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Compressive Sensing Signal Reconstruction

Goal:Recover signalx from measurementsy

Problem:Random projectionΦ not full rank (ill-posed inverse
problem)

Solution:Exploit the sparse/compressible geometry of acquired
signalx

y Φ x
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Suppose there is aS-sparse solution toy = Φx

Combinatorial optimization problem

(P0) min
x

‖x‖0 s.t. Φx = y

Convex optimization problem

(P1) min
x

‖x‖1 s.t. Φx = y

If 2δ3s + δ2s ≤ 1, the solutions(P0) and(P1) are the same†.
† E. Candès.”Compressive Sampling”. Proc. Intern. Congress of Math., China, April 2006.
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The Geometry of CS

Sparse signals have few non-zero coefficients

1-sparse 2-sparse
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ℓ0 Recovery

Reconstruction should be

Consistent with the model:x as sparse as possible min‖x‖0

Consistent with the measurements:y = Φx
X 1

X 3

R3

X 2
x

x : y = Φx
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ℓ0 Recovery

min
x

‖x‖0 s.t. Φx = y

‖x‖0 number of nonzero elements

Sparsest signal consistent with the measurementsy

Requires onlyM << N measurements

Combinatorial NP-hard problem: forx ∈ R
N with sparsityS, the

complexity isO(NS)

Too slow for implementation
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ℓ1 Recovery

A more realistic model

min
x

‖x‖1 s.t. Φx = y

Theℓ1 norm also induces sparsity.

The constraint is given byy = Φx.

x : y = Φx

x

X 1

X 3

R3

X 2
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Phase Transition Diagram

In theℓ1 minimization, there is a defined region on(M/N, S/M) which
ensures successful recovery
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δ = M/N is a normalized measure of the problem indeterminacy.

ρ = S/M is a normalized measure of the sparsity.

Red region- unsuccessful recovery or exact reconstruction typically
fails.

Blue region- successful recovery or exact reconstruction typically
occurs.
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ℓ2 Recovery

min
x

‖x‖2 s.t. Φx = y

Least square solutionx = (ΦTΦ)−1ΦTy

Solved by using quadratic programming:
X Least squares solution
X Interior-point methods

Solution is almost never sparse

X 2

R3

X 1

x

x'

X 3

x : y = Φx
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ℓ2 Recovery

Problem:smallℓ2 does not imply sparsity

x

x'

x′ has smallℓ2 norm but it is not sparse
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CS Example in the Time Domain

 Random

Projection

         Nonlinear

     Reconstruction

min ||x||1   s.t. 

Time domain sparse signal

Error signal

Φ y =     x

Φ y =     x
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CS Example in the Wavelet Domain

Reconstruction of an image (N = 1 megapixel) sparse
(S = 25, 000) in the wavelet domain fromM = 96, 000
incoherent measurements.†

Original (25K wavelets)                 Recovered Image
† E. J. Candès and J. Romberg ”Sparsity and Incoherence in Compressive Sampling.” Inverse Problems.

vol.23, pp.969-985. 2006.
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Reconstruction Algorithms

Different formulations and implementations have been proposed
to find the sparsestx subject toy = Φx

Difficult to compare results obtained by different methods
Those are broadly classified in:
X Regularization formulations (Replace combinatorial problem with

convex optimization)
X Greedy algorithms (Iterative refinement of a sparse solution)
X Bayesian framework (Assume prior distribution of sparse

coefficients)
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Greedy Algorithms

Iterative algorithms that select an optimal subset of the desired signalx
at each iteration. Some examples:

Matching Pursuit (MP) minx ‖x‖0 s.t. Φx = y

Orthogonal Matching Pursuit(OMP) minx ‖x‖0 s.t. Φx = y

Compressive Sampling Matching Pursuit
(CoSaMP) minx ‖y − Φx‖2

2 s.t. ‖x‖0 ≤ S

Iterative Hard Thresholding (ITH) minx ‖y − Φx‖2
2 s.t. ‖x‖0 ≤ S

Weighted Median Regression minx ‖y − Φx‖1 + λ‖x‖0

Those methods build an approximation of the sparse signal ateach iteration.
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Matching Pursuit (MP)

Sparse approximation algorithm used to find the solution to

min
x

‖x‖0 s.t. Φx = y

Key ideas:

Measurementsy = Φx are composed of sum ofS columns ofΦ.

