt and pepper) PDF:

p(z) =

8
<

:

Pa for z = a
Pb for z = b
0 otherwise

Shot or spike notice appropriate for faulty sensor or electrnics,
transmission error/drop.
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Noise Probability Density Functions

Gaussian distribution is
most widely used

Desirable properties
Independence and
correlated

Other distributions
appropriate dor specific
cases

Simplicity of uniform
enables derivation of
results
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Test Pattern Corruption Example

(Restoration) Gonzalo R. Arce Spring, 2014 13 / 59



Test Pattern Corruption Example
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Noise Parameter Estimation

Generate statistics from uniform region
Histogram matching
Quantile-Quantile (Q-Q) plot

Determined defining statistics, e.g.

z =
L�1

Â
i=0

zipS(zi), s2 =
L�1

Â
i=0

(zi �z)2pS(zi)

where S is a subimage (strip).

(Restoration) Gonzalo R. Arce Spring, 2014 15 / 59



Q-Q Plot Example

Are samples x1,x2, . . . ,xN and y1,y2, . . . ,yN governed by the same
distribution?

Order the samples: x(1),x(2), . . . ,x(N) and y(1),y(2), . . . ,y(N)

Plot (x(1),y(1)),(x(2),y(2)), ,(x(N),y(N))
Samples governed by the same distribution will lie (approximately)
along a line
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Noise-only degradation - Spatial filtering

g(x ,y) = f (x ,y)+h(x ,y); G(u,v) = F (u,v)+N(u,v)

We are looking for the best compromise between noise attenuation and detail
preservation.
Let Sxy be an m⇥n neighborhood of (x ,y):

Arithmetric mean

Geometric mean

Contraharmonic mean
Q = 0 ! arithmetic mean
Q > 0 ! good for dark impulse noise
Q < 0 ! good for light impulse noise

f̂ =
1

mn Â
(s,t)2Sxy

g(s, t)

f̂ =

2

4 ’
(s,t)]2Sxy

g(s, t)

3

5

1
mn

f̂ =
Â(s,t)2Sxy g(s, t)Q+1

Â(s,t)2Sxy g(s, t)Q
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Mean in Geometric Mean Example
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Multiple Applications of the Median
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Mixed Noise Example

Image corrupted by

Uniform noise
Uniform and salt and
pepper noise

Filtering methods

Arithmetic mean
Geometric mean
Median
Alpha-trimmed mean
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Mean, Arithmetic Mean, and Adaptive Approach
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Median and Adaptive Median
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Frequency Domain Filtering - Periodic Interference

Band reject filters
Straightforward extension from a high/low pass case

Ideal, Butterworth, Gaussian
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Sinusoidal Corruption Example
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NASA Image, Spectrum, and Filtering Result
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Image Enhancement and Restoration

The image acquisition process can be modeled by

g(x ,y) =
Z T

0

Z Z •

�•
h(x ,y ,x 0,y 0, t)f (x 0,y 0, t)dx 0dy 0dt +n(x ,y)

where T is the exposure time, n(x ,y) is some additive noise, and
h(x ,y ,x 0,y 0, t) characterizes the distortion introduced by the imaging system.

limited aperture

out of focus

atmospheric turbulence

relative motion

additive noise (shot noise)

Image enhancement typically refers to noise removal or point processing.
Image Restoration exploits a-priori knowledge of image degradation.
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If the imaging system is ideal, spatial and time invariant, and noise-free, i.e.,

h(x ,y ,x 0,y 0, t) = d (x �x 0,y �y 0)

then
g(x ,y) =

Z T

0
f (x ,y , t)dt

If the signal is also time invariant, i.e., f (x ,y , t) = f (x ,y), then

g(x ,y) = T f (x ,y)

