

ELEG404/604: Imaging & Deep Learning Gonzalo R. Arce

Department of Electrical and Computer Engineering University of Delaware

CMOS Sensors and Color Arrays

Camera Pixel Pipeline

Example Pipeline

FIAWARE

୬ ବ. ୧୦ / 44

ж

Outline

- converting photons to charge
- getting the charge off the sensor
 - CCD versus CMOS
 - analog to digital conversion (ADC)
- supporting technology
 - microlenses
 - antialiasing filters
- sensing color

э

Quantum Efficiency

୬ ୯.୦ 6/44

- the current from one electron is small (10-100 fA)
 - so integrate over space and time (pixel area × exposure time)
 - larger pixel × longer exposure means more accurate measure
- typical pixel sizes
 - Sony RX100: $2.4\mu \times 2.4\mu = 6\mu^2$
 - Canon 5D III: $6.3\mu \times 6.3\mu = 40\mu^2$

୬ < େ 8/44

э

Canon Sensors

- Size:
- Megapixels:
- Pixel size:
- Readout:
- Frame Rate:

- 29.35 x 18.88mm
- ► 250MP
- ► 1.5 µm
- Rolling shutter
- ► 5 fps

Canon EOS R3

- ▶ 38.1 x 20.1mm
- ► 24.1MP
- ► 5.94 µm
- Mechanical or electronic shutter
- 30 fps (MS), 60 fps (ES)

CMOS versus CCD Sensors

シマで 10/44

Analog to Digital Conversion (ADC)

- flash ADC
 - voltage divider
 - comparators
 - decoder
 - for n bits requires 2ⁿ comparators
- practical systems use a different architecture: pipelined ADC
- recent sensors have one ADC per column of pixels

のへで 12/44

ъ

Spatio-Temporal Prefiltering in Photography

- integrating light over an area at each pixel site instead of point sampling serves two functions:
 - captures more photons, to improve *dynamic range*
 - convolves the image with a prefilter, to avoid *aliasing*
- microlenses gather more light <u>and</u> improve the prefilter
 microlenses ensure that the *spatial prefilter* is a 2D rect of width roughly equal to the pixel spacing
- integrating light over the exposure time does the same:
 - captures more photons
 - convolves the scene with a *temporal prefilter*, roughly a 1D rect, creating motion blur if the camera or scene moves

Marc Levoy

However, a Rect is not an Ideal Pre-Filter

- as you know, convolving a focused image by a 2D rect (a 1D rect is defined at left above) of width equal to the pixel spacing is equivalent to computing the average intensities in the squares forming each pixel
- assuming such a 2D rect, a narrow angled stripe object will produce for row A the intensities shown in plot I_A, rising quickly, staying constant for a while, then dropping; the resulting ropey appearance is aliasing
- if this were a film and each frame were a 1D rect over time, a small object would appear to move quickly, then pause, then move again

Antialiasing Filters

- improves on non-ideal prefilter, even with microlenses
- typically two layers of birefringent material
 - splits 1 ray into 4 rays
 - operates like a 4-tap discrete convolution filter kernel

<ロ > < 母 > < 臣 > < 臣 > 臣 の Q の 15/44

Removing the Antialiasing Filter

(maxmax.com)

anti-aliasing filter removed

-▲□▶▲@▶▲콜▶▲콜▶ 볼 키�� 16/44

normal

Removing the Antialiasing Filter

anti-aliasing filter removed normal

(maxmax.com)

<□ ▶ < @ ▶ < E ▶ < E ▶ E の < 17/44

Color

- + silicon detects all visible frequencies well
- can't differentiate wavelengths after photon knocks an electron loose
 all electrons look alike
- must select desired frequencies before light reaches photodetector
 block using a filter, or separate using a prism or dichroic
 - block using a inter, of separate using a prism of
- 3 spectral responses is enough
 - a few consumer cameras record 4
- silicon is also sensitive to near infrared (NIR)
 - most sensors have an IR filter to block it
 - to make a NIR camera, remove this filter

- James Clerk Maxwell, 1861
 - of Maxwell's equations
 - 3 images, shot through filters, then simultaneously projected

୬९୯ 19/44

ъ

Sergey Prokudin-Gorsky, Alim Khan, emir of Bukhara (1911)

э

Sergey Prokudin-Gorsky, Pinkhus Karlinskii, Supervisor of the Chernigov Floodgate (1919)

୬९୯ 23/44

э

First Color Movie Technology?

