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Image Enhancement in the Spatial Domain
I Algorithms for improving the visual appearance of images
I Gamma correction
I Contrast improvements
I Histogram equalization
I Noise reduction
I Image sharpening

I Optimality is in the eye of the observer: Ad hoc.
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What is a histogram
Each individual histogram entry is defined as

h(i) = Number of pixels in l with the intensity value i
for all 0≤ i < K, that is

h(i) = card{(u,v) |I (u,v) = i}
h(0) is the number of pixels with the value 0, h(1) the number of pixels with
the value 1, and so forth.
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Histograms

Three very different images with identical histograms.
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Image Acquisition- Contrast
I Range of intensity values effectively used.
I Difference between the image’s maximum and minimum pixel values.
I A full−contrast image makes effective use of the entire range of available

intensity values from a= amin · · ·amax = 0 · · ·K−1 (black to white).

(a) Low contrast, (b) Normal contrast, (c) High contrast
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Color Image Histograms
Histograms of an RGB color image: (a) original image, (b) luminance
histogram hLum,(c−e) RGB color components, and associated component
histograms hR,hG,hB (f−h). All three color channels have saturation
problems. The spike in the distribution resulting from this is found in the
middle of the luminance histogram (b).
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Spatial Domain Processing

I Utilize neighborhood operations

g(x,y) = T [f(x,y)]

I Simple case: point operations

s= T (r)

I Contrast stretching
I Thresholding
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Gray Level Transformation Curves

I More general transformations
I Log
I Inverse Log
I nth power
I nth root

I Used to map narrow dark (log/root) or
bright (inverse log/power) range to a
greater dynamic range
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Power-Law (Gamma) Transformations

I Power-law transformation:

s= crγ

I Many devices require gamma correction
I CRTs have power function intensity-to-voltage

responses
I Monitor specific
I Applied in color planes
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Gamma Correction Example - Aerial

γ=3

γ=8γ=4

Top Left: aerial image. Top right, Bottom left and bottom right: results of applying Gamma correction with c = 1 and γ = 3,4,5 respectively.
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Histogram Processing

I Light, dark, and low contrast images have
concentrated histograms

I Images with uniform histograms
I Contain the full range of gray values
I Have high contrast
I Better general visual appearance
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Histogram Equalization
I We focus on the (normalized) scalar mapping

s= T (r) 0≤ r ≤ 1

where the following are satisfied:
I T (r) is single-valued and monotonically increasing in [0,1]
I 0≤ T (r)≤ 1 for 0≤ r ≤ 1

I The single-valued condition allows the inverse transformation to be defined

r = T−1(s) 0≤ s≤ 1



12/71

ELEG404/604

Probability Density Function

I Let the PDF of r be the pr(r)
I The CDF is Pr(r) = ∫ r

0 pr(w)dw
I Note CDFs are monotonically increasing and have range [0,1]

I Defined the RV s= T (r)
I The PDF of a RV function is

ps(s) = pr(r)
∣∣∣∣drds

∣∣∣∣
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CDF Distribution

I Set T (r) = Pr(r)

ds

dr
= dT (r)

dr
d[∫ r0 pr(w)dw]

dr
= pr(r)

I Thus the PDF of s is

ps(s) = pr(r)
∣∣∣∣drds

∣∣∣∣
pr(r)

∣∣∣∣ 1
pr(r)

∣∣∣∣ = 1

I The CDF is uniformly distributed.
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Histogram Equalization
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Histogram Equalization
A 3-bit image (L= 8) of size 64×64(MN = 4096) has the intensity
distribution in table.

Intensity levels are integers in [0,L−1] = [0,7].
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Histogram Equalization

Values of the histogram equalization are obtained using:

s0 = T (r0) = 7
0∑
j=0

Pr(rj) = 7pr(r0) = 1.33

Similarly,

s1 = T (r1) = 7
1∑
j=0

Pr(rj) = 7pr(r0) + 7pr(r1) = 3.08

and s2 = 4.55, s3 = 5.67, s4 = 6.23, s5 = 6.65, s6 = 6.86, s7 = 7.00
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The s values still have fractions because they were generated by summing
probability values, so we round them to the nearest integer:

s0 = 1.33→ 1
s1 = 3.08→ 3
s2 = 4.55→ 5
s3 = 5.67→ 6

s4 = 6.23→ 6
s5 = 6.65→ 7
s6 = 6.86→ 7
s7 = 7.00→ 7



18/71

ELEG404/604

Histogram Equalization

I CDF mapping of gray values
I Yields uniformed histogram
I Simple, parameter-free

I Discrete case
I Results not strictly uniform
I Implementation issues
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Histogram EQ Mappings
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Histogram Equalization Result

Image

Histograms

Cumulative

Histograms

Original image and corresponding histograms. Notice that new peaks are
created in the resulting histogram h (d) by merging original histogram cells.
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Filters

What is a filter?
Main difference between filters and point operations is that filters generally
use more than one pixel to compute each new pixel input.

