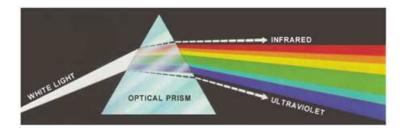
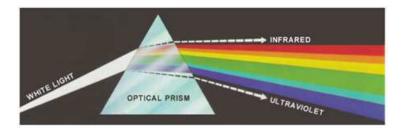
ELEG404/604: Digital Imaging & Photography

NIVERSITY OF EIAWARE


Gonzalo R. Arce

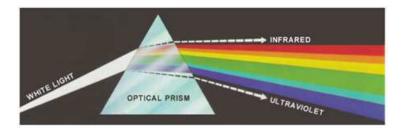
Department of Electrical and Computer Engineering University of Delaware

Chapter IX


Color Fundamentals

► The visible light spectrum is continuous

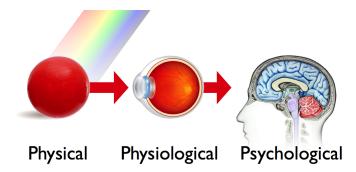
< □ ▶ < ፼ ▶ < ≧ ▶ < ≧ ▶ Ξ · ⑦ < ♡ _{1/39}


Color Fundamentals

- The visible light spectrum is continuous
- Six broad regions:
 - Violet, blue, green, yellow, orange and red

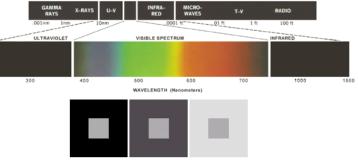
DELAWARI

Color Fundamentals

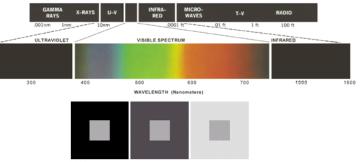


- ► The visible light spectrum is continuous
- Six broad regions:
 - Violet, blue, green, yellow, orange and red
- Achromatic light is void of color
 - Characterization: intensity (gray level)

Color Perception


Object color depends on what wavelength it reflects

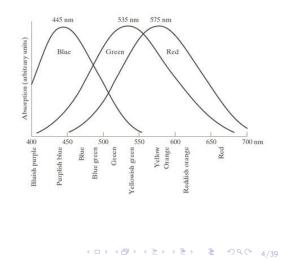
< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 3/39


Color Fundamentals

Same luminance but varying brightness

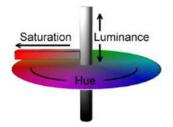
Chromatic light spectrum: 400-700nm

Color Fundamentals


Same luminance but varying brightness

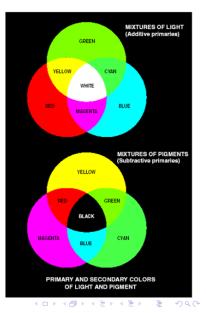
- Chromatic light spectrum: 400-700nm
- Descriptive quantities:
 - Radiance-total energy that flows from a light source
 - Luminance-amount of energy an observer perceives from a light source (lumens)
 - Brightness-subjective descriptor of intensity

Cone response


- ▶ 6-7 million receptors
- Tristimulus model
- Red sensitive: 65%
- Green sensitive: 33%
- Blue sensitive: 2%-most sensitive receptors

Color Attributes

- Brightness: perception of intensity
- Hue: an attribute associated with the dominant wavelength (color)
 - The color of an object determines its hue



- Saturation: relative purity, or the amount of white light mixed with a hue
 - ▶ Pure spectrum colors are fully saturated, *e.g.*, red
 - Saturation is inversely proportional to the amount of white light in a color
- Chromaticity: hue and saturation together
 - A color may be characterized by its brightness and chromaticity

Primary and Secondary Colors

Primary colors of light:

- Red, green and blue
- Add primary colors to obtain secondary colors of light:
 - Magenta, cyan and yellow
- Primary colors of pigments-absorbs (subtracts) a primary color of light and reflects (transmits) the other two
 - Magenta absorbs green, cyan absorbs red, and yellow absorbs blue
 - Secondary pigments: red, green and blue

6/39

Primary colors: red (R), green (G), blue (B)

$$R(\lambda) = \int_0^\infty C(\lambda) R_S(\lambda) d\lambda$$
$$G(\lambda) = \int_0^\infty C(\lambda) G_S(\lambda) d\lambda$$
$$B(\lambda) = \int_0^\infty C(\lambda) B_S(\lambda) d\lambda$$

where $C(\lambda)$ is the spectral distribution of light incident on the retina and R_s, G_s and B_s are the sensitivity of the cones.

