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The Discrete Fourier Transform
The DFT is

G(u) = ΣM−1
x=0 g(x)e−2jπux/M u= 0,1, ...M −1.

g(x) = 1
M

ΣM−1
u=0 G(u)e2jπux/M x= 0,1, ...M −1.
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In 2-dimensions the DFT is

G(u,v) = ΣM−1
x=0 ΣN−1

y=0 g(x,y)e−2jπ(ux/M+vy/N) u= 0,1, ...M−1;v= 0,1, ...N−1.

g(x,y) = 1
MN

ΣM−1
u=0 ΣN−1

u=0 G(u,v)e2jπ(ux/M+vy/N) x= 0,1, ...M−1;y= 0,1, ...N−1.
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Two Dimensional cosine functions
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Two Dimensional cosine functions
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Two Dimensional cosine functions
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Two Dimensional cosine functions
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Some Properties

I Translation

g(x,y)ej2πu0x/M ↔ G(u−u0)

Example: for u0 =M/2

g(x,y)(−1)x ↔ G(u−M/2)

Example in 2D: for u0 =M/2,v0 =M/2

g(x,y)(−1)(x+y) ↔ G(u−M/2,v−M/2)
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I Translation

g(x−x0,y−y0)

↔ G(u,v)e−j2π(x0u/M+y0v/M)

I Magnitude and Phase: Since the DFT is complex
G(u,v) = |G(u,v)|ejϕ(u,v)

where:

|G(u,v)|= [(Re(u,v))2 + (Im(u,v))2]1/2 , Fourier spectrum

ϕ(u,v) = arctan
(
Im(u,v)
Re(u,v)

)
, Phase angle

I Power spectrum
P (u,v) = |G(u,v)|2 = [(Re(u,v))2 + (Im(u,v))2]
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Centering the 2D Spectrum
Original Swapped
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Intensity plot of 2D power spectrum

Original
Non-centered

Spectrum

Centered

Spectrum
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DFT- image scaling
Stretching the image causes the spectrum to contract and vice versa

Rectangular

Pulse

Spectrum
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DFT- oriented, repetitive patterns
Enlarging the image causes the spectrum to contract.

Image

Spectrum
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DFT- image rotation
The spectrum turns in the same direction and the same amount as the image.

Image

Spectrum

Original
Rotated

15° 

Rotated

30° 
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DFT- superposition of image patterns
Broadband effects caused by straight structures, e.g. dark beam on the wall.

Image

Spectrum
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DFT- natural image patterns

Image

Spectrum
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DFT- natural image patterns

Image

Spectrum
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Example of Image DFT (I)
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Example of Image DFT (II)

I Scanning Electron Microscope (SEM)
image of IC board

I Edges correspond to high frequencies
I Note directionality of edges
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DFT of a print pattern
Possible to remove the raster pattern by erasing the peaks in the Fourier
spectrum and reconstructing the smoothed image from the modified spectrum
using the inverse DFT.

Image

SpectrumZoom
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The DFT can be redefined as

X[n] = 1√
N

N−1∑
m=0

x[m]e−mnj2π/N =
N−1∑
m=0

wmnN x[m],

x[m] = 1√
N

N−1∑
n=0

X[n]emnj2π/N =
N−1∑
n=0

w−mnN X[n]

m,n= 0,1, · · · ,N −1

where wN
4= e−j2π/N/

√
N . The time function and its spectrum are periodic:

x[m+kN ] = x[m] and X[n+kN ] =X[n].
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The forward and inverse DFT can be written as:

X[n] = 1√
N

N−1∑
m=0

x[m]e−mnj2π/N =
N−1∑
m=0

wmnN x[m],

x[m] = 1√
N

N−1∑
n=0

X[n]emnj2π/N =
N−1∑
n=0

w−mnN X[n]

m,n= 0,1, · · · ,N −1
Here we have defined

wmn
4= 1√

N
(e−j2π/N )mn, w∗mn = 1√

N
(ej2π/N )mn

and w∗mn is its complex conjugate of wmn. We further define an N ×N
matrix

W =

 . . .
. wmn .
. . .


