
ELEG 867 - Compressive Sensing and Sparse Signal
Representations

Introduction to Matrix Completion and Robust PCA

Gonzalo Garateguy
Depart. of Electrical and Computer Engineering

University of Delaware

Fall 2011

ELEG 867 (MC and RPCA problems) Fall, 2011 1 / 57



Matrix Completion Problems - Motivation

Recomender Systems

Items
User 1 x x ? ? x x
User 2 ? ? x x ? ?
. ? x ? x x ?
. x ? ? x ? x
. x ? x ? ? x
. ? x ? ? x ?
. ? ? x x x ?

User n x x ? ? ? x

Collaborative filtering (Amazon, last.fm)
Content based (Pandora,
www.nanocrowd.com)
Netflix prize competition boosted interest in
the area

http://www.ima.umn.edu/videos/index.php?id=1598
http://sahd.pratt.duke.edu/Videos/keynote.html
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Matrix Completion Problems - Motivation

Sensor location estimation in Wireless
Sensor Networks
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

Distance matrix
1 2 3 4 5 6 7

1 0 d1,2 d1,3 ? ? ? ?
2 d2,1 0 ? d2,4 ? ? ?
3 d3,1 ? 0 d3,4 ? ? ?
4 ? d4,2 d4,3 0 d4,5 ? ?
5 ? ? ? d5,4 0 d5,6 d5,7
6 ? ? ? ? d6,5 0 d6,7
7 ? ? ? ? d7,5 d7,6 0

The problem is to find the positions of the
sensors in R2 given the partial information
about relative distances
A distance matrix like this has rank 2 in R2

For certain types of graphs the problem can be
solved if we know the whole distance matrix
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Matrix Completion Problems - Motivation

Image reconstruction from incomplete data
Reconstructed image Incomplete image 50% of the pixels
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Robust PCA - Motivation

Foreground identification for surveillance applications

E.J. Candes, X. Li, Y. Ma, and Wright, J. “Robust principal component analysis?” http://arxiv.org/abs/0912.3599
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Robust PCA - Motivation

Image alignment and texture recognition

Z. Zhang, X. Liang, A. Ganesh, and Y. Ma, “TILT: transform invariant low-rank textures” Computer Vision–ACCV 2010
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Robust PCA - Motivation

Camera calibration with radial distortion

J. Wright, Z. Lin, and Y. Ma “Low-Rank Matrix Recovery: From Theory to Imaging Applications” Tutorial presented at International

Conference on Image and Graphics (ICIG), August 2011
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Motivation

Many other applications

System Identification in control theory
Covariance matrix estimation
Machine Learning
Computer Vision

Videos to watch
Matrix Completion via Convex Optimization: Theory and Algorithms by Emmanuel Candes
http://videolectures.net/mlss09us_candes_mccota/

Low Dimensional Structures in Images or Data by Yi Ma, Workshop in Signal Processing with Adaptive

Sparse Structured Representations (June 2011)

http://ecos.maths.ed.ac.uk/SPARS11/YiMa.wmv
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Problem Formulation

Matrix completion

minimize rank(A) (1)
subject to Aij = Dij ∀(i, j) ∈ Ω

Robust PCA

minimize rank(A) + λ||E||0 (2)
subject to Aij + Eij = Dij ∀(i, j) ∈ Ω

Very hard to solve in general without any asumptions, some times NP
hard.
Even if we can solve them, are the solutions always what we expect?
Under wich conditions we can have exact recovery of the real matrices?
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Outline

Convex Optimization concepts

Matrix Completion
Exact Recovery from incomplete data by convex relaxation
ALM method for Nuclear Norm Minimization

Robust PCA
Exact Recovery from incomplete data and corrupted data by convex
relaxation
ALM method for Low rank and Sparse separation
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Convex sets and Convex functions

Convex set
A set C is convex if the line segment between any two points in C lies in C.
For any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1 we have

θx1 + (1− θ)x2 ∈ C.

