
ELEG404/604: Digital Imaging &
Photography

Gonzalo R. Arce
Department of Electrical and Computer Engineering

University of Delaware

Chapter IV

1/53

ELEG404/604

IMAGE SAMPLING
Discrete-time image processing requires the representation of images by a sam-
pled array on a 2-D Lattice. There are several practical methods of sampling.
Modern devices, such as charged-coupled devices, contain an array of photode-
tectors, and a set of electronic switches:

where charge couple devices (CCDs) consist on an array of detectors

Common resolution range from (256)2←→ (2000)2

2/53

ELEG404/604

Although images are not generally band limited, we can approximately represent
them by bandlimited signals. Let g(x,y) be a 2-D continuous image. Rectangular
sampling is modelled as:

Assuming g(x,y) is band limited,G(u,v) = 0 for u > Bx and v > By

3/53

ELEG404/604

The Fourier transform of the sampled image is

F{gs(x,y)} = F

{
g(x,y)

∑
m

∑
n
δ(x−mX,y−uY)

}
= G(u,v)∗ 1

X

1
Y

∑
m

∑
n
δ
(
u−m

X
,v− n

Y

)

= 1
XY

∑
m

∑
n
G
(
u−m

X
,v− n

Y

)
= 1

XY

(
rep 1

X
1
Y

(G(u,v)
)

3/53

ELEG404/604

The Fourier transform of the sampled image is

F{gs(x,y)} = F

{
g(x,y)

∑
m

∑
n
δ(x−mX,y−uY)

}
= G(u,v)∗ 1

X

1
Y

∑
m

∑
n
δ
(
u−m

X
,v− n

Y

)
= 1

XY

∑
m

∑
n
G
(
u−m

X
,v− n

Y

)
= 1

XY

(
rep 1

X
1
Y

(G(u,v)
)

4/53

ELEG404/604

Representing G(u,v) as

then, the spectra of gs(x,y) is seen as the replication of G(u,v):

5/53

ELEG404/604

To prevent aliasing, we require Bx <
1

2X and By <
1

2Y .
In order to reconstruct the continuous signal, we can filter Gs(u,v) by the LPF
(ideal):

H(u,v) =
{
XY |v|< 1

2Y , |u|<
1

2X
0 else

The space domain filter is obtained as :
h(x,y) = sinc[x

X ,
y
Y].

6/53

ELEG404/604

Hence,

ĝ(x,y) = gs(x,y)∗ sinc[xX ,
y
Y]

=
[∑
m

∑
n

g(mX,nY)δ(x−mX,y−uY)
]
∗ sinc

[x
X
,
y

Y

]
ĝ(x,y) =

∑
m

∑
n

g(mX,nY)sinc
(
x−mX
X

,
y−nY
Y

)

The ideal LPF is difficult to obtain, hence, other filters are generally designed. For instance,
if we are to obtain a continuous image by proyecting into a CRT display, we are effectively
replacing the 2-D function by a Gaussian function

p(x,y) = 1
2πσ2 exp[−(x2+y2)

2σ2]

Hence the reconstructed image is:

ĝ(x,y) =
∑
m

∑
n

g(mX,nY)
(

1
2πσ2

)
exp

[
−(x−mX)2− (y−nY)2

2σ2

]

6/53

ELEG404/604

Hence,

ĝ(x,y) = gs(x,y)∗ sinc[xX ,
y
Y]

=
[∑
m

∑
n

g(mX,nY)δ(x−mX,y−uY)
]
∗ sinc

[x
X
,
y

Y

]
ĝ(x,y) =

∑
m

∑
n

g(mX,nY)sinc
(
x−mX
X

,
y−nY
Y

)

The ideal LPF is difficult to obtain, hence, other filters are generally designed. For instance,
if we are to obtain a continuous image by proyecting into a CRT display, we are effectively
replacing the 2-D function by a Gaussian function

p(x,y) = 1
2πσ2 exp[−(x2+y2)

2σ2]

Hence the reconstructed image is:

ĝ(x,y) =
∑
m

∑
n

g(mX,nY)
(

1
2πσ2

)
exp

[
−(x−mX)2− (y−nY)2

2σ2

]

7/53

ELEG404/604

The effect is the introduction of aliasing. To illustrate, consider a slice of
Gs(u,v) and Ĝ(u,v).

These concepts are further discussed, in the interpolation and decimation of
images, where the physical size of the images is varied by keeping the same
spatial resolution. These are very important issue in comercial applications.

7/53

ELEG404/604

The effect is the introduction of aliasing. To illustrate, consider a slice of
Gs(u,v) and Ĝ(u,v).

These concepts are further discussed, in the interpolation and decimation of
images, where the physical size of the images is varied by keeping the same
spatial resolution. These are very important issue in comercial applications.

