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Applications in CS

Single Pixel Camera
Compressive Spectral Imaging
Random Convolution Imaging
Random Demodulator
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Imaging as the Origins of CS

Magnetic Resonance Imaging
o MRI measures frequency domain image samples
e Fourier coefficients are sparse
@ Inverse Fourier transform produces MRI image
@ Time of acquisition is a key problem in MRI

Coefficients in Frequency MRI Image

M. Lustig, D. Donoho and J. M. Pauly. Sparse MRI: the appigzabf compressive sensing for rapid MRl imaging
Magnetic Resonance in Medicine. Vol. 58. 1182-1195. 2007.
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MRI Reconstruction

Space Frequency

@ Want to speed up MRI by sampling less. IlNd&y N image

o 22 radial lines
e N Fourier samples for each line
o If N = 1024, 98% of the Fourier coefficients are not sampled

=
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Reconstruction Example

Phanton Image Fourier Domain Samples

Backprojection Rec. Image (min TV)

]
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MRI Reconstruction: Formulation Problem

@ Reconstruction by minimization of total variatigmin-TV) with
quadratic constrainfs

min[Xn st [[2x — Y < e

x is the unknown image

¢ = Fy, is the partial Fourier matrix

y is the partial Fourier coefficients

IX[lrv = 32 1Vx(i, )| where

|VX(i,j)| is the Euclidean norm ofVx(i,])

@ The total variation of the image(||x||rv) is the sum of the
magnitudes of the gradient.

¢ ¢ ¢ ¢

=

T E. candes, J. Romberg and T. Tao "Stable Signal Recoveny lincomplete and Inaccurate Measurements.” Comm. on
Pure and App. Math. Vol.59,No.8, 2006.
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Single Pixel Camera

@ Obtain an image by a single photo detector.

single optical
detector

Lew-cost, fast, sensitive
optical detection

N

" *~ array of moveable
= mirrors

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kedlyd R. Baraniuk. "Single-Pixel Imaging via Compressivenéng.” IEEE%
Signal Processing Magazine. 2008.
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Single Pixel Camera at UD Lab.

Focusing lens

/"4 Single pixel detector

©
%
Q
Single pixel photo detector, J
cusing lens

@ Incident light field (corresponding to the desired imagergftected off
a digital micro-mirror device (DMD) array.

@ The mirror orientations are defined by the entry of the mathria
patterns(BX).

@ Each different mirror pattern produces a voltage at thelsipgotodiode
(PD) that corresponds to one measurement.

D ~a 2
: ” = -
Iréa‘g'\rjg target o
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Single Pixel Camera at UD Lab.

3 by 4 mirror 2 by 2 mirror 1 by 1 mirror
sub-arrays sub-arrays sub-arrays

=
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Single Pixel Camera at UD Lab.

e) f) 9) h)
(a) Original, Sampling with (b) Variable density, (c) Rddi@) Log. spiral. All 30.5% undersampling
ratio. Reconstruction with (e) variable density, (f) rdd{g) log. spiral (h) SBHE.

Z. Wang et al. Variable Density Compressed Image SamplBEEITrans. Image Processing, vol. 19, no. 1, Jan.2010.

-
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Compressive Spectral Imaging

@ Collects spatial information from across the electroméigne
spectrum.

@ Applications, include wide-area airborne surveillanegnote
sensing, and tissue spectroscopy in medicine.

Image ata

Spectra fora
single wavelength

single pixel

Reflectance
Spatial dimension

g HERE

Wavelength Spatial dimension R

at
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Hyper-Spectral Imaging (HSI)

HSI systems collect information as a set of images. Eachémegresents a range of the spectral bands
Images are combined in a three dimensional hyperspecti@lcdhe. Scanning HSI sensors use linear

detector arrays and a mirror that scans in the cross-traiektiin to acquire a 2D multi-band image. The
linear detector array records the spectrum of each growudution cell.