  
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Convex sets and Convex functions

Convex combination
A convex combination of k points x1, .., xk is defined as

θ1x1 + ...+ θkxk , where θi ≥ 0 and θ1 + ...+ θk = 1

Convex hull
The convex hull of C is the set of all convex conbinations of points in C

conv C = {θ1x1 + ...+ θkxk|xi ∈ C, θi ≥ 0, i = 1, ..., k, θ1 + ...+ θk = 1}
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Convex sets and Convex functions

Operations that preserve convexity

Intersection
If S1 and S2 are convex, then S1

⋂

S2 is convex.
In general if Sα is convex for every α ∈ A, then

⋂

α∈A Sα is convex.

Subspaces, affine sets and convex cones are therefore closed under arbitrary
intersections.

Affine functions
Let f : Rn → Rm be affine, f (x) = Ax+ b, where A ∈ Rm×n and b ∈ Rm. If
S ⊆ Rn is convex, then the image of S under f

f (S) = {f (x)|x ∈ S}

is convex
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Convex sets and Convex functions

Convex functions
A function f : Rn → R is convex if domf is a convex set and if for all
x, y ∈ domf , and θ with 0 ≤ θ ≤ 1, we have

f (θx+ (1− θ)y) ≤ θf (x) + (1− θf (y))

we say that f is strictly convex if the strict intequality holds whenever x '= y
and 0 < θ < 1
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Operations that preserve convexity

Composition with an affine mapping
Suppose f : Rn → R, A ∈ Rn×m and b ∈ Rn. Define g : Rm → R by

g(x) = f (Ax+ b)

with domg = {x|Ax+ b ∈ domf}. Then if f is convex, so is g.

Pointwise maximum
if f1 and f2 are convex functions then their pointwise maximum f defined by

f (x) = max{f1(x), f2(x)}

with domf = domf1 ∩ domf2 is also convex. This also extend to the case
where f1, ..., fm are convex, then

f (x) = max{f1(x), ..., fm(x)}, is also convex
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Pointwise maximum of convex functions








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Convex sets and Convex functions

Convex differentiable functions
If f is differentiable (i.e. its gradient ∇f exist at each point in domf ). Then f
is convex if and only if domf is convex and

f (y) ≥ f (x) +∇f (x)T (y− x)

holds for all x, y ∈ domf .
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Second order conditions
If f is twice differentiable, i.e. its Hessian ∇2f exist at each point in domf .
Then f is convex if and only if domf is convex and its Hessian is positive
semidefinite for all x ∈domf

∇2f (x) * 0
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Convex non-differentiable functions

The concept of gradient can be extended to non-differentiable functions
introducing the subgradient

Subgradient of a function
A vector g ∈ Rn is a subgradient of f : Rn → R at x ∈ domf if for all
z ∈ domf

f (z) ≥ f (x) + gT(z− x)
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Subgradients
Observations

If f is convex and differentiable, then its gradient at x ,∇f (x) is its only
subgradient

Subdifferentiable functions
A function f is called subdifferentiable at x if there exist at least one
subgradient at x

Subdifferential at a point
The set of subgradients of f at the point x is called the subdifferential of f at x,
and is denoted ∂f (x)

Subdifferentiability of a function
A function f is called subdifferentiable if it is subdifferentiable at all
x ∈ domf
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Basic properties

Existence of the subgradient of a convex function
If f is convex and x ∈ int domf , then ∂f (x) is nonempty and bounded.

The subdifferential ∂f (x) is always a closed convex set, even if f is not
convex. This follows from the fact that it is the intersection of an infinite set
of halfspaces

∂f (x) =
⋂

z∈domf
{g|f (z) ≥ f (x) + gT(z− x)}.
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Basic properties

Nonnegative scaling
For α ≥ 0, ∂(αf )(x) = α∂f (x)

Subgradient of the sum
Given f = f1 + ...+ fm, where f1, ..., fm are convex functions, the subgradient
of f at x is given by ∂f (x) = ∂f1(x) + ...+ ∂fm(x)

Affine transformations of domain
Suppose f is convex, and let h(x) = f (Ax+ b). Then ∂h(x) = AT∂f (Ax + b).