Technicolor

Toll of the Sea (1922)

Phantom of the Opera (1925)

- beam splitter leading through 2 filters to two cameras
- + 2 strips of film, cemented together for projection

Technicolor

First Consumer Color Film?

Color Sensing Technologies

- + field-sequential just covered
- + 3-chip
- vertically stacked
- color filter arrays

- high-quality video cameras
- prism & dichroic mirrors split the image into 3 colors, each routed to a separate sensor (typically CCD)
- no light loss, as compared to filters (which absorb light)
- expensive, and complicates lens design

ъ

Foveon Stacked Sensor

- longer wavelengths penetrate deeper into silicon, so arrange a set of vertically stacked detectors
 - top gets mostly blue, middle gets green, bottom gets red
 - no control over spectral responses, so requires processing
- fewer moiré artifacts than color filter arrays + demosaicking
 - but possibly worse noise performance, especially in blue

Color Filter Arrays

(Stone)

Wavelength

Example of Bayesian Mosaic Image

Small fan at Stanford women's soccer game

(Canon 1D III)

Example of Bayer Mosaic Image

<□▶ < @ ▶ < E ▶ < E ▶ E の < 33/44

Before Demosaicking

< □ ▶ < @ ▶ < E ▶ < E ▶ ○ E ∽ へ C 34/44

WELAWAR

Demosaicking

- linear interpolation
 - average of the 4 nearest neighbors of the same color
- cameras typically use more complicated scheme
 - try to avoid interpolating across contrasty edges
 - demosaicking is often combined with denoising, sharpening...
- + due to demosaicking, 2/3 of your data is "made up"!

Color Filter Arrays

Bayer Color filter array:

- Why more green pixels?
- The human eye is more sensitive in the middle of the visible spectrum

Multispectral Filter Array:

- Obtains data using more wavelengths.
- Multispectral imaging

Image filtering and demosaicking process

A closer look to image filtering

Repeat for the other bands

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 38/44

Demosaicking

There exist many methods for demosaicking

- Linear interpolation
 - average of the 4 nearest neighbors of the same color
- Cameras typically use a more complicated scheme
- Demosaicking is often combined with denoising, sharpening...
- Due to demosaicking, a big portion of your data is "made up"

Interpolation

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○ 41/44

Calculate the missing pixel value by a combination of the surrounding pixels and their weights

Case A and C:

$$\tilde{I}_{i,j}^{k} = \frac{\tilde{I}_{i,j}^{k^{N}} W^{N} + \tilde{I}_{i,j}^{k^{S}} W^{S} + \tilde{I}_{i,j}^{k^{W}} W^{W} + \tilde{I}_{i,j}^{k^{E}} W^{E}}{W^{N} + W^{S} + W^{W} + W^{E}}$$

Case B and D:

$$\tilde{I}_{i,j}^{k} = \frac{\tilde{I}_{i,j}^{k^{NW}} W^{NW} + \tilde{I}_{i,j}^{k^{SE}} W^{SE} + \tilde{I}_{i,j}^{k^{NE}} W^{NE} + \tilde{I}_{i,j}^{k^{SW}} W^{SW}}{W^{NW} + W^{SE} + W^{NE} + W^{SW}}$$

Reconstruction results 8 bands

Reference

Reconstruction

Reconstruction results 5 bands

Reference

Reconstruction

Reconstruction errors

Reference

Reconstruction

Reference

Reconstruction

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 クペペ 44/44

Multispectral Cameras

Use cases,

- Precision agriculture
- Art conservation ...

Current systems are,

- Bulky & expensive
- Limited accessibility
- Hardware constraints
- Expertise to operate

consequently low deployability.

