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The Discrete Fourier Transform
The DFT is

G(u) = SMG g(x)e 2mua/M =01, .M —1.

(w)eX™e/M 0 —0,1,.. M —1.




The Discrete Fourier Transform
The DFT is

G(u) = SMG g(x)e 2mua/M =01, .M —1.
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In 2-dimensions the DFT is
G(u,v) :Z EN 0 Lo(z,y)e —2ymux/MAvoy/N) =01, .M—1;0=0,1,..N—1.

1 .
g(x,y) = MNE LN LG (u,v)e2m /Moy /N) 0 — 01, M —1,94=0,1,..N —
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Two Dimensional cosine functions
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Two Dimensional cosine functions
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Two Dimensional cosine functions
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Two Dimensional cosine functions
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Some Properties

» Translation

gla,y)e?m 0 M Glu—up)
Example: for ug = M/2

g(z,y)(=1)* < Glu—-M/2)
Example in 2D: for ug = M/2,v9 = M /2

9@y (-1 o Glu—M/2,0-M/2)
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» Translation

g(x—x0,y —y0)
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» Translation

g(x—xo,y—yo) o G(u,v)e—jQW(wou/M—l—yov/M)
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» Translation

g(a;—aro,y—yo) o G(u,v)e—j%r(xou/M—l—yov/M)

» Magnitude and Phase: Since the DFT is complex
G(u,v) = |G(u, )|V

where:

1G(u,v)] = [(Re(u,v))? + (Im(u,v))?]*/? £ Fourier spectrum

I
(u,v) = arctan (M) £ Phase angle

» Power spectrum
P(u,v) = |G(u,0)]" = [(Re(u,v))” + (Im(u,v))?]
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Centering the 2D Spectrum
Original Swapped
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Intensity plot of 2D power spectrum

Non-centered Centered
Spectrum Spectrum
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abec

FIGURE 4.26 Phase angle array corresponding (a) to the image of the centered rectangle
in Fig. 4.24(a), (b) to the translated image in Fig. 4.25(a), and (c) to the rotated image in
Fig. 4.25(c).
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abc
diiEl s

FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.
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DFT- image scaling

Stretching the image causes the spectrum to contract and vice versa

Rectangular

Pulse - - ..

o . . .
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DFT- oriented, repetitive patterns

Enlarging the image causes the spectrum to contract.

Spectrum
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DFT- image rotation

The spectrum turns in the same direction and the same amount as the image.
Rotated Rotated
157 30

W

¥ F f ’ r ¢ o "— v
SpeCtrum ..

Original
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DFT- superposition of image patterns

Broadband effects caused by straight structures, e.g. dark beam on the wall.

Spectrum
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Spectrum
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(a) Original (b) Clipped magnitude, nonordered

(¢) Log magnitude, nonordered (d) Log magnitude, ordered



Example of Image DFT (II)

» Scanning Electron Microscope (SEM)
image of 1C board

» Edges correspond to high frequencies
» Note directionality of edges
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DFT of a print pattern
Possible to remove the raster pattern by erasing the peaks in the Fourier
spectrum and reconstructing the smoothed image from the modified spectrum
using the inverse DFT.

Image
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The DFT can be redefined as

1 N—-1 ) N—-1
X[n] = N ngom[m]e—mngzwm = mz::() wixz[m],
1 N-1

T

m,n=01,--- , N—1

N-1
z[m] = X[n)emm2m /N — §™ X (]
n=0

where wy 2 e_ﬂ”/N/\/N. The time function and its spectrum are periodic:
zlm+kN] = x[m] and X[n+kN] = X|n].
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Here we have defined

wmné 1 (6—j27r/N)mn’ W — 1 ejQW/N)mn

VN ViR

and w*™" is its complex conjugate of w™". We further define an N x N

matrix
w{: :]
: : - INxN

where w™" is the element in the mth row and nth column of W.
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W is symmetric (w™" = w

wl =w

and the rows (or cqumns) of W are orthogonal:

1 N-1 )
- Z (6327r/N)mk(€—]27r/N)nk

k=0

xkm kn
(W, Wp) Z w

1N—1

_ j2m/N\(m—n)k * _ 1 m=n
N kz_:o<€ ) Omn { 0 m#n
as

> If m=n, (727/N)n=mk — 1 and (w,,,w,) =1,
» If m # n, the summation becomes:

N-1 1_(6j27r(n7m)/N)N
j2m(n—m)/N\k _ .
g) (e )" = 1 — ej2n(n—m)/N 0

We see that W is a unitary matrix (and symmetric):
W*T — W* = W—l
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Matrix Form of the 1-D DFT

Define the two N-long vectors:

X[0] 2[0]

2N —1]

Nx1 Nx1

The DFT can then be written more conveniently as a matrix-vector
multiplication:
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Matrix Form of the 1-D DFT

and

' _ X[0]
X = ’ :L |: ) (€j27r/N)mn

—W*X=W~IX
VN
z[N —1]

X[N—1]

The computational complexity of the 1-D DFT is O(N?), which, as we will
see later, can be reduced to O(N logaN) by the Fast Fourier Transform
(FFT) algorithm.
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Matrix Form of the 2D DFT
Reconsider the 2D DFT:

X[ 1 ]VZI 1 ]\421 jQWka] 7j27TnWl
x[m,nle e
\/_ Msz
X [kn]
1 ]Vz_:l / iopnl
=—= ) X'[knle 7"  for 0<m,k<N-—-1, 0<n,I<N-1
\/ano Y — ) — ) — ) —_
yAN 1 N-1 :,_mk
X'[k,n] = x[m,n]e 2" M (n=0,1,--- ,N—1)
\% Mm:()

The summation above is with respect to the row index m and the column
index n is a fixed parameter, this expression is a one-dimensional Fourier
transform of the nth column of [z], which can be written in column vector

(vertical) form as:
X', = W*x,
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Matrix Form of the 2D DFT

Putting all these N columns together, we can write
[X’o,'“ 7X/N—1} =W [x0, "+, XN-1]

or more concisely
X' =Wx

where W is a M by N Fourier transform matrix.
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Matrix Form of the 2D DFT

X[k, = \FZ o X'[k,n]e” J27% The sum is with respect to the column
index n and the row index number k is fixed, this is a one-dimensional Fourier

transform of the kth row of X', which can be written in row vector
(horizontal) form as

XL =X'tWT, (k=0,---,N—1)
Putting all these NV rows together, we can write

xj [ Xt

(W is symmetric.: WT = W), or more concisely

X =X'W
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Matrix Form of the 2D DFT

But since X’ = Wx, we have
X=WxW

Hence the 2D DFT can be implemented by transforming all the rows of x and
then transforming all the columns of the resulting matrix. The order of the
row and column transforms is not important.

Similarly, the inverse 2D DFT can be written as

x=W"'XW*
Again note that W is a symmetric Unitary matrix:
Wfl _ W*T _ W*

The complexity of 2D DFT is O(N?) which can be reduced to O(N2logaN) if
FFT is used.



ELEG404/604

The Fast Fourier Transform - FFT (1D)
The DFT pair is given by

N-1 o
X (k)= x(n)e /N k=0,....N—1
n=0

_ LN e ¥ o N1
x(n)—N > X(k)e n=0,...,
k=0

The computational complexity for each point of the DFT is:
» (N —1) Complex multiplications
» (N —1) Complex additions
Hence for N points in the sequence we have:
» O[N(N —1)] Complex multiplications
» O[N(N —1)] Complex additions

Consider the decimation in time FFT algorithm.