No point operation can blur or sharpen an image.
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Filters

1 Each new pixel value I ′(x,y) is computed as a function of the pixels in a
corresponding region in the original image I.
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Filtering
To sharpen or filter an image that was taken out-of-focus and is blurred, each
pixel is replaced with a linear combination of its neighbors.
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Filtering
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Simple Smoothing Masks

I Simplest linear filter: spatial average: reduces noise, but introduces
blurring

I Distance weight samples
I Centrally located samples are more important
I Reduces blurring (somewhat)
I Example above: simple integer arithmetic

I Alternative approach: utilize spectral characteristics
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Border geometry

Filter can be applied only at locations (x,y) where the filter matrix H of size
(2K+ 1)× (2L+ 1) is fully contained in the image.
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Linear Filters
Examples of linear filters. The “box” filter (a) and the Gauss filter (b) are
both smoothing filters with all-positive coefficients. The “Laplace” or
“Mexican hat” filter (c) is a difference filter.
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Smoothing Example

I Square averaging filter results
I Window sizes: 3, 5, 9, 15, and 35
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NonLinear Filters

Any image structure is blurred by a linear filter. Image structures such as edges
(top) or thin lines (bottom) are widened, and the local contrast is reduced.
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Order-Statistic Filters

I Linear (weighted sum) filters
I Blur edges and details
I Are susceptible to outliers

I Order-statistic filters (nonlinear)
I Preserve edges and details
I Are less susceptible to outliers

I Spatially ordered samples: z1, z2, · · · , zN
I Rank ordered samples: z(1), z(2), · · · , z(N)

z(1) ≤ z(2) ≤ ·· · ≤ z(N)
MED[z1, z2, · · · , zN ] = z((N+1)/2)

Selection-type filter
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Filtering

Sometimes it is very useful to apply a non-linear filter such as the median.
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Effects of a minimum filter on various local signal structures
Original signal (top) and result after filtering (bottom), where color bars
indicate the extent of the filter. Step edge (a) and linear ramp (c) are shifted
to the right. Narrow pulse (b) is removed.
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Minimum Filter
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Maximum Filter
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Minimum and Maximum filters applied to a grayscale image

The original image is corrupted with ’‘salt and pepper‘’ noise (a). The 3×3
pixel minimum filter eliminates the bright dots and widens all dark image
structures (b). The maximum filter shows the exact opposite effects (c).
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Median Filter

Computation of a 3×3 median filter. The nine pixel values extracted from the
window are sorted and the center value is the median
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Effects of Median Filter
Effects of a 3×3 median filter on two-dimensional structures. Isolated dots
are eliminated (a), as are thin lines (b). Step edge remains unchanged (c),
corner is rounded off (d).
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Median Filter
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Linear smoothing filter vs median filter

(a) Original image corrupted with ’‘salt-and-pepper‘’ noise. (b) Linear 3×3
pixel box filter (b) reduces noise but the entire image is blurred. (c) The

median filter eliminates the noise dots and keeps the structures largely intact.
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Weighted Median Filters (WMF)

The median filter can be generalized to weighted order statistic filters.

Given x(n) = [x1, . . . ,xN ], and a set of weights w1, . . . ,wN , the WMF output
is given by

y(n) = MEDIAN [x1♦w1,x2♦w2, . . . ,xN♦wN ] (1)
where xi♦wi denotes replication:

xi♦wi =
wi times︷ ︸︸ ︷

xi,xi, . . . ,xi (2)
and wi ∈ Z+
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Weighted median example

Each pixel value is replicated multiple times, as specified by the weight matrix
W. For example, the value 0 from the center pixel is inserted three times. The
pixel vector is sorted and the center value (2) is the weighted median.
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Center Weighted Median Filter (CWMF)
A special case is the center weighted median filter (CWMF)

y(n) = MEDIAN[x1,x2, . . . ,xc−1,xc♦wc,xc+1, . . . ,xN ] (3)
where c= (N + 1)/2 =N1 + 1 is the index of the center sample.

For wc = 1, the CWMF reduces to a median filter.

For wc ≥N the CWMF is an identity filter.

By varying the parameter

more smoothing less
1←−−−−−−−−→

wc
N
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Original
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Salt and pepper noise
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5× 5 window - wc = 1
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5× 5 window - wc = 3
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5× 5 window - wc = 5
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Sharpening Filters

I Objective: Highlight and enhance fine detail
I Details may have been blurred in acquisition process
I Method: utilize first- and second-order derivative
I Derivatives identify signal changes (details/features)
I First-derivative requirements:
I Zero in flat regions
I Nonzero along ramps
I Second-derivative requirements:
I Zero in flat regions
I Zero along ramps of constant slope
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First derivative in one dimension
Original image (a), horizontal intensity profile f(x) along the center image
line (b), and first derivative f ′(x) (c).

df

dx
(x)≈ f(x+ 1)−f(x−1)

2 = 0.5 · (f(x+ 1)−f(x−1)).
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Second Derivative
I Utilize difference equations: First derivative:

∂f

∂x
= f(x+ 1)−f(x)

Second derivative
∂2f

∂x2 = f(x+ 1) +f(x−1)−2f(x)
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Derivative Observations

I First-order derivatives generate thick edges
I Second-order derivatives
I Have stronger response to details
I Produce a double response at step changes
I Order of response strength. Point, line, step.

