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Matrix Completion Problems - Motivation

Items
Userl [x x ? ?7 x X
Recomender Systems User2 [?2 ? x x 2?2 ?
7 x 7?7 x x ?
x ? 7 x 7?7 x
x ?2 x 7 7 x
?7 x 7?7 7 x ?
amazoncom .. ) 2 92 x x x 9
O ITu nes Usern | x x ?2 7 7 X
GO\ )8[6 @ Collaborative filtering (Amazon, last.fm)
B&E!Ei&!‘lﬂ RBSI'E @ Content based (Pandora,
www.nanocrowd.com)
@ Netflix prize competition boosted interest in

the area

http://www.ima.umn.edu/videos/index.php?id=15
http://sahd.pratt.duke.edu/Videos/keynote.html”
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Matrix Completion Problems - Motivation

Sensor location estimation in Wireless Distance matrix
Sensor Networks 1 2 3 4 5 6 7
node 2 110 dipdis ? 72 7 ?
Adyy 0 7 dyy 7 7 2
3day 7 0 dig 7 2 2
4| ? d4’2d4y3 0 d4’5 ? ?
5|2 2 2 dsy 0 dsedss
6|2 2 2 2 des O des
717 2 2 2 disdig 0

@ The problem is to find the positions of the
sensors in R? given the partial information
about relative distances

@ A distance matrix like this has rank 2 in R?

@ For certain types of graphs the problem can be
node 7 solved if we know the whole distance matrix
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Matrix Completion Problems - Motivation

Image reconstruction from incomplete data

Reconstructed image Incomplete image 50% of the pixels

=
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Robust PCA - Motivation

Foreground identification for surveillance applications

E.J. Candes, X. Li, Y. Ma, and Wright, J. “Robust principal component analysis?” http://arxiv.org/abs/0912.3599 ]
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Robust PCA - Motivation

Image alignment and texture recognition
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Z.Zhang, X. Liang, A. Ganesh, and Y. Ma, “TILT: transform invariant low-rank textures” Computer Vision—ACCV 2010
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Robust PCA - Motivation

Camera calibration with radial distortion

b,

i
lmi

F

1l

3 B

J. Wright, Z. Lin, and Y. Ma “Low-Rank Matrix Recovery: From Theory to Imaging Applications” Tutorial presented at International

Conference on Image and Graphics (ICIG), August 2011 o
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Motivation

Many other applications

@ System Identification in control theory
o Covariance matrix estimation
@ Machine Learning

o Computer Vision

Videos to watch
Matrix Completion via Convex Optimization: Theory and Algorithms by Emmanuel Candes
http://videolectures.net/mlss09us_candes_mccota/

Low Dimensional Structures in Images or Data by Yi Ma, Workshop in Signal Processing with Adaptive
Sparse Structured Representations (June 2011)
http://ecos.maths.ed.ac.uk/SPARS11/YiMa.wmv =]
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]
Problem Formulation

Matrix completion Robust PCA
minimize rank(A) 1) minimize rank(A) + A|[E||o 2
subjectto  Aj; = Dy V(i,)) € Q subjectto Ay + E;j =Dy V(i,j) € Q

@ Very hard to solve in general without any asumptions, some times NP
hard.

@ Even if we can solve them, are the solutions always what we expect?

@ Under wich conditions we can have exact recovery of the real matrices?
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Outline

@ Convex Optimization concepts

@ Matrix Completion
@ Exact Recovery from incomplete data by convex relaxation
@ ALM method for Nuclear Norm Minimization
@ Robust PCA
@ Exact Recovery from incomplete data and corrupted data by convex
relaxation
@ ALM method for Low rank and Sparse separation

e
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T —
Convex sets and Convex functions

Convex set

A set C is convex if the line segment between any two points in C lies in C.
For any x1,x; € C and any 0 with 0 < 6 < 1 we have

Ox, + (1 — 0))(2 eC.

convex non convex non convex
o
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T —
Convex sets and Convex functions

Convex combination
A convex combination of k points xp, .., x; is defined as

Orxi 4+ ...+ Okxi , where 6; >0 and 0 +... + 6, =1

Convex hull
The convex hull of C is the set of all convex conbinations of points in C

conv C = {01x; + ... + Opxilx; € C,0; > 0,i=1,....k, 0, + ... + 0 = 1}

T
ey
J///// . o
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T —
Convex sets and Convex functions

Operations that preserve convexity

Intersection

If S1 and S2 are convex, then S} (]S> is convex.
In general if S, is convex for every a € A, then [ ¢ 4 Sa is convex.

