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History ELEG404/604

X-Ray discovery

In 1895 Wilhelm Rontgen discovered the X-rays, while working with a cathode
ray tube in his laboratory. One of his first experiments was a film of his wife’s
hand.
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History ELEG404/604

Shoe Fitting X-Ray Device

Shoe stores in the 1920s until the 1950s installed X-ray fluoroscope machines
as a promotion device.
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X-Ray Physics ELEG404/604

X-Ray Spectrum

E = h̄ ·f = h̄ cλ .

1 eV is the kinetic energy gained by an electron that is accelerated across a
one volt potential.

Wavelength: 0.01 - 10 nm.
Frequency: 30 petahertz (3x1016) to 30 exahertz (3x1019).
Soft X-Rays: 0.12 to 30 keV.
Hard X-Rays: 30 to 120 keV.



4/70

X-Ray Physics ELEG404/604

Ionization and Excitation

Ionization: Ejection of an electron from an atom, creating a free electron
and an ion. The electron is ejected from the atom if the energy transferred
by radiation to it, is equal or greater than the electron’s binding energy.
Excitation: Raising of an electron to a higher energy state e.g., an outer
orbit.
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X-Ray Physics ELEG404/604

Ionizing Radiation
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X-Ray Physics ELEG404/604
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X-Ray Physics ELEG404/604

Spectrum of X-Ray

The different curves correspond to different potentials applied to the tube:
45kV, 61kV, 80kV, 100kV and 120 kV. The particular spectral lines correspond

to characteristic radiation of Tungsten.



8/70

X-Ray Physics ELEG404/604
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X-Rays and matter ELEG404/604

X-Ray interaction with matter

The main mechanisms by which Electromagnetic ionizing radiation interacts with matter
are:

Photoelectric effect
Compton Scattering
Pair Production
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X-Rays and matter ELEG404/604

Compton Scattering

Photon collides with outer-shell electron, producing a new energetic electron called
Compton electron.
The incident photon, the Compton photon, changes its direction and losses energy as
a result of the interaction.
Undesirable for diagnostic radiography, and represents a source of radiation for the
personnel conducting the diagnosis.
It is as likely to occur with soft tissue as bone.



11/70

X-Rays and matter ELEG404/604

X-Ray Attenuation
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X-Rays and matter ELEG404/604

Linear attenuation coefficient

When the slab is non uniform, that is the linear attenuation coefficient varies
along the slab, supposing the mono energetic case:

I(x) = I0e
−
∫ x

0 µ(x′) dx′

Where I(x) is the x-ray intensity at position x.
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Radiation Dosimetry ELEG404/604

Radiation Dose in X-Ray and CT Exams
Doctors use "effective dose" when they talk about the risk of radiation to the
entire body. Risk refers to possible side effects, such as the chance of
developing a cancer later in life. Effective dose takes into account how
sensitive different tissues are to radiation
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Radiation Dosimetry ELEG404/604

Radiation Dose in X-Ray and CT Exams
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Radiation Dosimetry ELEG404/604

Radiation Dose in X-Ray and CT Exams
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Radiation Dosimetry ELEG404/604

Biological Effects

The main risk from ionizing radiation at the doses involved in medical
imaging is cancer production.
Injury to living tissue from the transfer of energy to atoms and molecules
of the body.
Can cause acute effects such as: skin reddening, hair loss and radiation
burns.
The general public should not be exposed to more than 100mrem/year.
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Instrumentation ELEG404/604

X-ray Tubes
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Instrumentation ELEG404/604

Restriction Beam and Compensation Filters
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Projection Radiography ELEG404/604

Imaging Equations
Monochromatic X-ray Source:

I(x,y) = I0e
−
∫ r(x,y)

0 µ(s;x,y)ds

Polychromatic X-ray Source:

I(x,y) =
∫ Emax

0

{
S0(E′)E′e−

∫ r(x,y)
0 µ(s;E′,x,y)ds,dE′

}
(1)
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Computed Tomography ELEG404/604

Reconstruction History

Hounsfield’s experimental CT:

Reconstruction methods based
on Radon’s work

1917-classic image reconstruction
from projections paper

1972 - Hounsfield develops the
first commercial x-ray CT
scanner

Hounsfield and Cormack receive the
1979 Nobel Prize for their CT
contributions

Classical reconstruction is based
on the Radon transform

Method known as backprojection

Alternative approaches
Fourier Transform and iterative
series-expansion methods
Statistical estimation methods
Wavelet and other multiresolution
methods
Sub-Nyquist sampling: Compressed
sensing and Partial Fourier Theories
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Computed Tomography ELEG404/604