I Second-order derivative is therefore preferred for enhancement
I Use isotropic (rotation invariant) formulation



53/71

ELEG404/604

Partial Derivatives and the Gradient
Derivative of a multidimensional function taken along one of its coordinates
partial derivative;

∂I
∂x

(x,y) and ∂I
∂y

(x,y)

The gradient function is

∇I(x,y) =
[∂I
∂x(x,y)
∂I
∂y (x,y)

]

The magnitude of the gradient,

|∇I|(x,y) =
√√√√(∂I

∂x
(x,y))2 + (∂I

∂y
(x,y))2
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Derivative Filters

The gradient approximation of the horizontal derivatives is the coefficient
matrix:

HD
x = [−0.5 0 0.5] = 0.5 · [−1 0 1]

where the coefficients −0.5 and +0.5 correspond to the image elements
I(x−1,y) and I(x+ 1,y). Vertical component of the gradient

HD
y =

−0.5
0

0.5

= .5 ·

−1
0
1
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Partial Derivatives of a Two Dimensional Function

(a) Synthetic image,(b) first derivatives in the horizontal direction ∂I/∂x. (c) vertical direction ∂I/∂y; (d)
magnitude of the gradient |∇I| (d).
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Edge Operators-Various Approaches

I Prewitt and Sobel Operators: Classic methods that differ in the filters
they use:
I Prewitt: Computes an average gradient across 3 neighboring lines or columns

respectively

HP
x =

−1 0 1
−1 0 1
−1 0 1

 HP
y =

−1 −1 −1
0 0 0
1 1 1


I Sobel: The smoothing part assigns higher weight to the current center line and

column, respectively:

HS
x =

−1 0 1
−2 0 2
−1 0 1

 HS
y =

−1 −2 −1
0 0 0
1 2 1





57/71

ELEG404/604

Edge Strength and Orientation
Denote the scaled filter results as:

Dx(x,y) =Hx ∗ I and Dy(x,y) =Hy ∗ I

In both cases, the local edge strength E(x,y) is defined as the gradient
magnitude √

(Dx(x,y))2 + (Dy(x,y))2

an the local edge orientation angle φ(x,y) is

φ(x,y) = arctan(Dy(x,y)
Dx(x,y))

An improved version of the Sobel filter:

HS′
x = 1

32

 −3 0 3
−10 0 10
−3 0 3

 HS′
y = 1

32

−3 −10 −3
0 0 0
3 10 3
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Edge Operators

Process of gradient-based edge extraction. Linear filters Hx and Hy produce
two gradient images, Dx and Dy. They are used to compute the edge
strength E and orientation φ for each image position (x,y).
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Laplacian Edge Operator

Problem with edge operators based on first derivatives; edges are as wide as
the underlying intensity transition. Alternative makes use of the second
derivatives.
Laplacian is the simplest isotropic derivative:

∇2f = ∂2f

∂x2 + ∂2f

∂y2

I

∇2f ≈ [f(x+ 1,y) +f(x−1,y) +f(x,y+ 1) +f(x,y−1)]−4f(x,y)

I Isotropic to 90◦rotations
I Add diagonal derivatives to make it 45◦ isotropic
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Mask Implementations and Enhancement

I Similar definition produces a sign
change

I Enhancement adds (subtracts)
derivative and observed image

g(x,y) =
{
f(x,y)−∇2f(x,y) if the center is negative
f(x,y) +∇2f(x,y) if the center is positive
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Example

Top Left: image of the north pole of the moon. Top Right: Laplacian-filtered image.
Bottom Left: Laplacian image scaled for display purposes. Bottom Right: Image enhancend
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Edge Sharpening with second derivative
Original intensity function f(x), first derivative f ′(x), second derivative
f ′′(x), and sharpened intensity function f̆(x) = f(x)−w ·f ′′(x)
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Results of Laplace filter HL

(a) Image I(a), (b) second partial derivative ∂2I/∂2u in the horizontal
direction, (c) second partial derivative ∂2I/∂2v in the vertical direction, and
(d) Laplace filter ∇2I(u,v).
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Edge Sharpening with the Laplace filter
Original image and marked line (a, b), result of Laplace filter HL (c, d), and
sharpened image (e, f).
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Edges and Contours

I Edges and contours, are of high importance for the visual perception and
interpretation of images.

I Edges: local intensity changes distinctly along a particular orientation.
The amount of change with respect to spatial distance is the first
derivative of a function.
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Edge Detection
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Edge Detection

The derivative of a digital image can
be found by applying the linear filter.
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Edge Detection

The edges are then thinned by applying a threshold.
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Sobel Example

Left: Optical image of contact lens. Right: Sobel gradient. Common
application: edge detection
I Threshold sobel output
I Binary edge mask
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Comparison of Edge Operators