Subspaces, affine sets and convex cones are therefore closed under arbitrary
intersections.

Affine functions

Letf : R" — R" be affine, f(x) = Ax + b, where A € R"*" and b € R". If
S C R" is convex, then the image of S under f

f(8) ={fW)lx € 5}

1S convex
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T —
Convex sets and Convex functions

Convex functions

A function f : R" — R is convex if domf is a convex set and if for all
x,y € domf, and 6 with 0 < 0 < 1, we have

F(O0x+ (1 —0)y) < 0f(x) + (1 —0F(y))

we say that f is strictly convex if the strict intequality holds whenever x # y
and0 <6 <1
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Operations that preserve convexity

Composition with an affine mapping
Suppose f : R" — R, A € R"™™ and b € R". Define g : R — R by

g(x) =f(Ax+b)
with domg = {x|Ax 4+ b € domf}. Then if f is convex, so is g.

Pointwise maximum

if fi and f, are convex functions then their pointwise maximum f defined by

f(x) = max{fi(x), f2(x)}

with domf = domf; N domf is also convex. This also extend to the case
where f, ..., f, are convex, then

f(x) = max{fi (x),....fm(x)}, isalso convex

.
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Pointwise maximum of convex functions

J)=max{fi(x).f2(x)}

e
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T —
Convex sets and Convex functions

Convex differentiable functions

If f is differentiable (i.e. its gradient Vf exist at each point in domf). Then f
is convex if and only if domf is convex and

fO) 2 f(x) + V@) (v —x)

holds for all x,y € domf.

() /
\ y
/ @)+ V(@) (y - 2)
\\\ /// g
S s
//,/' "
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Second order conditions

If f is twice differentiable, i.e. its Hessian V2f exist at each point in domf.
Then f is convex if and only if domf is convex and its Hessian is positive
semidefinite for all x edomf
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Convex non-differentiable functions

The concept of gradient can be extended to non-differentiable functions
introducing the subgradient
Subgradient of a function

A vector g € R" is a subgradient of f : R* — R at x € domy if for all
Z € domf

f(@) > fx) +g"(z—x)

f2)

/

r”,f(l'z) + ¥ (2 — 29)

@)+ i)

:
T2
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Subgradients

Observations

o If f is convex and differentiable, then its gradient at x , Vf(x) is its only
subgradient

Subdifferentiable functions

A function f is called subdifferentiable at x if there exist at least one
subgradient at x

Subdifferential at a point

The set of subgradients of f at the point x is called the subdifferential of f at x,
and is denoted Of (x)

o

Subdifferentiability of a function

A function f is called subdifferentiable if it is subdifferentiable at all
x € domf

o
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Basic properties

Existence of the subgradient of a convex function

If f is convex and x € int domf, then Of (x) is nonempty and bounded.

The subdifferential Of (x) is always a closed convex set, even if f is not

convex. This follows from the fact that it is the intersection of an infinite set
of halfspaces

o) = () {slf@ 2f(x) + "z =0}

zedomf
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Basic properties

Nonnegative scaling
For a > 0, 9(af ) (x) = adf (x)

Subgradient of the sum

Given f = fi + ... + fi, where f1, ..., f;, are convex functions, the subgradient
of f at x is given by 9f (x) = 9f1 (x) + ... + fn(x)

Affine transformations of domain

Suppose f is convex, and let i(x) = f(Ax + b). Then Oh(x) = ATOf (Ax + b).
Pointwise maximum