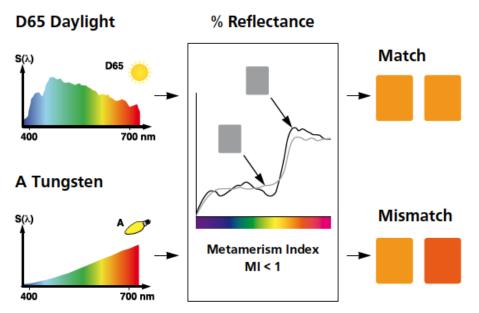
Primary colors: red (R), green (G), blue (B)

$$R(\lambda) = \int_0^\infty C(\lambda) R_S(\lambda) d\lambda$$
$$G(\lambda) = \int_0^\infty C(\lambda) G_S(\lambda) d\lambda$$
$$B(\lambda) = \int_0^\infty C(\lambda) B_S(\lambda) d\lambda$$

where $C(\lambda)$ is the spectral distribution of light incident on the retina and R_s , G_s and B_s are the sensitivity of the cones.

Two different spectra could produce the same cone response and therefore represent the same to the human eye.

▶ Primary colors: red (R), green (G), blue (B)

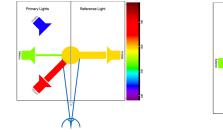

$$R(\lambda) = \int_0^\infty C(\lambda) R_S(\lambda) d\lambda$$
$$G(\lambda) = \int_0^\infty C(\lambda) G_S(\lambda) d\lambda$$
$$B(\lambda) = \int_0^\infty C(\lambda) B_S(\lambda) d\lambda$$

where $C(\lambda)$ is the spectral distribution of light incident on the retina and R_s , G_s and B_s are the sensitivity of the cones.

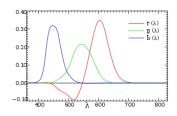
Two different spectra could produce the same cone response and therefore represent the same to the human eye.

Metamerism

Metamerism

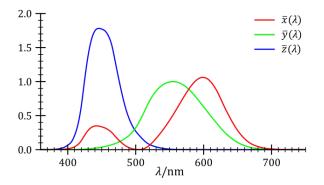

NIVERSITY OF ELAWARE




Color Matching

► International Commission on Illumination (CIE) standard definitions:

- Blue (435.8 nm), Green (546.1 nm), Red (700 nm)
- Defined in 1931, it doesn't really match human perception. It is based on experimental data.



CIE XYZ System

- Hypothetical primary sources such that all the tristimulus values are positive
- ► $Y \equiv$ luminance
- Convenient for colormetric calculations

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > 三 のへで 11/39

Tristimulus Representation

- \blacktriangleright Tristimulus values: X, Y, Z
- Trichromatic coefficients:

$$x = \frac{X}{X+Y+Z} \quad y = \frac{Y}{X+Y+Z} \quad z = \frac{Z}{X+Y+Z}$$

Tristimulus Representation

- \blacktriangleright Tristimulus values: X, Y, Z
- Trichromatic coefficients:

$$x = \frac{X}{X + Y + Z} \quad y = \frac{Y}{X + Y + Z} \quad z = \frac{Z}{X + Y + Z}$$

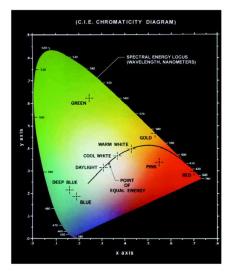
then

$$x + y + z = 1$$

Tristimulus Representation

- \blacktriangleright Tristimulus values: X, Y, Z
- Trichromatic coefficients:

$$x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z} \quad z=\frac{Z}{X+Y+Z}$$


then

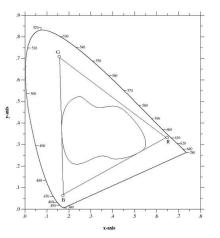
$$x+y+z=1$$

- Alternate approach: chromaticity diagram
 - Gives color composition as a function of x and y
 - Solve for z according to the above expression
 - Projects 3–D color space on to two dimensions

Chromaticity Diagram

- Pure colors are on the boundary
 - Fully saturated
- Interior points are mixtures
 - A line between two colors indicates all possible mixtures of two colors
- Color gamut: triangle defined by three colors
 - Three color mixtures are restricted to the gamut
 - No three-color gamut completely encloses the chromaticity diagram

