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Imaging as the Origins of CS

Magnetic Resonance Imaging

MRI measures frequency domain image samples

Fourier coefficients are sparse

Inverse Fourier transform produces MRI image

Time of acquisition is a key problem in MRI

Coefficients in Frequency MRI Image

M. Lustig, D. Donoho and J. M. Pauly. Sparse MRI: the application of compressive sensing for rapid MRI imaging
Magnetic Resonance in Medicine. Vol. 58. 1182-1195. 2007.
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MRI Reconstruction

Space Frequency

Want to speed up MRI by sampling less. In aN by N image
22 radial lines
N Fourier samples for each line
If N = 1024, 98% of the Fourier coefficients are not sampled
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Reconstruction Example

Fourier Domain SamplesPhanton Image

Backprojection Rec. Image (min TV)
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MRI Reconstruction: Formulation Problem

Reconstruction by minimization of total variation(min-TV) with
quadratic constraints†

min
x

‖x‖TV s.t. ‖Φx − y‖2
2 ≤ ǫ

x is the unknown image
Φ = Fp, is the partial Fourier matrix
y is the partial Fourier coefficients
‖x‖TV =

∑

i,j |∇x(i, j)| where
|∇x(i, j)| is the Euclidean norm of∇x(i, j)

The total variation of the imagex (‖x‖TV ) is the sum of the
magnitudes of the gradient.

† E. Candès, J. Romberg and T. Tao ”Stable Signal Recovery from Incomplete and Inaccurate Measurements.” Comm. on
Pure and App. Math. Vol.59,No.8, 2006.
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Single Pixel Camera†

Obtain an image by a single photo detector.

† M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk. ”Single-Pixel Imaging via Compressive Sampling.” IEEE
Signal Processing Magazine. 2008.
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Single Pixel Camera at UD Lab.

Incident light field (corresponding to the desired image ) isreflected off
a digital micro-mirror device (DMD) array.

The mirror orientations are defined by the entry of the modulation
patterns(Bk).

Each different mirror pattern produces a voltage at the single photodiode
(PD) that corresponds to one measurement.
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Single Pixel Camera at UD Lab.

3 by 4 mirror 

  sub-arrays
2 by 2 mirror 

  sub-arrays

1 by 1 mirror 

  sub-arrays
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Single Pixel Camera at UD Lab.

a) b) c) d)

e) f) g) h)

(a) Original, Sampling with (b) Variable density, (c) Radial, (d) Log. spiral. All 30.5% undersampling
ratio. Reconstruction with (e) variable density, (f) radial, (g) log. spiral (h) SBHE.

Z. Wang et al. Variable Density Compressed Image Sampling. IEEE Trans. Image Processing, vol. 19, no. 1, Jan.2010.
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Compressive Spectral Imaging

Collects spatial information from across the electromagnetic
spectrum.

Applications, include wide-area airborne surveillance, remote
sensing, and tissue spectroscopy in medicine.
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Hyper-Spectral Imaging (HSI)

HSI systems collect information as a set of images. Each image represents a range of the spectral bands.
Images are combined in a three dimensional hyperspectral data cube. Scanning HSI sensors use linear
detector arrays and a mirror that scans in the cross-track direction to acquire a 2D multi-band image. The
linear detector array records the spectrum of each ground resolution cell.
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Pushbroom HSI sensors

A 2D array detector is used so that the spectral information of the entire swath width can be collected
simultaneously. It does not need moving parts for air-borneor space-borne HSI applications and it has
longer dwell time and improved SNR performance.