Dispersive optical efement _Imaging lens  Linear deteclor array

Reflected light

Fiight direction

Wavelenght
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Pushbroom HSI sensors

simultaneously. It does not need moving parts for air-bamgpace-borne HSI applications and it has
longer dwell time and improved SNR performance.

A 2D array detector is used so that the spectral informatfdheentire swath width can be collected

=

-

— = 5
Mirrors and slit | Dispersive optical element 1 Imaging lens ' 2D detector array

iedofview .
opade o + field of view
‘-"',’1555’11155%
e < -
Time TR 242 vans
i —
Air-borne HSI system l Y@
 Field of view
e
-
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Compressive Spectral Imaging

Spectral Imaging System - Duke University

Objective Lens

Double Amici
prism

way [ 1

RelayLens

Marlin

Schematic and photo showing the entire CASSI instrument. Left to
right: CCD, Double Amici Prism, Relay Lens, Bandpass Filter, Aperture Code, and
Objective Lens

A. Wagadarikar, R. John, R. Willett, D. Brady. "Single Disper Design for Coded Aperture Snapshot Spectral Imaghpplied Optics, vol.47,
No.10, 2008.
A. Wagadarikar and N. P. Pitsianis and X. Sun and D. J. Bradyleb rate spectral imaging using a coded aperture snappkotral imager.”
Opt. Express, 2009.

=

Compressive Sensing ~ G. Arce Compressive Spectral Imaging Fall, 2011 14 /65



Single Shot Compressive Spectral Imaging

System design

T(x,y) Detector

] array

Coded Dispersive
aperture element

Relay \

Optit i
Imaging Relay ptics  f,(x, ¥, 4)
Optics Optics

fie i) £ A) With linear dispersion: @
o(X. Y5 fleA

fl(x7 Y; )‘) = fO(X7 Y; )‘)T(X7 y)
By d) = [ [ 80¢ = Ix+al = AJ8l — K.Y )edey

= [ [ 50¢ = et @l = 20l8 — 9ol NT(x )Xy

=fo(X+ a(X = Xe), Y; VT(X + a(X = Xe),Y)
=
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Single Shot Compressive Spectral Imaging
Experimental results from Duke University

"REREEE
el ||| |

N

Reconstructed image cube of size:128x128x128.
Measurements Spatial content of the scene in each of 28
spectral channels between 540 and 640nm.

T A Wagadarikar, R. John, R. Willett, D. Brady. "Single Disper Design for Coded Aperture Snapshot Spectral Imaghmplied Optics,
vol.47, No.10, 2008. ]
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Single Shot Compressive Spectral Imaging

Simulation results in RGB

Reconstructed
Image

=
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Single Shot CASSI System

OQutput of
i & CASSl in
Dispersive element kohtcEthe
Code aperture ~ operation ' kol
Complete inside of DMD ’ y
Data Cube ’ ya
- v
Coy) Z J i ]
- /
Y
/‘{
e

Object with spectral information only ifx,, Yo)
Only two spectral component are present in the object

L]
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Single Shot CASSI System

Qutput of
CASSlin
front of the
detector

Dispersive element

Code aperture operation

Complete inside of DMD
Data Cube

Object with spectral information only ifx,, Yo)
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Single Shot CASSI System

OQutput of
5 . CASSlin
Dlsper_swe elemen front of the
Code aperture  operation £ detactoE
Complete inside of DMD e
Data Cube

N \
2 8= LS+ A-IP(px+A-1)

Compress sensing information

One pixel in the detector has information from differentctpa bands
and different spatial locations

=
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Single Shot CASSI System

Two different spectral bands from
two different spatial position Output of
lower compression. CASSlin
front of the
detector

Code aperture
Complete inside of DMD
(,z’yz) Data Cube

Only one spectral bands fron one ‘-
A specific spatial position. No Three different spectral bands
compression, from three different spatial
position. High compression.