N×N

where wmn is the element in the mth row and nth column of W.
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W is symmetric (wmn = wnm)
WT = W

and the rows (or columns) of W are orthogonal:

〈wm,wn〉=
N−1∑
k=0

w∗kmwkn = 1
N

N−1∑
k=0

(ej2π/N )mk(e−j2π/N )nk

= 1
N

N−1∑
k=0

(ej2π/N )(m−n)k ∗= δmn =
{

1 m= n
0 m 6= n

as
I If m= n, (ej2π/N )(n−m)k = 1 and 〈wm,wn〉= 1,
I If m 6= n, the summation becomes:

N−1∑
k=0

(ej2π(n−m)/N )k = 1− (ej2π(n−m)/N )N

1− ej2π(n−m)/N = 0

We see that W is a unitary matrix (and symmetric):
W∗T = W∗ = W−1
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Matrix Form of the 1-D DFT
Define the two N -long vectors:

X 4=


X[0]
.
.

X[N −1]


N×1

, x 4=


x[0]
.
.

x[N −1]


N×1

The DFT can then be written more conveniently as a matrix-vector
multiplication:

X =


X[0]
.
.

X[N −1]

= 1√
N

 . . .

. (e−j2π/N )mn .

. . .




x[0]
.
.

x[N −1]

= Wx
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Matrix Form of the 1-D DFT

and

x =


x[0]
.
.

x[N −1]

= 1√
N

 . . .

. (ej2π/N )mn .

. . .




X[0]
.
.

X[N −1]

= W∗X = W−1X

The computational complexity of the 1-D DFT is O(N2), which, as we will
see later, can be reduced to O(N log2N) by the Fast Fourier Transform
(FFT) algorithm.
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Matrix Form of the 2D DFT
Reconsider the 2D DFT:

X[k, l] = 1√
N

N−1∑
n=0

[ 1√
M

M−1∑
m=0

x[m,n]e−j2π
mk
M ]︸ ︷︷ ︸

X′[k,n]

e−j2π
nl
N

= 1√
N

N−1∑
n=0

X ′[k,n]e−j2π
nl
N for 0≤m,k≤N−1, 0≤n, l≤N−1

X ′[k,n] 4= 1√
M

N−1∑
m=0

x[m,n]e−j2π
mk
M (n= 0,1, · · · ,N −1)

The summation above is with respect to the row index m and the column
index n is a fixed parameter, this expression is a one-dimensional Fourier
transform of the nth column of [x], which can be written in column vector
(vertical) form as:

X′n = W∗xn
for all columns n= 0, · · · ,N −1.
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Matrix Form of the 2D DFT

Putting all these N columns together, we can write[
X′0, · · · ,X′N−1

]
= W [x0, · · · ,xN−1]

or more concisely
X′ = Wx

where W is a M by N Fourier transform matrix.
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Matrix Form of the 2D DFT
X[k, l] = 1√

N

∑N−1
n=0 X

′[k,n]e−j2πnlN The sum is with respect to the column
index n and the row index number k is fixed, this is a one-dimensional Fourier
transform of the kth row of X′, which can be written in row vector
(horizontal) form as

XT
k = X′TkWT , (k = 0, · · · ,N −1)

Putting all these N rows together, we can write
XT

0
.
.

XT
N−1

=


X′T0
.
.

X′TN−1

W

(W is symmetric: WT = W), or more concisely

X = X′W
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Matrix Form of the 2D DFT
But since X′ = Wx, we have

X = WxW

Hence the 2D DFT can be implemented by transforming all the rows of x and
then transforming all the columns of the resulting matrix. The order of the
row and column transforms is not important.
Similarly, the inverse 2D DFT can be written as

x = W∗XW∗

Again note that W is a symmetric Unitary matrix:

W−1 = W∗T = W∗

The complexity of 2D DFT is O(N3) which can be reduced to O(N2log2N) if
FFT is used.
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The Fast Fourier Transform - FFT (1D)
The DFT pair is given by

X(k) =
N−1∑
n=0

x(n)e−j
2π
N nk k = 0, . . . ,N −1 (1)

x(n) = 1
N

N−1∑
k=0

X(k)ej
2π
N nk n= 0, . . . ,N −1 (2)

The computational complexity for each point of the DFT is:
I (N −1) Complex multiplications
I (N −1) Complex additions