If planar motion exists in the x-y plane, {xd (t),yd (t)}, this yields

g(x ,y) =
Z T

0
f (x ,y , t)dt =

Z T

0
f (x �xd (t),y �yd (t))dt
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Assuming 1D linear motion in the x direction only:

xd (t) = vt , yd (t) = 0

where v is the speed of the motion.
Letting x 0 = vt , we have dt = dx 0/v and the integral from 0 to T with respect
to t becomes integral from 0 to L

4
= vT with respect to x 0, then

g(x ,y) =
Z T

0
f (x ,y , t)dt =

Z T

0
f (x �vt ,y)dt

=
1
v

Z L

0
f (x �x 0,y)dx 0 =

Z •

�•
f (x �x 0,y)h(x 0)dx 0

= f (x ,y)⇤h(x)

where the function
h(x)

4
=

⇢
1/v if 0  x  L
0 else

can be considered as the impulse response function, or the point spread
function (PSF) of the imaging system.
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Restoration by Inverse Filtering
Taking the Fourier transform of the above

G(fx ) = F (fx )H(fx )

where G, F , and H are the spectra of g, f and h, respectively. Specifically, we
have

H(fx ) =
Z •

�•
h(x)e�j2pxfx dx =

Z L

0
e�j2pxfx dx = e�jpLfx sin(pLfx )

pfx

Note that f (x) can be obtained by inverse transforming F (fx )

F (fx ) =
G(fx )
H(fx )

however, the points of F (fx ) corresponding to H(fx ) = 0 at fx = k/L,
(k =±1,±2, · · ·) can never be restored.
Moreover, this inverse filtering method is sensitive to noise that may exist in
the imaging process.
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Inverse Filtering example

Direct application of

F̂ (u,v) =
G(u,v)
H(u,v)

Amplifies noise
Possible solution:
Limit cutoff frequency
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Power Spectra and The Wiener Filter

Cross-Correlation and Cross Spectrum

Cross-correlation function for discrete space(stationary) random signals

Cfg(l ,m) = E [f (x + l ,y +m)g⇤(x ,y)]

Cross-correlation function for discrete space deterministic signals

Cfg(l ,m) =
1

LM Â
x ,y

f (x + l ,y +m)g⇤(x ,y) = F (u,v)G⇤(u,v)

Cross power spectrum

Cfg(l ,m) ,|{z}
Fourier Transf.

Cfg(u,v)
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Auto-Correlation and Power Spectral Density (PSD)

Auto-correlation function for discrete space(stationary) random signals

Cff (l ,m) = E [f (x + l ,y +m)f ⇤(x ,y)]

Auto-correlation function for discrete space deterministic signals

Cff (l ,m) =
1

LM Â
x ,y

f (x + l ,y +m)f ⇤(x ,y) = F ⇤(u,v)G(u,v) = |F |2

Auto power spectrum

Cff (l ,m) $|{z}
Fourier Transf.

Cff (u,v)
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Power Spectra and Linear Systems: Basic Rules

Cgg(u,v)| {z }
PSD of Output

= |H(u,v)|2 Cff (u,v)| {z }
PSD of Input

Cgf (u,v)| {z }
= H(u,v)Cff (u,v)

Cross PSD of Output with Input

Cfg(u,v)| {z }
= H⇤(u,v)Cff (u,v)

Cross PSD of Input with Output
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Power Spectra and Linear Systems

Cgg(u,v)| {z }
PSD of Output

= |H(u,v)|2 Cff (u,v)| {z }
PSD of Input

+ Cnn(u,v)| {z }
PSD of noise
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Wiener Filter: Minimum Mean Squarred Error

Design a restoration filter such that the reconstruction error is as small as
possible

min
hr (x ,y)

E k f (x ,y)� f̂ (x ,y) k2⌘ min
hr (x ,y)

Cee(u,v)
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Wiener Filter: Minimum Mean squared Error

min
hr (x ,y)

E k f (x ,y)� f̂ (x ,y) k2⌘ min
hr (x ,y)

Cee(u,v)

Cee(u,v) = Cf̂ f̂ (u,v)+Cff (u,v)�Cf f̂ (u,c)�Cf̂ f (u,v)

Cf̂ f̂ (u,v) = |Hr (u,v)|2Cgg(u,v)

= |Hr (u,v)|2
h
|H(u,v)|2Cff (u,v)+Cnn(u,v)

i

Cf f̂ (u,v) = Cgf (u,v)H⇤
r (u,v)

Cf̂ f (u,v) = Cfg(u,v)Hr (u,v)
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Assumptions:

The noise and the image are uncorrelated.