(2)
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Divide the DFT in even and odd terms:

N2t 2=t (2r+1)k
X(k)y= Y x@)WF+ S z@r+ )Wy
r=0 r=0
(N/2)—1 (N/2)-1
= > c(2rYWEE 4 WE > ox(2r+ 1wk
r=0 r=0
Notice W¥* = eI N2k — e_j(f\%) W N2
Hence
(N/2)—-1 (N/2)—1

X(k)= > z@)Wija+Wy > z@r+D)Wijy k=01,

r=0 r=0

%—pointDFT %—poz’nt DFT

X(k)=Gk)+WEH()  k=0,1,--- ,N—1
But G(k) and H (k) are periodic in .
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For instance
X(1)=G)+WyH(1) (N=8)
X (5) = G(5)+ WX H(5) (6)
=G(1)+WRH(1)
Each of the G(k) and H(k) are N/2 DFT's; however, these can be computed

using N/4 point DFT's and so on.
For instance the N/2 point DFT:

Can be found as:
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FIGURE 10-4. Flow graphs showing the decimalion-in-lime decomposilion of an
N-point DFT computation (N = 8).
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It self each 2 point DFT:

=
w(¢) -

=1

S

If N =2° (a power of 2), then we have logs N = b decompositions. At each
stage we have N complex multiplications and additions. Hence the total
number of complexity operations is:

» O(NlogaN) multiplications.

» O(NlogaN) additions
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FIGURE 10-5. Complete low graph lor an FFT developed by applying decimalion
inlime (N = 8).
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CALCULATION OF THE 2-D DFT

1. Direct Calculation

The direct calculation of the 2-D DFT is the double sum:

N1—1Na—1
kl,kz Z Z nl,TLQ w%klw?@kz
ny= 07’L2 0 (7)
0<k <N -1
0<ky<Ny—1

—J27
where wy = ¢~ The evaluation of one sample of X (ki,k2) requires NN

complex multiplications and N /N5 complex additions.

Thus, since there are N1 Ny points. The complexity is in the order of [NZN2].
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2. Row-Column Decomposition

The 2-D DFT can be written as:

Ni—1 [ Na—1
X(ki,ko)= > [ > x(nl,ng)w?\éb] wx,llkl

n1=0 [ no=0

G(nl 7k2)

Ni—1
X(kl,kg): Z G(nl,k2>w}%kl

n1=0

(8)
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Hence

o, A 5 i3
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The complexity here is as follow:

N1(1D Napt. DETy) + No(1D Ny pt. DFT) = Ny N2 + Ny N?
or N1N2<N1+N2)

3. Row column FFT

If N1 and N3 are powers of 2 then each 1D DFT can be computed with a
1D FFT. Recall they each Npt1D FFT has a complexity Nlog N.

Hence, the complexity is reduced to:

NiNalog No+ NaNjlog N1 = N1 Nalog(NaNNy) (10)
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To get a feeling for a numerical savings involved consider a
1024 x 1024 2D DFT.
Clirect = 20 ~ 102 complex multiplications
Ch jedirect = 2°1 ~ 107 complex multiplications

Crjerrr =10 %22 ~ 107 complex multiplications

If it would take 1 day to process a 2D direct, then it would take 1 sec with the
r/c FFT!
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Linear Convolution Via DFT

» Recall in one dimension

N-1 _
X(k)y= > w(n)e 2N =01, N-1
n=0

» The N x N unitary DFT matrix W is given by

W { o ]
: . “INxN
» Circular convolution Theorem: If
N-1
zo(n) =Y h(n—k)ezi1(k), 0<n<N-1
k=0
then
DFT{xQ(n)}N = DFT{h(n)}NDFT{xl(n)}N
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Linear Convolution via DFT (1)

[inz) fim)

e

CeeEsT=

oft: m — i : "
convolution of 5
two discrete hinr)
functions. Right:
convolution of the
same functions,
taking into
account the
implied d
periodicity of the hi
DFT. Note in (j)
how data from
adjacent periods

corrupt the result
of convolution.
hix — m) h(x — m)

o

=

n

i

flx)=gix)

LU TR

oo M

Fourier iransfomm
com putation
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Linear Convolution via DFT Algorithm