Color Coded Aperture (CCA)

Our prototype,

array

- 4 color coded aperture
- 1 CCA pixel = 16 square pixel units of photosensor

4 color composite code aperture view from raw image

700

Exposure : Separated Process : E-6/CR-56

600

Cyan

Forward Model

Composite modulation of 3D multispectral image

 ${oldsymbol \varPhi}$ modulation of Bayer filter + CCA

Measurement (Y) (6024 x 4020 pixels)

Forward Model

The measurement model is given by:

Y = HX + n

where:

Y = Measurement from DSLR (vectorized)

 $\begin{array}{c} X \\ H \\ n \end{array}$ The inverse reconstruction is an ill-posed problem !

Prototype:

 $\lambda=12$ & 24 bands, 430-660 nm $y=6024 \ \mathrm{px}$ $x=4020 \ \mathrm{px}$

Composite camera response $\Phi(x,y,\lambda)$

5

Inverse Problem

Denoising Diffusion Probabilistic Models

[Ho, et al. (2020) NIPS, 33, 6840-6851.]

$$\min_{x} \{ \|\mathbf{y} - \mathbf{H}x\|_2 + \zeta . TV \|x\|_{3D} \}$$

 $X_0 \rightarrow X_{t-1} \rightarrow X_t \rightarrow \cdots \rightarrow X_T$ $Unet G(x_t, t)$

DDPM trained on,

- 128 x 128 x 24 datacube 430-660 nm
- 128 x 128 x 12 datacube 430-660 nm
- Open-source multispectral datasets
- 4 Nvidia V100 GPU's

Training independent of hardware dependent variables.

Algorithm Reconstruction of measurementRequire: $T = 1000, \tau_t, \zeta$ Require: H: Sensing matrixRequire: y: Measurement1: $x_T \leftarrow \mathcal{N}(0, \mathbf{I})$ 2: for t = T - 1 to 0 do3: $x_0, x'_{t-1} \leftarrow G_{\theta}(x_t, t)$ 4: $x_{t-1} \leftarrow x'_{t-1} - \tau_t \nabla_{x_t} [||\mathbf{y} - \mathbf{H}x_0|| + \zeta \cdot TV_{3D}(x_0)]$ 5: end for6: return \hat{x}_0

Results - Simulation

Test set was formed with 5 random multispectral images from an open-source database.

- 1. Simulate measurement \mathbf{Y}_{sim} with forward model.
- 2. Reconstruct multispectral image \mathbf{x}_{t} with DDPM.
- 3. Evaluate Ground truth against reconstruction.

Forward model

$$Y_{\rm sim} = HX_{\rm gt}$$

Inverse Problem with Diffusion

 $\min_{x_t} \|HG(x_t, t) - Y_{\rm sim}\|^2 + T_v \|G(x_t, t)\|_{\rm 3D}$

 $G(x_t, t)$: Denoised datacube at timestep t

PERFORMANCE OF 5 SIMULATED RECONSTRUCTIONS OF 24 CHANNELS.

	Character	Cloth3	Butterfly2	Tshirts	Fan	Avg.
PSNR(dB)	35.12	31.94	34.11	36.26	33.28	34.14
SSIM	0.94	0.92	0.94	0.96	0.96	0.94

Results - The Mother of Moses

8

RGB image of scene

Reconstructed RGB

Simeon Solomon's painting, The Mother of Moses from Delaware Art Museum.

- 24 color multispectral image reconstructed
- 4 color CCA
- Canon EOS R100 with 24-105mm lens and tripod setup

Results - The Mother of Moses

9

- Spectral measurements made with single-spot diffuse fiber-optic reflectance spectroscopy
- Intimate pigment mixtures' diffuse reflectance responses with the current CCA
- Paintings have nonlinear reflectance response unlike classical linear mixing.

Conclusion

- Low cost and easy to use DSLR camera for multispectral imaging.
- Generalized inverse model.
- Hardware changes without retraining DDPM allowing to optimize CCA.
- Open source DDPM weights for other inverse problem like superresolution and inpainting of multispectral

images. (12 & 24 bands in 430-660nm)

[usa.canon.com]