The noise or the image has zero mean.

The intensity levels in the estimate are a linear function of the levels in
the degraded image.

Based on these conditions, the minimum of the error function is given in the
frequency domain, minimizing the PSD Cee(u,v) for each frequency (u,v).

∂Cee

∂Hr
= 0 =) Hr (u,v) =

Cfg(u,v)
|H(u,v)|2Cff (u,v)+Cnn(u,v)

=
Cff (u,v)H⇤(u,v)

|H(u,v)|2Cff (u,v)+Cnn(u,v)

Hr (u,v) =
H⇤(u,v)

|H(u,v)|2 + Cnn(u,v)
Cff (u,v)
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Wiener Filter Example

f (x ,y) =
p

2pe�2p2(x2+y2)

h(x ,y) =
p

2pse�2p2s2(x2 +y2)

n(x ,y) N(0,v2)

Hr (u,v) =
H⇤(u,v)

|H(u,v)|2 + Cnn(u,v)
Cff (u,v)

Hr (u,v) =
e� u2+v2

2s2

e� u2+v2
s2 +v2eu2+v2

u,v
u2+v2

u,v

u2+v2

u2+v2
u2+v2
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Using the fact: H(u,v)H⇤(u,v) = |H(u,v)|2

Hr (u,v) =
H⇤(u,v)

|H(u,v)|2 + Cnn(u,v)
Cff (u,v)

=

2

664
1

H(u,v)

|H(u,v)|2

|H(u,v)|2 + Cnn(u,v)
Cff (u,v)

3

775

The 2D Wiener filter:

F̂ (u,v) =

2

664
1

H(u,v)

|H(u,v)|2

|H(u,v)|2 + Cnn(u,v)
Cff (u,v)

3

775G(u,v)

Often used approximation:

F̂ (u,v) =

2

4
1

H(u,v)

|H(u,v)|2

|H(u,v)|2 +K

3

5G(u,v)

where K is a specified constant that is added to all terms of |H(u,v)|2.
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Wiener Generalization

Geometric Mean Filter generalization:

F̂ (u,v) =

2

4
H⇤(u,v)

|H(u,v)|2

3

5
a
2

664
H⇤(u,v)

|H(u,v)|2 +b


Cnn(u,v)
Cff (u,v)

�

3

775

1�a

G(u,v)

Special cases:

a = 1 : inverse filter
a = 0 : parametric of wiener filter (standard if b = 1)
a = 1/2;b = 1 : referred to as the Spectrum equalization filter

The product of two quantities raised to the same power
Trade-off between inverse filtering and Wiener filter controlled by a
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Inverse and Wiener Filtering Comparison

Wiener parameter K set experimentally

Wiener result much sharper that the band limited inverse filter
Full inverse results is useless
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Degradation Function Estimation

Recall: G(u,v) = H(u,v)F (u,v)+N(u,v)

In the no (low) noise case

Estimation by observation:

Hs(u,v) =
Gs(u,v)
F̂s(u,v)

Estimation by experimentation:
Input impulse of strength A

H(u,v) =
G(u,v)

A

Estimation by modelling:
Example: atmospheric interference

H(u,v) = e�k(u2+v2)5/6
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Estimation by Experiment Example

Experimentally determinded point spread function (PSF)
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Estimation by modelling: Atmospheric Turbulence
Degradation
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Modeling Image Motion