Datacube of the HSI system
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Compressive Spectral Imaging

Spectral Imaging System - Duke University†

† A. Wagadarikar, R. John, R. Willett, D. Brady. ”Single Disperser Design for Coded Aperture Snapshot Spectral Imaging.”Applied Optics, vol.47,
No.10, 2008.
A. Wagadarikar and N. P. Pitsianis and X. Sun and D. J. Brady. ”Video rate spectral imaging using a coded aperture snapshotspectral imager.”
Opt. Express, 2009.
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Single Shot Compressive Spectral Imaging

System design

With linear dispersion:

f1(x, y; λ) = f0(x, y; λ)T(x, y)

f2(x, y; λ) =

∫ ∫

δ(x′ − [x + α(λ − λc)]δ(y′ − y)f1(x
′, y′;λ))dx′dy′

=

∫ ∫

δ(x′ − [x + α(λ − λc)]δ(y′ − y)f0(x
′, y′;λ)T(x, y))dx′dy′

= f0(x + α(λ− λc), y; λ)T(x + α(λ − λc), y)
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Single Shot Compressive Spectral Imaging

Experimental results from Duke University

Original Image

Measurements
Reconstructed image cube of size:128x128x128.

Spatial content of the scene in each of 28 

spectral channels between 540 and 640nm. 

† A. Wagadarikar, R. John, R. Willett, D. Brady. ”Single Disperser Design for Coded Aperture Snapshot Spectral Imaging.”Applied Optics,
vol.47, No.10, 2008.
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Single Shot Compressive Spectral Imaging

Simulation results in RGB

Original Image Measurements

R G B Reconstructed

       Image
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Single Shot CASSI System

Object with spectral information only in(xo, yo)
Only two spectral component are present in the object
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Single Shot CASSI System

Object with spectral information only in(xo, yo)
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Single Shot CASSI System

One pixel in the detector has information from different spectral bands
and different spatial locations
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Single Shot CASSI System

Each pixel in the detector has different amount of spectral information.
The more compressed information, the more difficult it is to
reconstruct the original data cube.
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Single Shot CASSI System

Each row in the data cube produces a compressed measurement totally
independent in the detector.
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Single Shot CASSI System

Undetermined equation system:
Unknowns= N × N × M and Equations:N × (N + M − 1)
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Single Shot CASSI System

Complete data cube 6 bands

The dispersive element shifts each spectral band in one spatial
unit

In the detector appear the compressed and modulated spectral
component of the object

At most each pixel detector has information of six spectral
components
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Single Shot CASSI System

We used theℓ1 − ℓs reconstruction algorithm†.

† S. J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky. ”An interior-point method for large scale L1 regularized least squares.” IEEE
Journal of Selected Topics in Signal Processing, vol.1, pp.606-617, 2007.
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Coded Aperture Snapshot Spectral Image System
(CASSI)(a)

Advantages:
Enables compressive spectral imaging

Simple

Low cost and complexity

Limitations:
Excessive compression

Does not permit a controllable SNR

May suffer low SNR

Does not permit to extract a specific subset of
spectral bands

gmn =
∑

k

f(m+k)nkP(m+k)n + wnm

= (Hf )nm + wnm = (HWθ)nm + wnm

A. Wagadarikar, R. John, R. Willett, and D. Brady. ”Single disperser design for coded aperture snapshot spectral imaging.” Appl. Opt.,
Vol.47, No.10, 2008.
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Bands Recovery

Typical example of a measurement of CASSI system. A set of bands constant
spaced between them are summed to form a measurement
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Multi-Shot CASSI System

Multi-shot compressive spectral imaging system

Advantages:
Multi-Shot CASSI allows control-
lable SNR

Permits to extract a hand-picked
subset of bands

Extend Compressive Sensing spec-
tral imaging capabilities

gmni =
L

∑

k=1

fk(m, n + k − 1)Pi(m, n + k − 1)

=
L

∑

k=1

fk(m, n + k − 1)Pr(m, n + k − 1)Pi
g(m, n + k − 1)

Ye, P. et al. ”Spectral Aperture Code Design for Multi-Shot Compressive Spectral Imaging”. Dig. Holography and Three-Dimensional
Imaging, OSA. Apr.2010.
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Mathematical Model of CASSI System

gmni =

L
∑

k=1

fk(m, n + k − 1)Pi(m, n + k − 1)

=

L
∑

k=1

fk(m, n + k − 1)Pr(m, n + k − 1)Pi
g(m, n + k − 1)

wherei expressesith shot

Each patternPi is given by,

Pi(m, n) = Pi
g(m, n)xPr(m, n)