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

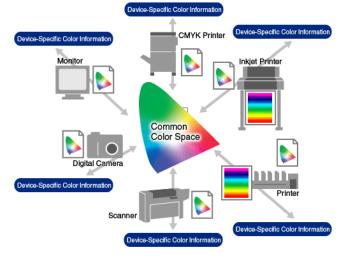


ELEG404/604

Color Gamut Examples

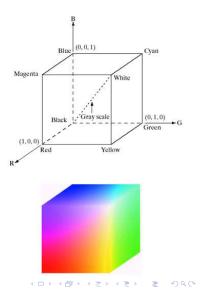
RGB monitor color gamut

- Regular (triangular) shape
- Based on three highly controllable light primaries
- Printing device color gamut
 - Combination of additive and subtracted color mixing
 - Difficult control process
- Neither gamut includes all colors-monitor is better


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Color Spaces

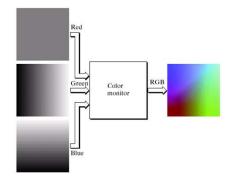
- RGB (monitors and cameras)
- CMY CMYK (printers)
- Application-oriented
 - Perception-Based (HSI, HSL, HSV)
 - Adequate color spaces in which distances model color mismatches (Lab, Luv)

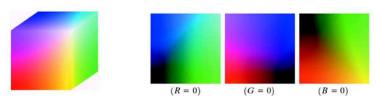


The RGB Color Model (Space)

RGB is the most widely used hardware-oriented color space

- Graphics boards, monitors, cameras, etc
- Normalized RGB values
- Grayscale is a diagonal line through the cube
- Quantization determines color depth
 - Full-color: 24 bit representations (16,77,216 colors)

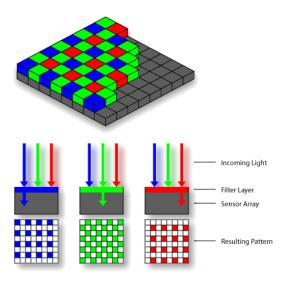




ELEG404/604

RGB Color Image Generation

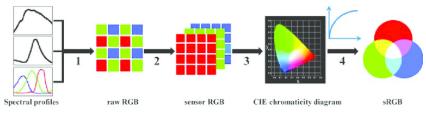
- Monochrome images represent each color component
- Hyperplane examples:
 - Fix one dimension
 - Example shows three hidden sides of the color cube



ELEG404/604

RGB Color Image Generation

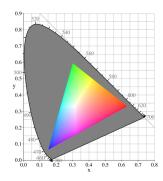
- Acquisition process: reverse operation
 - Filter light to obtain RGB components
- The data acquired by the sensor is in the color space of the camera.



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで、

Acquisition of Color Images

- Sensor color filter array data
- White Balance
- Demosaicking
- Color transformation to unrendered color space
- Color transformation to rendered color space



ELAWARE.

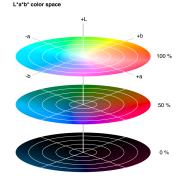
CIE XYZ Color Space to sRGB

Linear transformation given by

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 3.24 & -1.54 & -0.50 \\ -0.97 & 1.88 & 0.04 \\ 0.06 & -0.20 & 1.06 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$



The CMY and CMYK Color Spaces


- CMY: cyan, magenta and yellow
- CMYK: adds black
 - Black is difficult (and costly) to reproduce with CMY
 - Four color printing
- Subtracted primaries are widely used in printing

$$\left[\begin{array}{c} C\\ M\\ Y\end{array}\right] = \left[\begin{array}{c} 1\\ 1\\ 1\end{array}\right] - \left[\begin{array}{c} R\\ G\\ B\end{array}\right]$$

Lab Color Space

- CIELAB is used extensively in imaging
- Transforms to and from CIELAB to other color spaces are commonly employed.
- ▶ $L^* \equiv$ brightness, $a^* \equiv$ red-green, $b^* \equiv$ yellow-blue

< □ ▶ < @ ▶ < ≣ ▶ < ≣ ▶ E の Q @ 22/39

$L^*a^*b^*$ Color Space

$$L^* = 25 \left(\frac{100Y}{Y_0}\right)^{1/3} - 16, \ 1 \le 100Y \le 100$$
$$a^* = 500 \left[\left(\frac{X}{X_0}\right)^{1/3} - \left(\frac{X}{X_0}\right)^{1/3} \right]$$
$$b^* = 200 \left[\left(\frac{Y}{Y_0}\right)^{1/3} - \left(\frac{Z}{Z_0}\right)^{1/3} \right]$$

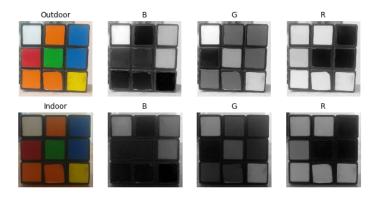
 \blacktriangleright X₀, Y₀, Z₀ tristimulus values of reference white

$L^*a^*b^*$ Color Space

► Radial distance serve as measure of perceived chroma.