The linear convolution of two sequences {h(n)} -} and {z(n)}"=}' can be

obtained by the following algorithm:
1. Define M > P+ N
2. Define h(n) and #(n) as the M zero extended sequences of h(n) and
x(n) respectively
3. Compute Y (k) = H(k)X (k), where H(k) = DFT{h(n)}s and
X (k) = DFT5(n) by
4. Take the inverse DFT of Y (k) to obtain y(n)
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Two Dimensional DFT

The two dimensional DFT of an NV x N image is a separable transform defined

a5 N—-1N-1
X(u,0)= Y flm,n)wkwll, 0<kI<N-1
m=0 n=0

and the inverse transform is defined as

1 N—-1N-1

x(m,n) = e >N X (u, v)wy™wy™, 0<m,n < N—1.
k=0 1=0
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Two Dimensional Linear Convolution

» The DFT of the two dimensional circular convolution of two arrays is the
product of their DFTs, i.e., if

N-1N-1
ymn)= > > him—m'n—n')u(m' n'), 0<mn<N-1
m/=0n'=0
then
DFT{y(m,n)}n = DFT{h(m,n)}NDFT{u(m,n)}n
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Two Dimensional Linear Convolution

» The DFT of the two dimensional circular convolution of two arrays is the
product of their DFTs, i.e., if

N—-1N-1
ymn)= > > him—m'n—n')u(m' n'), 0<mn<N-1

m’=0n'=0

then
DFT{y(m,n)}nx = DFT{h(m,n)} yDFT{u(m,n)}n

» Extensions to linear filtering can be done using zero padding
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Two dimensional Example of Zero Padding

Incorrect

i Tlustration of the
A One of the i need for function

l Correct original images padding.

b}

(a) Result of

performing 2-1D

|
t A
T convolution
1 < without padding.
i (b} Proper
] ¢
i Zero padding function padding.
] Missing, (¢) Correct
i convolution
i S S result.
; B+D-1 - } 0o |
Result of illering in the frequency domain without Propesly extended (padded) image
properly padding the inputimages
4 Correct
P=A~+C-1
X Qg=B+D-1
l« o |

Result of fillering in the frequency domain with
peoperly padded input images.
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Example of Image DFT (II)

—_—

(centered) spectrum

L spatial signal

X

We can center the DFT by premultiplying image U by the array (—1)™*"

N—-1N-1
X(k+N/2,l+N/2)=— Z Z — 1)kl

mOn



|deal Low Pass Filters (1)
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H (. v) Hu,v)
t /
s 1
1
- S o .
[t v D(u.v)
i Dy
u
abe
FIGURE (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an

image. (¢) Filter radial cross section.
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|deal Low Pass Filters (Il)

f(x) |F(u)] ab
AK 4 cd
M FIGURE  (a)A
J— discrete function
pouts of M points, and
(by its Fourier
spectrum. (c) A
discrete function
: 2 »X - - —w 1 With twice the
M points f M points number of
nonzero points,
|F(u)| and (d) its Fourier
2 AK . spectrum.
MW
I(x)
2K points
A
mN\ﬂ/\[\ ﬂ/\/\/\/\/\m "

M points —— x k M points




Energy Compaction (1)

‘..-....

daaaaaaa

Sl

FIGURE {a) An image of size 500 x 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radii values of 5, 15, 30, 80, and 230, which enclose 92.0,
94.6,96.4,98.0. and 99.5% of the image power, respectively.



Energy Compaction (Il)
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Filtering in the Frequency Domain

Frequency domain filtering operation

Fourier
transform

Filter
function
Huw, v)

Inverse
Fourier
transform

Hiw v)F(u v)

Pre-
processing

Post-
processing
flx. y) g(x. y)
Input Enhanced
image

image
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Low Pass and High Filtering Example

H(u,v)
)

//_ o -

N\

DC shifted highpass
cd filter output

FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b) Result of lowpass filtering the image in Fig. 4.4(a).
() A two-dimensional highpass filter function. (d) Result of highpass filtering the image in Fig. 4.4(a).

ab
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Low Pass Filters

Lowpass filters. Dy is the cutoff frequency and n is the order of the Butterworth filter.