Pointwise maximum
Suppose f is the pointwise maximum of convex functions f1, ..., fm,
f (x) = max

i=1,...,m
fi(x), then ∂f (x) = Co ∪ {∂fi(x)|fi(x) = f (x)}
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Subgradient of the pointwise maximum of two convex
functions





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Subgradient of the pointwise maximum of two convex
functions





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Subgradient of the pointwise maximum of two convex
functions





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Examples
Conside the function f (x) = |x|. At x0=0 , the subdiferential is defined by the
inequality

f (z) ≥ f (x0) + g(z− x0), ∀z ∈ dom f
|z| ≥ gz, ∀z ∈ R

∂f (0) = {g | g ∈ [−1 , 1]}
then for all x

∂f (x) =







−1 for x < 0
1 for x > 0

{g|g ∈ [−1, 1]} for x = 0
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Example: !1 norm

Consider f (x) = ‖x‖1 = |x1|+ · · · + |xn|, and note that f can be expressed as
the maximum of 2n linear functions

‖x‖1 = max{ f1(x) , .., f2n(x) }

‖x‖1 = max{ sT1 x , .., sT2nx | si ∈ {−1, 1}n }

The active functions fi(x) at x are the ones for wich sTi x = ‖x‖1. Then
denoting

si = [si,1, ..., si,n]T , si,j ∈ {−1, 1}

the set of indices of the active functions at x is

Ax =







i

∣

∣

∣

∣

∣

∣

si,j = −1 for xj < 0
si,j = 1 for xj > 0
si,j = −1 or 1 for xj = 0

, for j = 1, .., n






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subgradient of the !1 norm

The subgradient of ‖x‖1 at a generic point x is defined by

∂‖x‖1 = co ∪ { ∂fi(x) | i ∈ Ax }
∂‖x‖1 = co{ ∇fi(x) | i ∈ Ax }
∂‖x‖1 = co{ si|i ∈ Ax }
∂‖x‖1 = {g|g =

∑

i∈Ax
θisi , θi ≥ 0 ,

∑

i θi = 1}

or equivalently

∂‖x‖1 =







g

∣

∣

∣

∣

∣

∣

gj = −1 for xj < 0
gj = 1 for xj > 0
gj = ζ ∈ [−1, 1] for xj = 0






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!1 norm on R2

in R2 the set of subgradients are

s1 = [ −1, 1]T
s2 = [ −1, −1]T
s3 = [ 1, 1]T
s4 = [ 1, −1]T
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Convex optimization problems

An optimization problem is convex if its objective is a convex function, the
inequality constraints fj are convex and the equality constraints hj are affine

minimize
x

f0(x) (Convex function)
s.t. fi(x) ≤ 0 (Convex sets)

hj(x) = 0 (Affine)

or equivalently

minimize
x

f0(x) (Convex function)
s.t. x ∈ C C is a convex set

hj(x) = 0 (Affine)
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Theorem
If x∗ is a local minimizer of a convex optimization problem, it is a global
minimizer.

Optimality conditions
A point x∗ is a minimizer of a convex function f if and only if f is
subdifferentiable at x∗ and

0 ∈ ∂f (x∗)
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Convex optimization problems

Given the convex problem

minimize
x

f0(x)
s.t. fi(x) ≤ 0, i = {1, ..., k}

hj(x) = 0, j = {1, ..., l}

its Lagrangian function is defined as

L(x, λ, ν) = f0(x) +
l

∑

j=1
λjhj(x) +

k
∑

i=1
νifi(x)

where νi ≥ 0, λi ∈ R
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Augmented Lagrangian Method

Considering the problem

minimize
x

f (x)
s.t. x ∈ C

h(x) = 0
(3)

The augmented lagrangian is defined as

L(x, λ, c) = f (x) + λTh(x) + µ

2
‖h(x)‖22

where µ is a penalty parameter and λ is the multiplier vector

ELEG 867 (MC and RPCA problems) Fall, 2011 34 / 57



Augmented Lagrangian Method

The augmented lagrangian method consist of solving a sequence of problems
of the form

minimize
x

L(x, λk, µk) = f (x) + λk
Th(x) + µk

2 ‖h(x)‖
2
2

s.t. x ∈ C

where {λk} is a bounded sequence in Rl and {µk} is a penalty parameter
sequence satisfying