Pi
g(m, n) =

{

1 mod(n,R) = mod(i,R)
0 otherwise

  

One different code aperture is used for each shot of CASSI system
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Code Apertures

Code patterns used 

in multishot CASSI 

system

Code patterns used in multishot CASSI system
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Cube Information and Subsets of Spectral Bands

Subset 1 

M=bands

Subset 2 

M=bands

Subset 3 

M=bands
... Subset R 

M bands

Spatial 

axis, N 

pixels

Spatial 

axis, N 

pixels

Spectral axis, 

L bands

Complete 

Spectral 

Data Cube

Spectral data cube→ L bands R
subsets of M bands each one(L =
RM) Each component of the subset
is spaced byR bands of each other

R R

Subset 1 

M bands
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Cube Information and Subsets of Spectral Bands

Subset 1 

M=bands 

Subset 3 

M=bands
Subset 2 

M=bands
... Subset R 

M=bands

Spatial 

axis, N 

pixels

Spatial 

axis, N 

pixels

Spectral axis, 

L bands

Complete 

Spectral 

Data Cube

Spectral data cube→ L bands R
subsets of M bands each one(L =
RM) Each component of the subset
is spaced byR bands of each other

R R

Subset 2 

M bands

Compressive Sensing G. Arce Compressive Spectral Imaging Fall, 2011 32 / 65



Multi-Shot CASSI System

Single shot

First shot  and 

measurement 

Second shot and

measurement 

R shot and 

measurement

Multi-Shot
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Single Shot

Reconstruction 

Algorithm

One shot of CASSI 

system. One high 

compressing 

measurement.

Reconstructed 

spectral data 

cube.                 

Multi-Shot

Re-organization 

algorithm

Bands 1,4,7 Bands 2,5,8 Bands 3,6,9

First shot Second shot Third shot

Information of all band exists in all shots

Compressive Sensing G. Arce Compressive Spectral Imaging Fall, 2011 34 / 65



Reorder Process

g′mnk =
∑L

j=1fj(m, n + j − 1)Pi(m, n + j − 1)

=
∑L

j=1fj(m, n + j − 1)Pr(m, n + j − 1)Pi
g(m, n + j − 1)

=
∑

mod(n+j−1,R)=mod(i,R)fk(m, n + k − 1)Pr(m, n + j − 1)

= (HkFk)mn

Multi-Shot

Re-organization 

algorithm

First shot Second shot Third shot

Bands 1,4,7 Bands 2,5,8 Bands 3,6,9

R R R
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Reorder Process

g′mnk =
∑L

j=1fj(m, n + j − 1)Pi(m, n + j − 1)

=
∑L

j=1fj(m, n + j − 1)Pr(m, n + j − 1)Pi
g(m, n + j − 1)

=
∑

mod(n+j−1,R)=mod(i,R)fk(m, n + k − 1)Pr(m, n + j − 1)

= (HkFk)mn

Multi-Shot

Re-organization 

algorithm

First shot Second shot Third shot

Bands 1,4,7 Bands 2,5,8 Bands 3,6,9

R
R

R
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Recover any of the subsets in-
dependently

Recover of complete spectral
data cube is not necessary

Multi-Shot
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High SNR in each re-
construction

Enable to use parallel
processing

To use one processor
for each independent
reconstruction

Multi-Shot
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Single Shot

Reconstruction 

Algorithm

One shot of CASSI 

system. One high 

compressing 

measurement.

Reconstructed 

spectral data 

cube.                 

Multi-Shot
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Multi-Shot Reconstruction

Reconstructed image of one spec-
tral channel in 256x256x24 data cube
from multiple shot measurements.

(a) One shot result,PSNR
PSNR = 17.6dB

(b) Two shots result,PSNR
PSNR = 25.7dB

(c) Eight shots result,PSNR
PSNR = 29.4

(d) Original image

(a) One shot (b) 2 shots

(c) 8 shots (d) Original
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Multi-Shot Reconstruction

Reconstructed image for dif-
ferent spectral channels in the
256x256x24 data cube from six
shot measurements.