Suppose f is the pointwise maximum of convex functions fi, ..., fin,

70 = max fi(x),then 9f(x) = CoU{DA(x)fi(x) = /(v)}

o
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Subgradient of the pointwise maximum of two convex
functions

S =max{f %) o)} S

Jix)

Ji(zo) + fr(wo) (2 — o) fa(0) + folzo) (@ — wo)

Y=

=
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Subgradient of the pointwise maximum of two convex
functions

S =max{f %) o)} S

Jix)

f(zo) + gz — x0)
fi(@o) + fr(zo) (@ — wo)

fo(@o) + fol0)(@ — 20)

Y=
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Subgradient of the pointwise maximum of two convex
functions

A gelfs(zo), fi(z0)] = g = 0Fs(wo) + (1 — 0) falzo) with 0 < 6 < 1

S)=max{fy(x)f(0)} 1)

— . f‘(flﬁo) +g(x — xo)
f1(@o) + f1(xo) (@ — x0)

T2(@0) + fo(wo) (& = o)

Y=

Z0 e

ELEG 867 (MC and RPCA problems)

Fall, 2011 25/57



Examples

Conside the function f(x) = |x|. At xo=0 , the subdiferential is defined by the
inequality
f(z) = flx0) +8(z = x0), Vzc domf
zZl > gz, Vz E€R
of0) = {glgec[-1, 1]}

then for all x

—1 forx<O0
of (x) = 1 forx>0

{glg € [-1,1]} forx=0

f(z) = || 0 (2)

ELEG 867 (MC and RPCA problems)
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Example: ¢; norm

Consider f(x) = ||x|[1 = |x1| + - - - + |x4|, and note that f can be expressed as
the maximum of 2" linear functions

el = max{ Ai(x) s () }
Il = max{ sTx, ., sho |5 € {~1,1}"}

The active functions f;(x) at x are the ones for wich s7x = ||x||. Then
denoting
Si = [Si1y ey Sin]’s sij € {—1,1}

the set of indices of the active functions at x is

SiJ:—l forxj<0
Ac=1q1i] sij=1 forx; >0 ,forj=1,..,n
sij=—lorl forx;=0

]

ELEG 867 (MC and RPCA problems) Fall, 2011 27157



|
subgradient of the /; norm

The subgradient of ||x||; at a generic point x is defined by

Ixli = coU{dfi(x)[ie A}

Ixl[i = co{ Vfi(x) | i€ A}

Olxlli = cof sili € Ay}

Nxllh = {slg=2ica bisi, >0, 5,6, =1}

or equivalently
g= —1 for x; <0

Olixli =q8| &= 1 forx; >0
gi= Ce[-1,1] forx;=0
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¢, norm on R?

in R? the set of subgradients are

21 < 0,22 >0

S1

€2

/

53
ap > 0,22 >0

53

S

83

53

1 < 0,22 <0

L
N

84

Sq
\ 21> 0,22 < 0
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Convex optimization problems

An optimization problem is convex if its objective is a convex function, the
inequality constraints f; are convex and the equality constraints /; are affine

minimize fp(x) (Convex function)
X
st. fi(x) <0 (Convex sets)
hj(x) =0 (Affine)
or equivalently
minimize fp(x) (Convex function)
X
st. xeC C 1is a convex set

hj(x) =0 (Affine)

ELEG 867 (MC and RPCA problems)
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Theorem
If x* is a local minimizer of a convex optimization problem, it is a global
minimizer.
Optimality conditions

A point x* is a minimizer of a convex function f if and only if f is
subdifferentiable at x* and

0 € If(x*)

Fall, 2011 32/57



Convex optimization problems

Given the convex problem

minimize fp(x)
X

st. filx) <0, i={1,..

its Lagrangian function is defined as

7k}

k
L(x,\,v)= +ZAh —|—Zl/if,-(x)
i=1

where v; > 0, \; € R

ELEG 867 (MC and RPCA problems)
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Augmented Lagrangian Method