1st Generation CT: Parallel Projections
Hounsfield’s Experimental CT
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Computed Tomography ELEG404/604

Example

Suppose an object that has 4 materials arranged in the boxes shown above.
How can we find the linear attenuation coefficients?
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Computed Tomography ELEG404/604

Image Reconstruction
Suppose an x-ray of intensity I0 is
passing through the first column of
the object, and that I1 is the
intensity measured at the other side.
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Computed Tomography ELEG404/604

Image Reconstruction

If we repeat the same process for each of the rows and the columns, we obtain
the equations necessary to obtain the values of the coefficients.However for
bigger systems, the number of equations is not practical for implementation.
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Radon Transform ELEG404/604

Radon Transform

f(x,y) describes our object

How to describe f(x,y) in terms
of its projections onto a line c

Let ` be the distance along the line
L(`,θ) starting from the origin.
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Radon Transform ELEG404/604

Radon Transform

For a fixed projection angle θ, and a
particular linear shift of the X-ray beam, a
projection integral is given by:

g(`,θ) =
∫ ∞
−∞

f(x(s),y(s))ds

Example: If θ = 0

g(`,θ = 0) =
∫ ∞
−∞

f(`,y)dy

Example: If θ = 90

g(`,θ = 90) =
∫ ∞
−∞

f(x,`)dx
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Radon Transform ELEG404/604

Radon Transform ∀θ

Option 1
Rotate the coordinate system so that ` and the
projection direction (axis of integration) are
horizontal and vertical

x(s) = `cosθ− ssinθ
y(s) = `sinθ+ scosθ

g(`,θ) =
∫ ∞
−∞

f(x(s),y(s))ds
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Radon Transform ELEG404/604

Radon Transform ∀θ

Option 2
Instead of rotating the object and integrating, integrate the object only along
the line L(`,θ)

g(`,θ) =
∫ ∞
−∞

∫ ∞
−∞

f(x,y)δ(xcosθ+y sinθ− `)dxdy

The sifting property causes the integrand to be
zero everywhere except on L(`,θ)
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Radon Transform ELEG404/604

How does the Radon Transform apply to X-rays

x(s) = `cosθ− ssinθ
y(s) = `sinθ+ scosθ

g(`,θ) =
∫ ∞
−∞

f(x(s),y(s))ds

Recall that Id = I0 exp
(
−
∫ d
0 µ(x(s),y(s))ds

)
is the received X-ray intensity of a beam
projected through an object along the line s.
Taking logarithms at both sides:

− ln
(
Id
I0

)
=
∫ d

0
µ(x(s),y(s))ds

Then the Radon transforms describes the
X-ray projections for g(`,θ) =− ln

(
Id
I0

)
and

f(x,y) = µ(x,y).
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Radon Transform ELEG404/604

How does the Radon Transform apply to X-rays

Radon Transform
In CT we measure g(`,θ) =− ln

(
Id
I0

)
and need

to find f(x,y) = µ(x,y) using

g(`,θ) =
∫ ∞
−∞

f(x(s),y(s))ds

x(s) = `cosθ− ssinθ
y(s) = `sinθ+ scosθ
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Radon Transform ELEG404/604

Sinogram
A sinogram is an image of g(`,θ)
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Backprojection ELEG404/604

Back Projection Method
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Backprojection ELEG404/604

Backprojection Method
Intuition: If g(`,θ0) takes on a large value at `= `0, then f(x,y) must be
large over the line ( or somewhere on the line) L(`0, θ0) .

One way to create an image with this property is to assign every point on
L(`0, θ0) the value g(`0, θ0), i.e. bθ = g(xcosθ+y sinθ,θ).
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Backprojection ELEG404/604

Back Projection Example
With the example of the 4 boxes given before, we back project the results obtained. As it
can be seen, the right answer is not obtained, however the order of the numbers is the same:
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Backprojection ELEG404/604

Problems with Backprojection Method
Bright spots tend to reinforce, which results in a blurry image.
Problem:

fb(x,y) = ∫ π
0 bθ(x,y)dθ 6= f(x,y)

Resulting Image (Laminogram):
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Backprojection ELEG404/604

Back Projection Method
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Projection-Slice Theorem ELEG404/604

Projection-Slice Theorem
Take the 1D Fourier transform of a projection g(`,θ)

G(ρ,θ) = F1D {g(`,θ)}=
∫ ∞
−∞

g(`,θ)e−j2πρ`d`
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Projection-Slice Theorem ELEG404/604

Projection Slice Theorem
From the 1D Fourier Transform of a projection g(`,θ)