(a) Band 1

(b) Band 13

(c) Band 8

(d) Band 20

(a) and (b) are recon-
structed from the first
group of measurements

(c) and (d) are recon-
structed from the second
group of measurements
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Random Convolution Imaging

J. Romberg. ”Compressive Sensing by Random Convolution.” SIAM Journal on Imaging Science, July,2008.
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Random Convolution Imaging

Random Convolution
Circularly convolve signalx ∈ R

n with a pulseh ∈ R
n, then

subsample.
The pulse is random, global, and broadband in that its energyis
distributed uniformly across the discrete spectrum.

x ∗ h = Hx

where
H = n−1/2F∗ΣF

Ft,ω = e−j2π(t−1)(ω−1)/n , 1 ≤ t, ω ≤ n

Σ as a diagonal matrix whose non-zero entries are the Fourier
transform ofh.
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Random Convolution

Σ =











σ1 0 · · ·
0 σ2 · · ·
...

. . .
σn











ω = 1 : σ1 ∼ ±1 with equal probability,
2 ≤ ω < n/2+ 1 : σω = ejθω , where θω ∼ Uniform([0, 2π]),

ω = n/2+ 1 : σn/2+1 ∼ ±1 with equal probability,
n/2+ 2 ≤ ω ≤ n : σω = σ∗

n−ω+2, the conjugate of σn−ω+2.
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Random Convolution

Ex: if n = 16 i.e. x ∈ R16, then

σ1 = 1.0000+ 0.0000i, σ2 = −0.9998+ 0.0194i,
σ3 = 0.6472− 0.7623i, σ4 = 0.4288+ 0.9034i,
σ5 = −0.9211+ 0.3894i, σ6 = 0.6110+ 0.7916i,
σ7 = −0.2146+ 0.9767i, σ8 = −0.4754+ 0.8798i,
σ9 = 1.0000+ 0.0000i, σ10 = −0.4754− 0.8798i,
σ11 = −0.2146− 0.9767i, σ12 = −0.6110− 0.7916i,
σ13 = −0.9211− 0.3894i, σ14 = −0.4288− 0.9034i,
σ15 = −0.6472+ 0.7623, σ16 = −0.9998− 0.0194i,
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Random Convolution

H
The action ofH on a signalx can be broken down into a discrete
Fourier transform, followed by arandomization of the phase
(with constraints that keep the entries ofH real), followed by an
inverse discrete Fourier transform.

SinceFF∗ = F∗F = nI andΣΣ∗ = I,

H∗H = n−1F∗Σ∗FF∗ΣF = nI

So convolution withh as a transformation into a random
orthobasis.
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Sampling at Random Locations

Simply observe entries ofHx at a small number of randomly chosen
locations.
Thus the measurement matrix can be written as

Φ = RΩH

whereRΩ is the restriction operator to the setΩ (m random location
subset).
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Randomly Pre-Modulated Summation

BreakHx into blocks of sizen/m, and summarize each block with
a single randomly modulated sum. (Assume that m evenly divides
n.)

With Bk = {(k − 1)n/m + 1, . . . , kn/m}, k = 1, . . . ,m denoting
the index set for blockk, take a measurement by multiplying the
entries ofHx in Bk by a sequence of random signs and summing.

φk =

√

m
n

∑

t∈Bk

εtht

whereht is thetth row of H and{εp}
n
p=1 are independent and take

a values of±1 with equal probability,
√

m/n is a renormalization
that makes the norms of theφk similar to the norm of theht
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Randomly Pre-Modulated Summation

The measurement matrix can be written as

Φ = PΘH

whereΘ is a diagonal matrix whose non-zero entries are the{εp}, and
P sums the result over each blockBk.

Advantage

It “sees” more of the signal than random subsampling withoutany
amplification.