Each pixel in the detector has different amount of speatfarmation.
The more compressed information, the more difficult it is to
reconstruct the original data cube. -
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Single Shot CASSI System

Output of
CASSlin
front of the
detector

Dispersive element
Code aperture operation o

Complete inside of DMD

Each row in the data cube produces a compressed measureadpt t
independent in the detector.

=
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Single Shot CASSI System

Output of
Complete CASSlin
Data Cube Dispersive element front of the
Code aperture  operation detector

inside of DMD

14 spectral

unknowns 9 equations

Undetermined equation system:

Unknowns= N x N x M and EquationsN x (N + M — 1) -
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Single Shot CASSI System

. - OQutput of
Complete Dispersive element CASSI in

Code aperture "

Data Cube operation

inside of DMD " p frantot the
detector £

@ Complete data cube 6 bands

@ The dispersive element shifts each spectral band in on@kpat
unit

@ In the detector appear the compressed and modulated dpectra
component of the object

@ At most each pixel detector has information of six spectral
components
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Single Shot CASSI System

Reconstructed
- Data Cube
Compressive z
sensing
reconstruction - -
algorithm

We used thé; — /s reconstruction algorithri

's.J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky. "An értor-point method for large scale L1 regularized leaseses.” IEEE
Journal of Selected Topics in Signal Processing, vol.1606-617, 2007.
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Coded Aperture Snapshot Spectral Image Syst
(CASS )@

. Code
Advantages: paten Dispersive
. . . erture A\
@ Enables compressive spectral imaging A o [ Fement

@ Simple F
@ Low cost and complexity

. . . Objec}
Limitations:

@ Excessive compression \ /

@ Does not permit a controllable SNR

@ May suffer low SNR

*]

Does not permit to extract a specific subset of 9m = Xk:f(erk)nkP(erk)n + Wam
spectral bands

\/ & /| FocalPlane
\/ { /]
%ﬁ / // Array

= (Hf)am + Wom = (HW6)nm + Wnm

A. Wagadarikar, R. John, R. Willett, and D. Brady. "Singlsptrser design for coded aperture snapshot spectral igyagppl. Opt.,
Vol.47, No.10, 2008.

il
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Bands Recovery

Typical example of a measurement of CASSI system. A set aidaonstant
spaced between them are summed to form a measurement
=
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Multi-Shot CASSI System

@ Multi-shot compressive spectral imaging system

Advantages: o
attern X Dispersive
@ Multi-Shot CASSI allows control- A - AT
lable SNR T [ ::"',’j B )
@ Permits to extract a hand-picked 1] AR IRVAN:# ,J Fecapane
subset of bands oL ) e
v / 3 il
@ Extend Compressive Sensing spec- \ : ; 7
tral imaging capabilities seatelLneioaur \ &
. e
Gmi = 3 _f(mn+k—1Pi(mn+k—1) MR %
k=1

L
=> f(mn+k—1)Pr(mn+k— 1)Py(mn+k—1)
k=1

Ye, P. et al. "Spectral Aperture Code Design for Multi-Shongpressive Spectral Imaging”. Dig. Holography and Threedénhsional
Imaging, OSA. Apr.2010. =
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Mathematical Model of CASSI System

L
Omi = E fumn+k—1P(mn+k—1)
k=1
L

=> fi(mn+k— 1P (mn+k—1)Py(mn-+k-—1)
k=1
wherei expresseg" shot

Each patterr; is given by, @ Random Pattern (5)
Pi(m, n) = Py(m, n)xP(m, n)
i 1 mod(n,R) = mod(i, R)
Pg(m.n) = { 0 otherwise L
One different code aperture is used for each shot of CAS&imys =
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Code Apertures

.‘1

i

! I Code patterns used

B m in multishot CASSI
E system

=J)

Code patterns used in multishot CASSI system =
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Cube Information and Subsets of Spectral Ban