8/53

ELEG404/604

Aliasing

9/53

ELEG404/604

Example of Aliasing

I Example of alliasing error in a sampled
image

I Spurious spatial frequency components
I It creates low-spatial-frequency

components in the reconstruction
I Known as moiré patterns

10/53

ELEG404/604

Aliasing

11/53

ELEG404/604

Aliasing

12/53

ELEG404/604

Aliasing

Courtesy of Scientific Volume Imaging - http://www.svi.nl/antialiasing

13/53

ELEG404/604

Aliasing in Photography

© Marc Levoy

Aliasing in photography
✦ a lens creates a focused image on the sensor

✦ suppose the sensor measured this image at points on a
2D grid, but ignored the imagery between points?

• a.k.a. point sampling

35

14/53

ELEG404/604

Simulation of Point Sampling

© Marc Levoy

Simulation of point sampling

36
(Classic Media) digital image, 1976 x 1240 pixels

15/53

ELEG404/604

Simulation of Point Sampling

© Marc Levoy

Simulation of point sampling

37 every 4th pixel in x and y, then upsized using pixel replication

16/53

ELEG404/604

Prefiltering to Avoid Aliasing

© Marc Levoy

Prefiltering to avoid aliasing
✦ before sampling, remove (or at least attenuate) sine waves

of frequency greater than half the sampling rate

38

fcutoff <
1
2
fsampling

unfiltered prefiltered partially
pre-filtered

replace removed
waves with their
average intensity
(gray in this case)

17/53

ELEG404/604

Method for Prefiltering

© Marc Levoy

Methods for prefiltering
✦ method #1: frequency domain

1. convert image to frequency domain
2. remove frequencies above fcutoff (replace with gray)
3. convert back to spatial domain
4. perform point sampling as before

• conversions are slow
• not clear how to apply this method to images as they enter a camera

✦ method #2: spatial domain
1. blur image using convolution
2. perform point sampling as before

• direct and faster
• equivalent to method #1 (proof is beyond scope of this course)

39

18/53

ELEG404/604

Convolution in 1D

© Marc Levoy

Convolution in 1D

✦ replace each input value with a weighted sum of itself
and its neighbors, with weights given by a filter function

40

f [x]∗ g[x] = f [k] ⋅ g[x − k]
k=−∞

∞

∑

1 3 0 4 2 1

2 1

output f [x]∗ g[x]

input signal f [x]

filter g[x]

19/53

ELEG404/604

Convolution in 1D

© Marc Levoy

Convolution in 1D

41

1 3 0 4 2 1

1 2

7output f [x]∗ g[x]

f [x]∗ g[x] = f [k] ⋅ g[x − k]
k=−∞

∞

∑

input signal f [x]

✦ replace each input value with a weighted sum of itself
and its neighbors, with weights given by a filter function

notice that the filter
gets flipped when applied

20/53

ELEG404/604

Convolution in 1D

© Marc Levoy

Convolution in 1D

42

1 3 0 4 2 1

1 2

f [x]∗ g[x] = f [k] ⋅ g[x − k]
k=−∞

∞

∑

7 3output f [x]∗ g[x]

input signal f [x]

✦ replace each input value with a weighted sum of itself
and its neighbors, with weights given by a filter function

21/53

ELEG404/604

Convolution in 1D

© Marc Levoy

Convolution in 1D

43

1 3 0 4 2 1

1 2

f [x]∗ g[x] = f [k] ⋅ g[x − k]
k=−∞

∞

∑

7 3output f [x]∗ g[x]

input signal f [x]

8

✦ replace each input value with a weighted sum of itself
and its neighbors, with weights given by a filter function

22/53

ELEG404/604

Prefiltering Reduce Aliasing

© Marc Levoy

Prefiltering reduces aliasing

46

every 4th pixel in x and y convolved by 4×4 pixel rect,
then sampled every 4th pixel

23/53

ELEG404/604

Prefiltering & Sampling in Photography

© Marc Levoy

Prefiltering & sampling in photography
✦ photography consists of convolving the focused image

by a 2D rect filter, then sampling on a 2D grid
• each point on this grid is called a pixel

✦ if convolution is followed by sampling, you only need to
compute the convolution at the sample positions

• for a rect filter of width equal to the sample spacing,
this is equivalent to measuring the average intensity
of the focused image in a grid of abutting squares

• this is exactly what a digital camera does

✦ the rect width should roughly match the pixel spacing
• much narrower would leave aliasing in the image
• much wider would produce excessive blurring in the image