Systems most often consider motion

Camera and/or subject motion

If T is the exposure duration:

g(x ,y) =
Z T

0
f [x �x0(t),y �y0(t)]dt

Blurred image: g(x ,y)
Planar motion trajectories: x0(t) and y0(t)

Fourier transform evaluation yields

G(u,v) = H(u,v)F(u,v)

where
H(u,v) =

Z T

0
e�j2p[ux0(t)+vy0(t)]dt
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Motion Example

If x0(t) = at/T and y0(t) = 0

H(u,v) =
Z T

0
e�j2pux0(t)dt =

Z T

0
e�j2puat/T dt =

T
pua

sin(pua)e�jpua

Two dimensional linear (x0(t) = at/T and y0(t) = bt/T ) motion

H(u,v) =
T

p(ua+vb)
sin [p(ua+vb)]e�jp(ua+vb)

(Restoration) Gonzalo R. Arce Spring, 2014 46 / 59



Motion Blur with Additive Noise Example

Left column:

Motion blur and
additive noise
corrupted observation
Top row has the
largest noise
corruption

Center columnn:

Inverse filtering results

Right column:

Wiener filtering result
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Sparse Restoration

Sparse Representation for Image Restoration⇤

Sparse representations for image denoising

⇤
Based on slides from Julien Mairal et. al
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Sparse Restoration

Energy minimization problem or MAP (Maximum a Posteriori) estimation:
Requires to obtain the lowest energy, and is known to be NP-hard

E(x) = k y�x k2
2| {z }

relation to measurements

+Pr(x)| {z }
prior

Some classical priors

Smoothness l k Lx k2
2

Total variation l k —x k2
2

Wavelet sparsity l k Wx k1

. . .
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Sparse Restoration

The MAP estimation problem can be formulated as an optimization problem:

min
x

k y�x k2
2 +l k x k0,

where l is the Lagrange multiplier.

Sparsity and redundancy
Pr(x) = l kaaa k0 for x = Daaa

Which dictionary to choose?

Wavelets

Curvelets

Wedgelets

Bandlets

...lets
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Sparse Restoration

Learned dictionaries of patches: Image restoration

Let x0 be a clean image and y = x0 +w its noisy version.
w ) additive zero-mean white Gaussian noise, s = 0.

Goal: Find a sparse approximation of every
p

n⇥
p

n overlapping patch of y,
where n is fixed a-priori.

min
ai ,D2C

Â
i
k xi �Dai k2

2| {z }
reconstruction

+lf(aaa i)| {z }
sparsity

where aaa i is the sparsest representation of the i patch, D is an optimal
dictionary and the index i mark the location of the patch in the image.

f(a) =kaaa k0 (“`0 pseudo-norm")

f(a) =kaaa k1 (`1 norm)
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Sparse Restoration

MOD (Method of Optimal Directions): [Engan et. al ’99]
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Sparse Restoration

K-SVD (K mean - Singular Value Decomposition): [Elad & Aharon ’06]
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Sparse Restoration

`1 : [Lee et al. ’06]
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Sparse Restoration

Key ideas for denoising

Consider each patch of size n⇥n(n = 8) in the image, including
overlaps.

Learn the dictionary on the corrupted image.

The sparse Coding retrieve a sparse approximation of the noisy patches.

Average the approximation of each patch to reconstruct the full image.

(Restoration) Gonzalo R. Arce Spring, 2014 55 / 59



Sparse Restoration

Dictionary trained on a noisy version of the boat image.
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Sparse Restoration

Example: Denoising of color images

Original K-SVD (grayscale) on 3D: Dictionaries with 256 atoms and
patches of size 8⇥8⇥3

K-SVD extension: Guarantee that the reconstructed patch will mantain
the average color of the original one by changing the metric of the
greedy algorithm (Sparse coding).
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Sparse Restoration

Predominance of gray atoms: bias and color washing effect in (c)

Correction of color artifacts with K-SVD extension in (d)
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Sparse Restoration

Inpainting for text removal

(Left) Original image, (center) Image with text, (left) Restored image.
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