Considering the problem

minimize f(x)
X

st. xelC
h(x) =0
The augmented lagrangian is defined as
7
L(x, A 0) =f(x) + ATh(x) + Z[h(x)]3

where 1 is a penalty parameter and ) is the multiplier vector

ELEG 867 (MC and RPCA problems)
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Augmented Lagrangian Method

The augmented lagrangian method consist of solving a sequence of problems
of the form

minimize  L£(x, A, k) = £(x) + A h(x) + & ||h(x)| 3
X
st. xeC

where {\} is a bounded sequence in R’ and {4} is a penalty parameter
sequence satisfying

0 <pu < pusr Yk, px — 00

ELEG 867 (MC and RPCA problems)
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Augmented Lagrangian Method

The exact solution to problem (3) can be found using the following iterative
algorithm

setp > 1
while not converged do

solve x;+1 = argmin L£(x, Ak, )

xeC
Ak+1 = Ak + peh (1)
[k = Pl
end while
Output x;

%
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Matrix completion

Optimization problem
minimize rank(A) 4)

subject to A; = Dy V(i,j) €

@ We look for the simplest explanation for the observed data

@ Given enough number of samples, the likelihood of the solution to be
unique should be high
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Matrix completion

minimize rank(A)
subjectto A; = Dy V(i,j) €

@ The minimization of the rank(-) function is a combinatorial problem,
with exponential complexity in the size of the matrix!
@ Need for a convex relaxation
rank(A) = ||diag(Z)|lo A =UXVT

4
[|All+ = [|diag(2)]

Convex relaxation

minimize l|A||.« )
subject to  A;; = Dy V(i,j) €
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Matrix Completion

Nuclear Norm

The nuclear norm of a matrix A € R"*" is defined as ||A]|, = >_'_, 0i(A),
where {0;(A)}/_, are the elements of the diagonal matrix 3 from the SVD
decomposition of A = ULV’

Observations

@ r =rank(A) can be r < m, n. If this is the case we say that the matrix is
low rank

@ the singular values 0;(A) = /A;(ATA) are obtained as the square root of
the eigenvalues of A”A and are always o; > 0

o the left singular vectors U are the eigenvectors of AA”
o the right singular vectors V are the eigenvectors of A”A
=
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Matrix Completion

Spectral Norm

The spectral norm of a matrix A € R™*" is defined as ||Al|2 = opax(A), Where
Omax = max({ai(A)}?zl)

Dual Norm
Given an arbitrary norm || - ||, in R", its dual norm || - ||+ is defined as

llly = sup{e"x | Ilx]lo < 1} )
Observations

@ The nuclear norm is the dual norm of the spectral norm
1Al = sup{tr(ATX)[[[X]|> < 1}
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Matrix Completion

Convex relaxation of the rank

Convex envelope of a function

Letf : C — R where C C R". The convex envelope of f (on C) is defined as
the largest convex function g such that g(x) < f(x) forallx € C

Theorem

The convex envelope of the function ¢(X) =rank(X) on
C=A{X e R™"||X[}y < 1}, is dem(X) = [|IX[[.

Observations
@ The convex envelope of rank(X) on a the set {X|||X||2 < M} is given by ﬁ [1X ] %
@ By solving the heuristic problem we obtain a lower bound on the optimal value of the original
problem (provided we can identify a bound M on the feasible set).

M. Fazel, H. Hindi and S. Boyd “A Rank Minimization Heuristic with Application to Minimum Order System Approximation” American

]

Control Conference, 2001.
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Matrix completion

Convex relaxation

minimize |A||.« (6)
subject to  A;; = Dy V(i,j) €

@ The original problem is now a problem with a non-smooth but convex
function as the objective

@ The remaining problem is the number of measurements and in which
positions have to be taken in order to guarantee that the solution is equal
to the matrix D?

]
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Matrix completion

Which types of matrices can be completed exactly?
Consider the matrix

00 -~ 01

00 -~ 00
M=eel = :

00 -~ 00

00 -~ 00

@ Can it be recovered from 90 % of its samples ?
@ Is the sampling set important?