Spectral Spatial
oo e anen Spectral data cubes L bands R
pixels
Complete subsets of M bands each ofle =
gpfctéa'b RM) Each component of the subs
ata Cube .
is spaced by bands of each other
Spatlal
axis, N
pixels
I Subset 1
M bands
Subset 1 Subset2 Subset3 _ . SubsetR
M=bands  M=bands M=bands M bands
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Cube Information and Subsets of Spectral Ban

Spectral aX|s Spatial
L bands axis, N
p|xe|s
Complete
Spectral
Data Cube
Spatlal
axis, N
pixels
Subset 1 Subset2  Subset3 SubsetR
M=bands M=bands M=bands M=bands

Spectral data cube» L bands R
subsets of M bands each ofle =

RM) Each component of the subs
is spaced by bands of each other

R R

Subset 2
M bands

all
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Multi-Shot CASSI System

I

Aperture
code is fixed

One shot of CASSI
system. One high
compressing

measurement
Firstshot and ~ Second shotand R shotand

Single shot .
Multi-Shot
Compressive Spectral Imaging Fall, 2011 33/65



Single Shot _
Multi-Shot

\1 ] One shot of CASSI Information of all band exists in all shots

1 '] system. One high
| (| compressing

\ measurement. ' ' I
Reconstruction First shot Second shot  Third shot
Algorithm

Re-organlzatlon

'

Bands 1,4,7 Bands 2,5,8 Bands 3,6,9

Reconstructed
spectral data
cube.

=
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Multi-Shot

Reorder Process

Ok = ojafi(M N+ — DPi(mn+j — 1)
= YiLafi(mn+j — DPr(mn+j— )Py(mn+j— 1)
= > mod(n—1,R)=mod(i,R) fk(M N+ k= 1)Pr(m n+j — 1)
= (HkF)mn

First shot  Second shot Third shot

Re-organization
algorithm

Bands 1,4,7 Bands 2,58 Bands 3,6,9

=
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Multi-Shot

Reorder Process - R
I 2/\ 8/‘ ¥
Uk = Sj—afi(Mn+j — DP(mn+j—1) i

. . i . Fi h S d shot Third shot
— S (M) — DP(mnt ] - DPy(mn 1) (e Seen s
. Igoritht
= Zmod(nﬂ.717R):mod(iyR)fk(m, n+k—21)P(mn+j—1) algorithm

= (HkFi)m

y

Bands 1,4,7 Bands 2,58 Bands 36,9
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Multi-Shot

Bands 1,4,7
@ Recover any of the subsets in-
dependently
@ Recover of complete spectral Rt || gt | | e
data cube is not necessary 3 ] 3
V
l
‘»
‘ !
|
High SNR

=
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Multi-Shot

Bands 1,47 Bands 2,5.8 Bands 3,6,9

@ High SNR in each re-
construction

o Enable to use parallel

processing (] ]
Reconstruction || Reconstruction econstruction
o TO use one processor algorithm algorithm F{algortilhn}l
for each independent 4 M '
reconstruction (‘ { ‘
High §NR High—SNR

=
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Single Shot

One shot of CASSI
system. One high
compressing

measurement

L 4

Reconstruction
Algorithm

Reconstructed
| spectral data

Compressive Sensing G. Arce

Compressive Spectral Imaging

Multi-Shot

High SNR

L

nax
Fall, 2011
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Multi-Shot Reconstruction

Reconstructed image of one spec-

tral channel in 256256x24 data cube
from multiple shot measurements.

@ (a) One shot result,
PS\NR = 17.6dB

@ (b) Two shots resul,
PS\R = 25.7dB

PSNR = 294

(b) 2 shots
@ (c) Eight shots result,

@ (d) Original image

(c) 8 shots
Compressive Sensing G. Arce

Compressive Spectral Imaging

(d) Original

L

E DA
Fall, 2011 40/ 65



Multi-Shot Reconstruction

Reconstructed image for dif-
ferent spectral channels in the
256x256x24 data cube from six
shot measurements.