Ideal Butterworth Gaussian

H(u,v) = 1 1r D(u,v) = Dy O 71_0 H(uv) = e- D20k
0 if D(u,v) = Dy 1+ [D(u, v)/Dy]>"

» D(u,v) is the distance from point (u,v) to the origin
» |deal filter can be implemented digitally but has undesired effects
» Butterworth filter is a smooth approximation to ideal filter

» Gaussian filter is a smooth function both in space and frequency domains
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Butterworth Low Pass Filter
Frequency response:

1
H(u,v)
)
1+ [D(u,v)/Do]*"
» Order: n, Cutoff frequency: Dy
» Smooth transfer function
» Minimizes ringing
» Order controls transition bandwidth
H(u, v) H(u, v)
i )
—? 10}
\ 05
U=~ ~p
| =Du, v)
abc
FIGURE (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an

image. (¢) Filter radial cross sections of orders 1 through 4.



Butterworth Filter Example

>
>
>

>

Size 500 x 500
Filter order:2

Dy =5,15,30,80
and 230
Significantly
reduced ringing
compared to ILPF
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Spatial Domain Representation of Butterworth Filter

A N

[ \

[\ [\ / \

J o ] '
abed

» Cutoff frequency:5

» Increasing filter order: 1,2,5 and 20

» Impulse response spreads, oscillations introduced
» Smoothing and ringing introduced
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Gaussian Low Pass Filter

H{u, v) Hiu, v)
N i
-t 1.0
Dy=10
0.667 | 4 Dg=20
/ ~Dg=40
XN\ ~Dy=100
- '3
1
"
abec

= D{u, v)
FIGURE

(a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of Dy.

Frequency response:

H(u,v) = exp—D?(u,v)/2D3

» Spatial domain also a gaussian function
» No ringing

» Less cutoof/transition control



> Dy =5,15,30,80

and 230

» Not as much
smoothing

» More gradual

transition band

» No ringing

Gaussian Low Pass Filter Examnle
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Application Example

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recoanize a date using "0Q"
as 1900 rather than the ygar

» Poor resolution sampled text

» Scanned material, faxes
» Broken text

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yEar

Cd|

» Result of Gaussian low pass filtering: broken character segments are joined
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abc

FIGURE (a) Image showing prominent horizontal scan lines. (b) Result of filtering using a GLPF with
Dy, = 50, (¢) Result of using a GLPF with [y, = 20 (Original image courtesy of NOAA.)



ELEG404/604




ELEG404/604

Spectral Representations of Sharpening Filters

» Simple highpass
representation

Hpp(u,v) =1 — Hjp(u,v)

» Spectrally centered
examples
> |deal
» Butterworth
» Gaussian

Hiwv)

- DHer, w)

Hiu
+210

Y

Hiu

§
n
"
+ o
—— vy
- . /
N, v)
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High Pass Filters

Highpass filters. D is the cutoff frequency and # is the order of the Butterworth filter.

Ideal Butterworth Gaussian

1 if D(u, v)
0 it D(u, v) >

D, !

Hu,v) = ——————— e [ wa Duw)/2D5
Dy %) L + [Dy/D(u. )" ) i

Hu, v) :{

abe

FIGURE Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain
highpass filters, and corresponding intensity profiles through their centers.
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High Pass Filtering Example

Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with D, = 30, 60, and 160.

Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with D, = 30, 60, and 160.
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High Frequency Emphasis Example
High frequency emphasis, a = 0.5, b= 2.0

ab

¢ d

(a) A chest X-ray
image. (b) Result
of Butterworth
highpass filtering.
(c) Result of high-
frequency
emphasis filtering.
(d) Result of
performing
histogram
equalization on
(c). (Original
image courtesy
Dr. Thomas

R. Gest, Division
of Anatomical
Sciences,
University of
Michigan Medical
School.)




Correlation Example

v

v

Correlation measures statistical
similarity

Common application: template
matching

Zero pad image and template
Multiply DFTs (conjugate image
DFTs)

Invert results

Find peaks location
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