@ Which sampling sets work and which ones doesn’t?
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Matrix completion

Sampling set (2
The sampling set (2 is defined as Q = {(i, ) | D;; is observed } J

Consider

D=xy xcR"ycR"
Djj = xiyj

o If the sampling set avoids row i, then x; can not be recovered by any
method whatsoever

Observation

@ No columns or rows from D can be avoided in the sampling set

@ There is a need for a characterization of the sampling operator with
respect to the set of matrices that we want to recover
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Matrix completion

@ To recover a low rank matrix, this matrix cannot be in the null space of
the sampling operator

o If the singular vectors of D = USV are highly concentrated, then D is
more likely to be in the null space of a given sampling operator

D
u
i i
| | 11 i i
| S VT
— = * n b3 | wl 1 1 1 (L]}
E rxr rxn
mxn mxr

o]
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Matrix completion

Intuition
o the singular vectors need to be sufficiently spread, i.e. uncorrelated with

the standar basis in order to minimize the number of observations needed
to recover a low rank matrix

Coherence of a subspace

Let U be a subspace of R" of dimension r and Py be the orthogonal projection
onto U. Then the coherence of U is defined to be

n
w(U) = ;lmax HPUe,||

Observations

@ The minimum value that ;(U) can achieve is 1 for example if U is
spanned by vectors whos entries all have magnitude 1/+/n
@ The largest possible value for ;(U) is n/r corresponding to a subspace

that contains a standard basis element.
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Matrix completion

1o coherence

A matrix D = Zlg k<r Ukukv,{ is po coherent if for some positive 1
max(u(U), p(V)) < po

(1 coherence

A matrix D = Y7, oxiv] has p; coherence if

UV || < p1v/7/mn

for some 1 >0

Observation

@ If D is o coherent then it is j; coherent for puy = po+/r
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Matrix completion

Theorem

Let D € R™*" of rank r be (110, f41)-coherent and let N = max(m, n). If we
observe M entries of D with locations sampled uniformly at random. Then
there exist constants C and c¢ such that if

M > C max(, g ju1, HoN"/*)Nr (BlogN)

for some 3 > 2, then the minimizer of (6) is unique and equal to D with
probability at least 1 — cn~?. If in addition r < o IN'/5 then the number of
observations can be improved to

M > CuoN®r(BlogN)

Candes, EJ. and Recht, B. “Exact matrix completion via convex optimization”, Foundations of Computational Mathematics 2009

o]
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Matrix completion

Recovery performance
05

0.4

0.3

Ps

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5
rank(Lo)/ n

Figure: The x axis corresponds to rank(A)/min{m,n} and the y axis to ps = | — M /mn (probability that
an entry is omited from the observations)

Emmanuel J. Candes, Xiaodong Li, Yi Ma, John Wright “Robust Principal Component Analysis?” =]

http://arxiv.org/abs/0912.3599
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Matrix completion

Other bounds on number of meassurements and sampling operators

o

¢ 66 ¢ o ¢

Emmanuel J. Candes, Xiaodong Li, Yi Ma, John Wright “Rodbust Principal Component Analysis?”
http://arxiv.org/abs/0912.3599

Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo, Alan S. Willsky “Rank-Sparsity Incoherence for Matrix Decomposition”
http://arxiv.org/abs/0906.2220

Zihan Zhou, Xiaodong Li, John Wright, Emmanuel Candes, Yi Ma “Stable Principal Component Pursuit”
http://arxiv.org/abs/1001.2363

Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh “Matrix Completion from a Few Entries”
http://arxiv.org/abs/0901.3150

Sahand Negahban, Martin J. Wainwright “Restricted strong convexity and weighted matrix completion: Optimal bounds with noise”
http://arxiv.org/abs/1009.2118v2

Yonina C. Eldar, Deanna Needell, Yaniv Plan “Unicity conditions for low-rank matrix recovery”
http://arxiv.org/abs/1103.5479

]
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