Hence for N points in the sequence we have:
I O[N(N −1)] Complex multiplications
I O[N(N −1)] Complex additions

Consider the decimation in time FFT algorithm.
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Divide the DFT in even and odd terms:

X(k) =
(N/2)−1∑
r=0

x(2r)W 2rk
N +

(N/2)−1∑
r=0

x(2r+ 1)W (2r+1)k
N

=
(N/2)−1∑
r=0

x(2r)W 2rk
N +W k

N

(N/2)−1∑
r=0

x(2r+ 1)W 2rk
N

(3)

Notice W 2rk
N = e−j

2π
N 2rk = e

−j
(

2π
N/2

)
rk =W rk

N/2
Hence

X(k) =
(N/2)−1∑
r=0

x(2r)W rk
N/2︸ ︷︷ ︸

N
2 −pointDFT

+W k
N

(N/2)−1∑
r=0

x(2r+ 1)W rk
N/2︸ ︷︷ ︸

N
2 −pointDFT

k= 0,1, · · · ,N−1

(4)

X(k) =G(k) +W k
NH(k) k = 0,1, · · · ,N −1 (5)

But G(k) and H(k) are periodic in N
2 .
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For instance
X(1) =G(1) +W 1

NH(1) (N = 8)
X(5) =G(5) +W 5

NH(5)
=G(1) +W 5

NH(1)
(6)

Each of the G(k) and H(k) are N/2 DFT’s; however, these can be computed
using N/4 point DFT’s and so on.
For instance the N/2 point DFT:

Can be found as:
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It self each 2 point DFT:

If N = 2b (a power of 2), then we have log2N = b decompositions. At each
stage we have N complex multiplications and additions. Hence the total
number of complexity operations is:
I O(Nlog2N) multiplications.
I O(Nlog2N) additions
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CALCULATION OF THE 2-D DFT

1. Direct Calculation

The direct calculation of the 2-D DFT is the double sum:

X(k1,k2) =
N1−1∑
n1=0

N2−1∑
n2=0

x(n1,n2)wn1k1
N1

wn2k2
N2

0≤ k1 ≤N1−1
0≤ k2 ≤N2−1

(7)

where wN = e
−j2π
N The evaluation of one sample of X(k1,k2) requires N1N2

complex multiplications and N1N2 complex additions.
Thus, since there are N1N2 points. The complexity is in the order of [N2

1N
2
2 ].
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2. Row-Column Decomposition

The 2-D DFT can be written as:

X(k1,k2) =
N1−1∑
n1=0

N2−1∑
n2=0

x(n1,n2)wn2k2
N2


︸ ︷︷ ︸

G(n1,k2)

wn1k1
N1

(8)

X(k1,k2) =
N1−1∑
n1=0

G(n1,k2)wn1k1
N1

(9)
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Hence
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The complexity here is as follow:

N1(1DN2 pt.DFTs) +N2(1DN1 pt.DFT ) =N1N
2
2 +N2N

2
1

or N1N2(N1 +N2)

3. Row column FFT
If N1 and N2 are powers of 2 then each 1DDFT can be computed with a
1DFFT . Recall they each N pt1DFFT has a complexity N logN .

Hence, the complexity is reduced to:

N1N2 logN2 +N2N1 logN1 =N1N2 log(N2N1) (10)
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To get a feeling for a numerical savings involved consider a
1024×1024 2D DFT .

Cdirect = 240 ≈ 1012 complex multiplications
Cr/cdirect = 231 ≈ 109 complex multiplications

Cr/cFFT = 10×220 ≈ 107 complex multiplications

If it would take 1 day to process a 2D direct, then it would take 1 sec with the
r/c FFT!!
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Linear Convolution Via DFT
I Recall in one dimension

X(k) =
N−1∑
n=0

x(n)e−j2πkn/N , k = 0,1, . . . ,N −1.

I The N ×N unitary DFT matrix W is given by

W =

 . . .
. wmn .
. . .