Compressive Sensing G. Arce Random Convolution Imaging Fall, 2011 49 / 65



Randomly Pre-Modulated Summation

ym×1 = Φm×nxn×1 = Pm×nΘn×nHn×nxn×1

where

Pm×n =











ones(n/m, 1) 0 0 0
0 ones(n/m, 1) 0 0

0 0
... 0

0 0 0 ones(n/m, 1)











m×n

Θn×n =











±1 0 0 0
0 ±1 0 0

0 0
... 0

0 0 0 ±1











n×n
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Randomly Pre-Modulated Summation

Why the summation must be randomly?

Imagine if we were to leave out the{εt} and simply sumHx over each
Bk. This would be equivalent to puttingHx through a boxcar filter then
subsampling uniformly.
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Main Result

The application ofH will not change the magnitude of the Fourier
transform, so signals which are concentrated in frequency will
remain concentrated and signals which are spread out will stay
spread out.

The randomness ofΣ will make it highly probable that a signal
which is concentrated in time will not remain so afterH is
applied.
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Main Result

(a) A signalx consisting of a single Daubechies-8 wavelet.
(b) Magnitude of the Fourier transformFx.
(c) Inverse Fourier transform after the phase has been randomized.
Although the magnitude of the Fourier transform is the same as in (b),
the signal is now evenly spread out in time.

J. Romberg. ”Compressive Sensing by Random Convolution.” SIAM Journal on Imaging Science, July,2008.
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Application: Fourier Optics

The computationΦ = PΘH is done entirely in analog; the lenses move the
image to the Fourier domain and back, and spatial light modulators (SLMs) in
the Fourier and image planes randomly change the phase.
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Fourier Optics

The measurement matrix can be written as

Φ =

[

P
PΘH

]

min
x

TV(x) subject to ‖Φx − y‖2 ≤ ε

whereε is a relaxation parameter set at a level commensurate with the
noise. The result is shown in (c).
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Fourier Optics

If the input signalx (x ∈ Rn×n) is two dimensional like an image,e.g.
n = 4, x ∈ R4, then, inH = n−1/2F∗ΣF, F is a two dimensional
discrete Fourier transform instead of one dimensional,F∗ is a two
dimensional inverse discrete Fourier transform and

Σ =











σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

...
. . .

...
σn1 σn2 . . . σnn











whereσω has the conjugate relation not only in diagonal direction but
also in row and column direction.
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Fourier Optics

If n = 4,Σ can be constructed as








−1.0000+ 0.0000i −0.4474− 0.8944i −1.0000+ 0.0000i −0.4474+ 0.8944i
−0.2593+ 0.9658i 0.5878+ 0.8090i −0.1072+ 0.9942i 0.8561+ 0.5167i
1.0000+ 0.0000i 0.9950+ 0.0995i −1.0000+ 0.0000i 0.9950− 0.0995i
−0.2593− 0.9658i 0.8561− 0.5167i −0.1072− 0.9942i 0.5878− 0.8090i








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Fourier Optics

In Φ = PΘH, P sums the results over each blocke.g. 4× 4. Θ is a
matrix whose entries are independent and take a values of±1 with
equal probability.
If n = 4, then

Θ =









1 −1 1 −1
1 1 −1 1
−1 −1 1 1
1 −1 −1 −1








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Fourier Optics

Fourier optics imaging experiment.
(a) The 256× 256 imagex.
(b) The 256× 256 imageHx.
(c) The 64× 64 imagePθHx.
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(a) The 256× 256 image we wish to acquire.
(b) High-resolution image pixellated by averaging over 4× 4 blocks.
(c) The image restored from the pixellated version in (b), plus a set of
incoherent measurements. The incoherent measurements allow us to
effectively super-resolve the image in (b).
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Fourier Optics

C)b)a)

d) e) f)
Pixellated images: (a) 2× 2. (b) 4× 4. (c) 8× 8. Restored from: (d) 2× 2 pixellated version. (e) 4× 4

pixellated version. (f) 8× 8 pixellated version.
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Fourier Optics

c)

d) e) f)

b)a)

Pixellated images: (a) 2× 2. (b) 4× 4. (c) 8× 8. Restored from: (d) 2× 2 pixellated version. (e) 4× 4

pixellated version. (f) 8× 8 pixellated version.
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Random Convolution Spectral Imaging
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