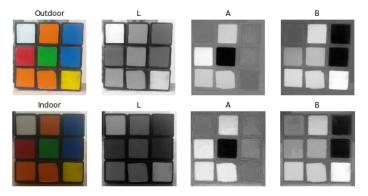
$$C_{ab} = \sqrt{a^{*2} + b^{*2}}$$

► The angular position as perceived hue


$$h_{ab} = \tan^{-1} \left(\frac{a^*}{b^*} \right)$$

The perceived color difference is measured by the Euclidean distance

$$\Delta E_{ab} = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}$$


• A ΔE_{ab} value of around 2.3 correspond to a Just Noticeable Difference.

$\mathsf{RGB} \text{ vs } L^*a^*b^*$

- Significant perceptual non-uniformity
- Mixing of chrominance and luminance.

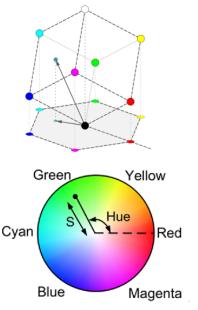
$\mathsf{RGB} \text{ vs } L^*a^*b^*$

- Perceptually uniform color space which approximates how we perceive color.
- Separates the luminance and chrominance components into different channels.
- Changes in illumination mostly affects the L component, I are a second state of the second state of the

The HSI Color Space

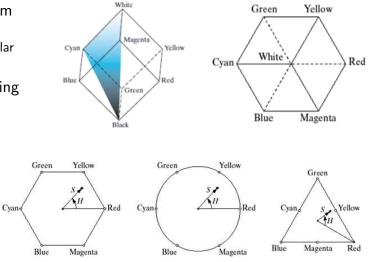
Hue, saturation, intensity: human perceptual descriptions of color

Decouples intensity (gray level) from hue and saturation



The HSI Color Space

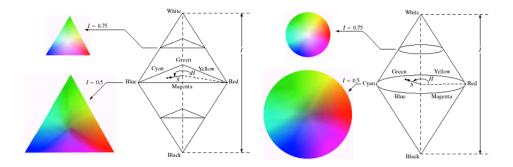
- Rotate RGB cube so intensity is the vertical axis
 - The intensity component of any color is its vertical component
 - Saturation: distance from vertical axis
 - Zero saturation: colors (gray values) on the vertical axis
 - Fully saturated: pure colors on the cube boundaries
 - Hue: primary color indicated as an angle of rotation



ELEG404/604

The HSI Color Space

- View the HSI space from top down
 - Slicing plane perpendicular to intensity
- Intensity: height of slicing plane
- Saturation: distance from center
- Hue: rotation angle from red
- Natural shape: hexagon

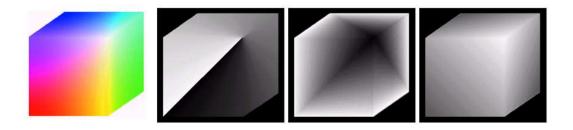


<□ ▶ < @ ▶ < E ▶ < E ▶ E の < C 28/39

ELEG404/604

Common HSI representations

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ = ⑦ < ♡ < ♡ 29/39


RGB to HSI Conversion

$$\begin{split} H &= \left\{ \begin{array}{ll} \theta & \text{if } B \leq G \\ 360 - \theta & \text{if } B > G \end{array} \right. \\ \theta &= \cos^{-1} \left\{ \frac{[(R-G) + (R-B)]/2}{[(R-G)^2 + (R-B)(G-B)]^{1/2}} \right\} \\ S &= 1 - \frac{3}{R+G+B} [\min(R,G,B)] \\ I &= \frac{1}{3} (R+G+B) \end{split}$$

- Result for normalized (circular) representation
- Take care to note which HSI representation is being used
- ► HSI to RGB conversion depends on hue region

HSI Component Example

- HSI representation of the color cube
 - Normalized values represented as gray values
 - Only values on surface cube shown
- Explain:
 - Sharp transition in hue
 - Dark and light corners in saturation
 - Uniform intensity