47

24/53

ELEG404/604

Aliasing

Courtesy of Scientific Volume Imaging - http://www.svi.nl/antialiasing

25/53

ELEG404/604

Aliasing

26/53

ELEG404/604

Interpolation
I Estimating intermediate values of sampled function
I Obtain estimate of image I(x,y) at any continuos position (x,y) ∈ R2

Nearest-neighbor interpolation
I Round coordinate x to the closest integer u0 and use g(u0) as the value
ĝ(x)

ĝ(x) = g(u0)
where u0 = round(x) = bx+0.5c

27/53

ELEG404/604

Linear Interpolation
Estimated ĝ(x) is the sum of the two closest samples g(u0) and g(u0 +1), with u0 = bxc,

ĝ(x) = g(u0)+(x−u0) · (g(u0 +1)−g(u0))
= g(u0) · (1− (x−u0))+g(u0 +1) · (x−u0)

Result is a piecewise linear function

28/53

ELEG404/604

Nearest-neighbor interpolation in 2D
Î(x0,y0) = I(u0,v0)
with u0 = round(x0) = bx0 +0.5c

v0 = round(y0) = by0 +0.5c

Bilinear interpolation The 2D counterpart to the linear interpolation is the so-called
bilinear interpolation

(a) Original. Image enlargement (8x), (b) nearest neighbor, (c) bilinear interpolation.

29/53

ELEG404/604

Bilinear Interpolation
For (x0,y0). (a) E and F are computed by linear interpolation in the horizontal direction. E, F are
interpolated in the vertical direction.

A = I(u0,v0)
B = I(u0 + 1,v0)
u0 = bx0c

C = I(u0,v0 + 1)
D = I(u0 + 1,v0 + 1)
v0 = by0c

E = A + (x0−u0) · (B−A)
E = A + a · (B−A)
F = C + (x0−u0) · (D−C)
F = C + a · (D−C)

30/53

ELEG404/604

Interpolation

Original

Bilinear Bicubic

Nearest

Neighbor

31/53

ELEG404/604

© Marc Levoy

Upsizing by 16:1

51

nearest neighbor
(a.k.a. pixel replication)

bilinear

bicubic

32/53

ELEG404/604

© Marc Levoy

Downsizing by 1:6

52

nearest neighbor
(point sampling)

aliasing!

bicubic

33/53

ELEG404/604

© Marc Levoy

Upsizing by 16:1

51

nearest neighbor
(a.k.a. pixel replication)

bilinear

bicubic

34/53

ELEG404/604

Zero order interpolation (zero order hold)

f̂c(x,y) = f(n1,n2)

n1 = Round to int
(
x

T1

)
n2 = Round to int

(
y

T2

)
This is, nearest pixel
I Typical application: Zoom by factor of two.
I Zero order interpolation: pixel replication.

35/53

ELEG404/604

You can also do this with mask:
I Take n1×n2 image:  − − − −

− − − −
− − − −


I Interlace with zeros: 

− 0 − 0 − 0 − 0
0 0 0 0 0 0 0 0
− 0 − 0 − 0 − 0
0 0 0 0 0 0 0 0
− 0 − 0 − 0 − 0


I Convolve with

H =
(

1 1
1 1

)

36/53

ELEG404/604

Can also do by a 2 zooming (with bilinear interpolation) as convolution
I Create a 2N1×2N2 0-interlaced image.

· 0 · 0 ·
0 0 0 0 0
· 0 · 0 ·
0 0 0 0 0
· 0 · 0 ·


.

I Convolve with the kernel:

H =

 1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4


.

37/53

ELEG404/604

P th Order Interpolation
Another way to do higher order interpolation:
I Interlace image with p 0′s

i.e. p= 2  x x x
x x x
x x x


. 

x 0 0 x 0 0 x 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
x 0 0 x 0 0 x 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
x 0 0 x 0 0 x 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


.

38/53

ELEG404/604

Convolve new interlaced image with

H =

 1/4 1/2 1/2
1/2 1 1/2
1/4 1/2 1/4


p times.

This gives pth order interpolation.

39/53

ELEG404/604

Interpolation

http:www.paris-26-gigapixels.comindex-en.html

40/53

ELEG404/604

41/53

ELEG404/604

42/53

ELEG404/604

Images with a Billion Pixels

Why is there no gigapixel camera today?

43/53

ELEG404/604

Is it image sensor resolution?

Assume 1 micron pixels (Fife et al 08)

44/53

ELEG404/604

Is it image sensor resolution?

45/53

ELEG404/604

A ball lens gigapixel camera

46/53

ELEG404/604

Proof of concept

47/53

ELEG404/604

Proof of concept: Image Quality

48/53

ELEG404/604

A single element design

49/53

ELEG404/604

A single element design

50/53

ELEG404/604

51/53

ELEG404/604

52/53

ELEG404/604

53/53

ELEG404/604