G(ρ,θ) = F1D {g(`,θ)}=
∫ ∞
−∞

g(`,θ)e−j2πρ`d`

Next we substitute the Radon transform for g(`,θ)

g(`,θ) =
∫ ∞
−∞

∫ ∞
−∞

f(x,y)δ(xcosθ+y sinθ− `)dxdy

G(ρ,θ) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x,y)δ(xcosθ+y sinθ− `)e−j2πρ`dxdyd`

Rearranging

G(ρ,θ) =
∫ ∞
−∞

∫ ∞
−∞

f(x,y)
{∫ ∞
−∞

δ(xcosθ+y sinθ− `)e−j2πρ`d`
}
dxdy
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Projection-Slice Theorem ELEG404/604

Projection-Slice Theorem

What does this look like?

G(ρ,θ) =
∫ ∞
−∞

∫ ∞
−∞

f(x,y)
{
e−j2πρ[xcosθ+y sinθ]

}
dxdy

G(ρ,θ) =
∫ ∞
−∞

∫ ∞
−∞

f(x,y)
{
e−j2π[xρcosθ+yρsinθ]

}
dxdy

It is reminiscent of the 2D Fourier transform of f(x,y), defined as

F (u,v) =
∫ ∞
−∞

∫ ∞
−∞

f(x,y)e−j2π(xu+yv)dxdy

Let u= ρcosθ and v = ρsinθ, then

G(ρ,θ) = F (ρcosθ,ρsinθ)



40/70

Projection-Slice Theorem ELEG404/604

Projection-Slice Theorem
The 1-D Fourier transform of a projection is a slice of the 2D Fourier
transform of the object



41/70

Projection-Slice Theorem ELEG404/604

Fourier Reconstruction Method
Take projections at all angles θ. Take the 1D FT to build F (u,v) one slice at
a time. Take the Inverse 2D-FT of the result.
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Projection-Slice Theorem ELEG404/604

Fourier Reconstruction Method

The projection slice theorem leads to the following reconstruction method:

Take 1D Fourier Transform of each projection to obtain G(ρ,θ) for all θ.
Convert G(ρ,θ) to Cartesian grid F (u,v).
Take inverse 2D Fourier Transform to obtain f(x,y).

It is not used because it is difficult to interpolate polar data into a
Cartesian grid, and the inverse 2D Fourier Transform is time consuming
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FBP ELEG404/604

Filtered Back Projection

Consider the inverse Fourier Transform in 2D: In polar coordinates ,
u= ρcosθ and v = ρsinθ, the inverse Fourier transform can be written as

f(x,y) =
∫ 2π

0

∫ ∞
0
F (ρcosθ,ρsinθ)ej2πρ[xcosθ+y sinθ]ρdρdθ

Using the projection-slice theorem G(ρ,θ) = F (ρcosθ,ρsinθ), we have

f(x,y) =
∫ 2π

0

∫ ∞
0
G(ρ,θ)ej2πρ[xcosθ+y sinθ]ρdρdθ
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FBP ELEG404/604

Since g(`,θ) = g(−`,θ+π) it follows that

f(x,y) =
∫ π

0

∫ ∞
−∞
|ρ|G(ρ,θ)ej2πρ[xcosθ+y sinθ]dρdθ.

Furthermore, from the integration over ρ, the term xcosθ+y sinθ is a
constant, say `. Hence,

f(x,y) =
∫ π

0

[∫ ∞
−∞
|ρ|G(ρ,θ)ej2πρ`dρ

]
dθ

Filter Response.
c(ρ) = |ρ|.
High pass filter.

G(ρ,θ) is more densely sampled when ρ is small.
The ramp filter compensate for the sparser sampling at higher ρ.
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Convolution BP ELEG404/604

Convolution Back Projection
From the filtered back projection algorithm we get

f(x,y) =
∫ π

0

[∫ ∞
−∞
|ρ|G(ρ,θ)ej2πρ`dρ

]
dθ

From the convolution theorem of the FT, we can rewrite f(x,y) as

f(x,y) =
∫ π

0

[
F−1

1D {|ρ|} ∗g(`,θ)
]
dθ.