@ (a)Band 1
@ (b)Band 13
@ (c)Band 8
@ (d) Band 20

@ (&) and (b) are recon-
structed from the first
group of measurements

@ (c) and (d) are recon-
structed from the second
group of measurements e

=} = = A2 N Ge

Compressive Sensing  G. Arce Compressive Spectral Imaging Fall, 2011 41/65



Random Convolution Imaging

random convolution H RPMS

J. Romberg. "Compressive Sensing by Random ConvolutidA¥MSJournal on Imaging Science, July,2008.

=
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Random Convolution Imaging

Random Convolution
Circularly convolve signak € R" with a pulseh € R", then

subsample.
The pulse is random, global, and broadband in that its energy
distributed uniformly across the discrete spectrum.

X* h = Hx

where
H=n"Y2F*%F

Ftw — e*j27’l'(t*1)(w71)/n’ 1 S t’w S n

Y as a diagonal matrix whose non-zero entries are the Fourier
transform ofh.
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Random Convolution

w=1
2<w<n/2+1
w=n/2+1

n/2+2<w<n

Compressive Sensing  G. Arce

01 0
0 (o))

On

o1 ~ 1 with equal probability,

o, = &% wheref, ~ Uniform([0, 27]),
on/2+1 ~ 1 with equal probability,

0, = 0p_,,. 2, theconjugate of o, 0.

=
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Random Convolution

Ex: if n= 16i.e. x € R, then

o1 = 1.00004 0.0000, &, = —0.9998+ 0.0194,
03 = 0.6472—0.7623, o, = 0.4288+ 0.9034,

05 = —0.9211+ 0.3894, ¢ = 0.6110+ 0.7918,

o7 = —0.2146+ 0.9767, og = —0.4754+ 0.8794,
09 = 1.00004 0.0000,  o49= —0.4754— 0.8798,
o1 = —0.2146— 0.9767, o1, = —0.6110— 0.7918,
013 = —0.9211— 0.3894, o4 = —0.4288— 0.9034,
015 = —0.6472+ 0.7623 016 = —0.9998— 0.0194,

]
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Random Convolution

H
@ The action oH on a signak can be broken down into a discret
Fourier transform, followed by eandomization of the phase
(with constraints that keep the entriestbfeal), followed by an
inverse discrete Fourier transform.

@ SinceFF* = F*F = nl andXX* =1,

D

H*H = n"'F*S*FF*XF = nl

So convolution withh as a transformation into a random
orthobasis.
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Sampling at Random Locations

Simply observe entries ¢ix at a small number of randomly chosen
locations.
Thus the measurement matrix can be written as

® =RpH

whereR;, is the restriction operator to the get(m random location
subset).

=
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Randomly Pre-Modulated Summation

@ BreakHx into blocks of sizen/m, and summarize each block witt
a single randomly modulated sum. (Assume that m evenly eévit
n.)

o WithB, = {(k—1)n/m+1,... kn/m}, k=1 ... mdenoting
the index set for block, take a measurement by multiplying the
entries ofHx in B¢ by a sequence of random signs and summing

m
Ok = \/;Z ethy
teBy

whereh is thetth row ofH and{asp};:l are independent and take

a values oft:1 with equal probability,/m/nis a renormalization
that makes the norms of thig similar to the norm of théy
]
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Randomly Pre-Modulated Summation

The measurement matrix can be written as

¢ = POH
whereO is a diagonal matrix whose non-zero entries are{th¢, and
P sums the result over each bloBk

Advantage

It “sees” more of the signal than random subsampling wittaowyt
amplification.

-
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Randomly Pre-Modulated Summation

Ymx1 = (I)mxnxnxl = men@nannannxl

where
ones(n/m, 1) 0 0 0
0 ones(n/m, 1) O 0
I:)m><n = 0 0 . 0
0 0 0 ones(n/m1) |
1 0 0 O
0O £1 0 O
@nxn = 0 0 0
0O 0O 0 #1
nxn i
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Randomly Pre-Modulated Summation

Why the summation must be randomly?