0 < µk < µk+1 ∀ k , µk → ∞
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Augmented Lagrangian Method

The exact solution to problem (3) can be found using the following iterative
algorithm

set ρ > 1
while not converged do

solve xk+1 = argmin
x∈C

L(x, λk, µk)

λk+1 = λk + µkh(xk+1)
µk = ρµk

end while
Output xk
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Matrix completion

Optimization problem

minimize rank(A) (4)
subject to Aij = Dij ∀(i, j) ∈ Ω

We look for the simplest explanation for the observed data
Given enough number of samples, the likelihood of the solution to be
unique should be high
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Matrix completion

minimize rank(A)
subject to Aij = Dij ∀(i, j) ∈ Ω

The minimization of the rank(·) function is a combinatorial problem,
with exponential complexity in the size of the matrix!
Need for a convex relaxation

rank(A) = ||diag(Σ)||0 A = UΣVT
⇓

||A||∗ = ||diag(Σ)||1

Convex relaxation

minimize ‖A‖∗ (5)
subject to Aij = Dij ∀(i, j) ∈ Ω
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Matrix Completion

Nuclear Norm
The nuclear norm of a matrix A ∈ Rm×n is defined as ||A||∗ =

∑r
i=1 σi(A),

where {σi(A)}ri=1 are the elements of the diagonal matrix Σ from the SVD
decomposition of A = UΣVT

Observations
r = rank(A) can be r < m, n. If this is the case we say that the matrix is
low rank
the singular values σi(A) =

√

λi(ATA) are obtained as the square root of
the eigenvalues of ATA and are always σi ≥ 0
the left singular vectors U are the eigenvectors of AAT

the right singular vectors V are the eigenvectors of ATA
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Matrix Completion

Spectral Norm
The spectral norm of a matrix A ∈ Rm×n is defined as ‖A‖2 = σmax(A), where
σmax = max({σi(A)}ri=1)

Dual Norm
Given an arbitrary norm || · ||% in Rn, its dual norm || · ||† is defined as

‖z‖† = sup{zT x | ‖x‖% ≤ 1}

Observations
The nuclear norm is the dual norm of the spectral norm

‖A‖∗ = sup{tr(ATX)|‖X‖2 ≤ 1}
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Matrix Completion

Convex relaxation of the rank

Convex envelope of a function
Let f : C → R where C ⊆ Rn. The convex envelope of f (on C) is defined as
the largest convex function g such that g(x) ≤ f (x) for all x ∈ C

Theorem
The convex envelope of the function φ(X) =rank(X) on
C = {X ∈ Rm×n|‖X‖2 ≤ 1}, is φenv(X) = ‖X‖∗.

Observations
The convex envelope of rank(X) on a the set {X|‖X‖2 ≤ M} is given by 1

M ‖X‖∗
By solving the heuristic problem we obtain a lower bound on the optimal value of the original
problem (provided we can identify a boundM on the feasible set).

M. Fazel, H. Hindi and S. Boyd “A Rank Minimization Heuristic with Application to Minimum Order System Approximation” American

Control Conference, 2001.
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Matrix completion

Convex relaxation

minimize ‖A‖∗ (6)
subject to Aij = Dij ∀(i, j) ∈ Ω

The original problem is now a problem with a non-smooth but convex
function as the objective
The remaining problem is the number of measurements and in which
positions have to be taken in order to guarantee that the solution is equal
to the matrix D?
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Matrix completion

Which types of matrices can be completed exactly?
Consider the matrix

M = e1.eTn =















0 0 · · · 0 1
0 0 · · · 0 0
...
...

...
...
...