Defining c(`) = F−1
1D {|ρ|},

f(x,y) =
∫ π

0
[c(`)∗g(`,θ)]dθ

=
∫ π

0

∫ ∞
−∞

g(`,θ)c(xcosθ+y sinθ− `)d`dθ

Problem: c(`) does not exist, since |ρ| is not integrable.
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Convolution BP ELEG404/604

Convolution Back Projection
Practical Solution: Windowing ρ
Define

c̃(`) = F−1
1D {|ρ|W (ρ)} ,

where W (ρ) is a windowing function that filters the observed projection in
addition to the ramp filter.

f(x,y) =
∫ π

0
[c̃(`)∗g(`,θ)]dθ

Common windows
Hamming window
Lanczos window (Sinc function)
Simple rectangular window
Ram-Lak window
Kaiser window
Shepp-Logan window
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Convolution BP ELEG404/604
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CT Generations ELEG404/604

2nd Generation

Incorporated linear array
of 30 detectors
More data acquired to
improve image quality
Shortest scan time was
18 seconds/slice
Narrow fan beam allows
more scattered radiation
to be detected
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CT Generations ELEG404/604

2nd Generation
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CT Generations ELEG404/604

3rd Generation
Number of detectors increased
substantially (more than 800
detectors)
Angle of fan beam increased to
conver entire patient ( no need
for translational motion)
Mechanically joined x-ray tube
and detector array rotate
together
Newer systems have scan times
of 1/2 second
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CT Generations ELEG404/604

2nd and 3rd Generation Reconstructions
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CT Generations ELEG404/604

3rd Generation Artifacts
Ring Artifacts
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CT Generations ELEG404/604

4th Generation

Designed to overcome the problem of artifacts. Stationary ring of about 4800
detectors
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Fan Beam Reconstruction

Fan-beam parameters

θ = β+γ

` = D sinγ,

D is the distance from source to the origin (isocenter)
Recall the parallel-ray CBP

f(x,y) =
∫ π

0

∫ ∞
−∞

g(`,θ)c(xcosθ+y sinθ− `)d`dθ

Assuming g(`,θ) = 0 for |`|> T .

f(x,y) = 1
2

∫ 2π

0

∫ T

−T
g(`,θ)c(xcosθ+y sinθ− `)d`dθ
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Fan Beam Reconstruction
Let (r,φ) be the polar coordinates of a point (x,y). Then x= r cosφ, y = r sinφ and
xcosθ+y sinθ = r cosθ cosφ+ r sinφsinθ = r cos(θ−φ). Then:

f(r,φ) = 1
2

∫ 2π

0

∫ T

−T
g(`,θ)c(r cos(θ−φ)− `)d`dθ

Using the Jacobian of the transformation: θ = β+γ and `=D sinγ.

f(r,φ) = 1
2

∫ 2π−γ

−γ

∫ sin−1 T
D

sin−1 −T
D

g(D sinγ,β+γ)c(r cos(β+γ−φ)−D sinγ)D cosγdγdβ

The expresion sin−1 T
D represents the largest angle that needs to be considered given

an object of radius T , γm. Furthermore, functions are periodic in β with period 2π,
then:

f(r,φ) = 1
2

∫ 2π

0

∫ γm

−γm

p(γ,β)c(r cos(β+γ−φ)−D sinγ)D cosγdγdβ
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Fan Beam Reconstruction

The argument of c(·) can be written in simpler form
using these coordinates

r cos(β+γ−φ)−D sinγ =D′ sin(γ′−γ)

Then, the reconstruction can be rewritten as

f(r,φ) = 1
2

∫ 2π

0

∫ γm

−γm

p(γ,β)c(D′ sin(γ′−γ))D cosγdγdβ

Recall c(`) =
∫∞
−∞ |ρ|e

j2πρ`dρ. Then:

c(D′ sin(γ)) =
∫ ∞
−∞
|ρ|ej2πρD′ sin(γ)dρ
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Fan-Beam Reconstruction

If we substitute ρ′ = ρD′ sin(γ)
γ , in c(D′ sin(γ)) = ∫∞

−∞ |ρ|ej2πρD
′ sin(γ)dρ. It can

be shown that

c(D′ sin(γ)) =
(

γ

D′ sin(γ)

)2
c(γ′).

Let cf = 1
2D

(
γ

sin(γ)

)2
c(γ), then

f(r,φ) =
∫ 2π

0

∫ γm

−γm

p̃(γ,β)cf (γ′−γ)dγdβ,

where p̃(γ,β) = cos(γ)p(γ,β)
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5G: Electron Beam CT (EBCT)

Developed specifically for cardiac tomographic imaging.
No conventional x-ray tube; large arc of tungsten encircles patient and lies directly
opposite to the detector ring
Electron beam steered around the patient to strike the annular tungsten target.
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6G and 7G CT

6G: Electron Beam CT (EBCT)
Helical CT scanners acquire data while the table moves, there is a single
detector array.
Allows the use of less contrast agent.

7G: Multislice
CT becomes a cone beam
40 parallel detector rows
32mm detector length
16 0.5mm slices for second
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