Imagine if we were to leave out tHe;} and simply sunHx over each

Bx. This would be equivalent to puttingx through a boxcar filter the
subsampling uniformly.

=
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Main Result

@ The application oH will not change the magnitude of the Fourie
transform, so signals which are concentrated in frequernity w
remain concentrated and signals which are spread out ajll st
spread out.

@ The randomness af will make it highly probable that a signal
which is concentrated in time will not remain so afkgis
applied.

]
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Main Result

A N
(a) (b) ()

(a) A signalx consisting of a single Daubechies-8 wavelet.

(b) Magnitude of the Fourier transforkx.

(c) Inverse Fourier transform after the phase has been naizédd.
Although the magnitude of the Fourier transform is the sasia &),
the signal is now evenly spread out in time.

J. Romberg. "Compressive Sensing by Random ConvolutidAMSJournal on Imaging Science, July,2008.

Compressive Sensing ~ G. Arce Random Convolution Imaging Fall, 2011 53/65
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Application: Fourier Optics

random convolution H RPMS

The computatiord = POH is done entirely in analog; the lenses move the
image to the Fourier domain and back, and spatial light naddeg (SLMs) in
the Fourier and image planes randomly change the phase.

]
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Fourier Optics

The measurement matrix can be written as

o[ o]

minTV(x) subjectto ||&x—y|, <e
X

wheree is a relaxation parameter set at a level commensurate véth 1
noise. The result is shown in (c).

]
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Fourier Optics

If the input signak (x € R™") is two dimensional like an image,g.
n=4,x e R, then, inH = n"Y2F*XF, F is a two dimensional
discrete Fourier transform instead of one dimensidfals a two
dimensional inverse discrete Fourier transform and

011 012 *+* O1n

021 022 -+ Op2n
=

Unl an Unn

whereo,, has the conjugate relation not only in diagonal direction bt
also in row and column direction.

]
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Fourier Optics

If n= 4, Y can be constructed as

—1.0000+ 0.0000 —0.4474—0.8944 —1.0000+ 0.0000 —0.4474-+ 0.8944

—0.2593+ 0.9658  0.5878+0.8090  —0.1072+0.9942  0.8561+ 0.5167
1.0000+ 0.0000 0.9950+ 0.0995  —1.0000+ 0.0000  0.9950— 0.0995

—0.2593—0.9658 0.8561— 0.5164 —0.1072—0.9942  0.5878— 0.8090

-
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Fourier Optics

In & = POH, P sums the results over each bloel. 4 x 4.0 is a
matrix whose entries are independent and take a valug4 evith

equal probability.

If n= 4, then
1 -1 1 -1
1 1 -1 1
=17 1 1 1

1 -1 -1 -1

=
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Fourier Optics

(a) (b) (c)

Fourier optics imaging experiment.
(a) The 256x 256 imagex.

(b) The 256x 256 imageHx.

(c) The 64x 64 imagePdHx.
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(a) (b) {c)

(a) The 256x 256 image we wish to acquire.

(b) High-resolution image pixellated by averaging ovex 4 blocks.
(c) The image restored from the pixellated version in (ks set of
incoherent measurements. The incoherent measuremesiealito

effectively super-resolve the image in (b). -
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Fourier Optics

f)
Pixellated images: (a) 2. (b) 4x 4. (c) 8 x 8. Restored from: (d) X 2 pixellated version. (e) & 4

pixellated version. (f) 8 8 pixellated version. =
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Fourier Optics

e) f)
Pixellated images: (a) 2. (b) 4x 4. (c) 8 x 8. Restored from: (d) X 2 pixellated version. (e) & 4

pixellated version. (f) 8« 8 pixellated version. ©
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Random Convolution Spectral Imaging
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