0 0 · · · 0 0
0 0 · · · 0 0















Can it be recovered from 90 % of its samples ?
Is the sampling set important?
Which sampling sets work and which ones doesn’t?
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Matrix completion

Sampling set Ω
The sampling set Ω is defined as Ω = {(i, j) | Dij is observed }

Consider

D = xyT x ∈ Rm, y ∈ Rn

Dij = xiyj

If the sampling set avoids row i, then xi can not be recovered by any
method whatsoever

Observation
No columns or rows from D can be avoided in the sampling set
There is a need for a characterization of the sampling operator with
respect to the set of matrices that we want to recover
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Matrix completion

To recover a low rank matrix, this matrix cannot be in the null space of
the sampling operator
If the singular vectors of D = USVT are highly concentrated, then D is
more likely to be in the null space of a given sampling operator
















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Matrix completion
Intuition

the singular vectors need to be sufficiently spread, i.e. uncorrelated with
the standar basis in order to minimize the number of observations needed
to recover a low rank matrix

Coherence of a subspace
Let U be a subspace of Rn of dimension r and PU be the orthogonal projection
onto U. Then the coherence of U is defined to be

µ(U) =
n
r
max
1≤i≤n

‖PUei‖2

Observations
The minimum value that µ(U) can achieve is 1 for example if U is
spanned by vectors whos entries all have magnitude 1/

√
n

The largest possible value for µ(U) is n/r corresponding to a subspace
that contains a standard basis element.
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Matrix completion

µ0 coherence
A matrix D =

∑

1≤k≤r σkukv
T
k is µ0 coherent if for some positive µ0

max(µ(U), µ(V)) ≤ µ0

µ1 coherence
A matrix D =

∑

1≤k≤r σkukv
T
k has µ1 coherence if

‖UVT‖∞ ≤ µ1
√

r/mn

for some µ1 > 0

Observation
If D is µ0 coherent then it is µ1 coherent for µ1 = µ0

√
r
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Matrix completion

Theorem
Let D ∈ Rm×n of rank r be (µ0, µ1)-coherent and let N = max(m, n). If we
observe M entries of D with locations sampled uniformly at random. Then
there exist constants C and c such that if

M ≥ C max(µ21, µ
1/2
0 µ1, µ0N1/4)Nr(βlogN)

for some β > 2, then the minimizer of (6) is unique and equal to D with
probability at least 1− cn−β . If in addition r ≤ µ−1

0 N1/5 then the number of
observations can be improved to

M ≥ Cµ0N6/5r(βlogN)

Candès, E.J. and Recht, B. “Exact matrix completion via convex optimization”, Foundations of Computational Mathematics 2009
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Matrix completion
Recovery performance

Figure: The x axis corresponds to rank(A)/min{m, n} and the y axis to ρs = 1−M/mn (probability that
an entry is omited from the observations)

Emmanuel J. Candes, Xiaodong Li, Yi Ma, John Wright “Robust Principal Component Analysis?”

http://arxiv.org/abs/0912.3599
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Matrix completion

Other bounds on number of meassurements and sampling operators
Emmanuel J. Candes, Xiaodong Li, Yi Ma, John Wright “Rodbust Principal Component Analysis?”
http://arxiv.org/abs/0912.3599

Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo, Alan S. Willsky “Rank-Sparsity Incoherence for Matrix Decomposition”
http://arxiv.org/abs/0906.2220

Zihan Zhou, Xiaodong Li, John Wright, Emmanuel Candes, Yi Ma “Stable Principal Component Pursuit”
http://arxiv.org/abs/1001.2363

Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh “Matrix Completion from a Few Entries”
http://arxiv.org/abs/0901.3150

Sahand Negahban, Martin J. Wainwright “Restricted strong convexity and weighted matrix completion: Optimal bounds with noise”
http://arxiv.org/abs/1009.2118v2

Yonina C. Eldar, Deanna Needell, Yaniv Plan “Unicity conditions for low-rank matrix recovery”
http://arxiv.org/abs/1103.5479

ELEG 867 (MC and RPCA problems) Fall, 2011 57 / 57

http://arxiv.org/abs/0912.3599
http://arxiv.org/abs/0906.2220
http://arxiv.org/abs/1001.2363
http://arxiv.org/abs/0901.3150
http://arxiv.org/abs/1009.2118v2
http://arxiv.org/abs/1103.5479