N×N

I Circular convolution Theorem: If

x2(n) =
N−1∑
k=0

h(n−k)cx1(k), 0≤ n≤N −1

then
DFT{x2(n)}N =DFT{h(n)}NDFT{x1(n)}N
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Linear Convolution via DFT (I)
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Linear Convolution via DFT (II)
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Linear Convolution via DFT Algorithm

The linear convolution of two sequences {h(n)}P−1
n=0 and {x(n)}N−1

n=0 can be
obtained by the following algorithm:
1. Define M ≥ P +N

2. Define h̃(n) and x̃(n) as the M zero extended sequences of h(n) and
x(n) respectively

3. Compute Ŷ (k) = Ĥ(k)X̂(k), where Ĥ(k) =DFT{h̃(n)}M and
X̂(k) =DFT{x̃(n)}M

4. Take the inverse DFT of Ŷ (k) to obtain y(n)
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Two Dimensional DFT

The two dimensional DFT of an N ×N image is a separable transform defined
as

X(u,v) =
N−1∑
m=0

N−1∑
n=0

f(m,n)wkmN wlnN , 0≤ k, l ≤N −1

and the inverse transform is defined as

x(m,n) = 1
N2

N−1∑
k=0

N−1∑
l=0

X(u,v)w−kmN w−lnN , 0≤m,n≤N −1.
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Two Dimensional Linear Convolution

I The DFT of the two dimensional circular convolution of two arrays is the
product of their DFTs, i.e., if

y(m,n) =
N−1∑
m′=0

N−1∑
n′=0

h(m−m′,n−n′)cu(m′,n′), 0≤m,n≤N −1

then
DFT{y(m,n)}N =DFT{h(m,n)}NDFT{u(m,n)}N

I Extensions to linear filtering can be done using zero padding
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Two dimensional Example of Zero Padding
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Example of Image DFT (II)

We can center the DFT by premultiplying image U by the array (−1)m+n

X(k+N/2, l+N/2) = 1
N

N−1∑
m=0

N−1∑
n=0

x(m,n)(−1)m+nwkmN wlnN
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Ideal Low Pass Filters (I)
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Ideal Low Pass Filters (II)



56/84

ELEG404/604

Energy Compaction (I)
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Energy Compaction (II)
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Filtering in the Frequency Domain
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Low Pass and High Filtering Example
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Low Pass Filters

I D(u,v) is the distance from point (u,v) to the origin
I Ideal filter can be implemented digitally but has undesired effects
I Butterworth filter is a smooth approximation to ideal filter
I Gaussian filter is a smooth function both in space and frequency domains
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Butterworth Low Pass Filter
Frequency response:

H(u,v) = 1
1 + [D(u,v)/D0]2n

I Order: n, Cutoff frequency: D0
I Smooth transfer function

I Minimizes ringing
I Order controls transition bandwidth
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Butterworth Filter Example

I Size 500×500
I Filter order:2
I D0 = 5,15,30,80

and 230
I Significantly

reduced ringing
compared to ILPF
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Spatial Domain Representation of Butterworth Filter

I Cutoff frequency:5
I Increasing filter order: 1,2,5 and 20

I Impulse response spreads, oscillations introduced
I Smoothing and ringing introduced
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Gaussian Low Pass Filter

Frequency response:

H(u,v) = exp−D2(u,v)/2D2
0

I Spatial domain also a gaussian function
I No ringing
I Less cutoof/transition control
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Gaussian Low Pass Filter Example

I D0 = 5,15,30,80
and 230

I Not as much
smoothing

I More gradual
transition band

I No ringing
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Application Example

I Poor resolution sampled text
I Scanned material, faxes
I Broken text

I Result of Gaussian low pass filtering: broken character segments are joined
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Enhancement of Poorly Acquired Images
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Gaussian Filter with Zero Padding Example
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Spectral Representations of Sharpening Filters

I Simple highpass
representation

Hhp(u,v) = 1−Hlp(u,v)

I Spectrally centered
examples
I Ideal
I Butterworth
I Gaussian
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High Pass Filters



71/84

ELEG404/604

High Pass Filtering Example
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High Frequency Emphasis Example
High frequency emphasis, a= 0.5, b= 2.0
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Correlation Example

I Correlation measures statistical
similarity

I Common application: template
matching

I Zero pad image and template
I Multiply DFTs (conjugate image

DFTs)
I Invert results
I Find peaks location