The algorithm needs to identify whichS columns contribute toy.
y x

S
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Matching Pursuit (MP) Algorithm

Input and Observation vectory
Initialize Measurement MatrixΦ
Parameters Initial Solutionx̂(0) = 0

Initial residualr(0) = y

Iteration k

Compute the current error:c(k)
j = 〈φj, r(k)〉

Identify the index̂j such that:̂j = maxj |c
(k)
j |

Updatêx(k)

ĵ
= x̂(k−1)

ĵ
+ c(k)

ĵ

Updater(k) = r(k−1) − c(k)

ĵ
φ̂j

D. Donoho et. al, SparseLab Version 2.0. 2007.
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MP Reconstruction Example
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MP Reconstruction Example
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Orthogonal Matching Pursuit (MP)

Sparse approximation algorithm used to find the solution to

min
x

‖x‖0 s.t. Φx = y

Key ideas:

Measurementsy = Φx are composed of sum ofS columns ofΦ.

The algorithm needs to identify whichS columns contribute toy.
y x

S
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Orthogonal Matching Pursuit (OMP) Algorithm

Input and Observation vectory
Initialize Measurement MatrixΦ
Parameters Initial Solutionx̂(0) = 0

Initial Solution SupportS(0)=support{x̂(0)} = 0
Initial residualr(0) = y

Iteration k Compute the current error:c(k)
j = 〈φj, r(k)〉

Identify the index̂j such that:̂j = maxj |c
(k)
j |

Update the supportS(k)=S(k−1)∪̂j
Update the matrixΦS(k) = [0, ..., φi, ..., 0, ..., φj, ..., 0]
Update the solution̂x(k) = (ΦT

S(k)ΦS(k))−1ΦT
S(k)y

Updater(k) = y − ΦS(k) x̂(k)

D. Donoho et. al, SparseLab Version 2.0. 2007.
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Remarks on the OMP Algorithm

S(k) is the support of̂x at the iterationk andΦS(k) is the matrix that
contains the columns fromΦ that belongs to this support.

The updated solution gives thex̂(k) that solves the minimization
problem‖ΦS(k)x − y‖2

2. The solution is given by

ΦT
S(k)(ΦS(k)x − y) = 0

−ΦT
S(k)r(k) = 0

This solution shows that the columns inΦT
S(k) are orthogonal tor(k).
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OMP Reconstruction Example
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OMP Reconstruction Example
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Iterative Hard Thresholding

Sparse approximation algorithm that solves the problem

min
x

‖y − Φx‖2
2 + λ‖x‖0.

Iterative algorithm that computes a descent direction given by the
gradient of theℓ2-norm.

The solution at each iteration is given by finding:

x(k+1) = Hλ(x(k) + ΦT(y − Φx(k)))

Hλ is a non-linear operator that only retains the coefficients with
the largest magnitude.

† T. Blumensath and M. Davies. ”Iterative Hard Thresholding for Compressed Sensing.” Journal of Appl. Comp. Harm.
Anal. vol. 27, no. 3, pp. 265-274, 2009.
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Iterative Hard Thresholding

Input and Observation vectory
Initialize Measurement MatrixΦ
Parameters x̂(0) = 0

Iteration k
Compute an update:a(k+1) = x(k) +ΦT(y − Φx(k)))

Select the largest elements:x(k+1) = Hλ(a(k+1)).
Pull other elements toward zero.

D. Donoho et. al, SparseLab Version 2.0. 2007.
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ITH Reconstruction Example
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ITH Reconstruction Example
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Weighted Median Regression Reconstruction
Algorithm

When the random measurements are corrupted by noise the most
widely used CS reconstruction algorithms solve the problem

min
x

‖y − Φx‖2
2 + τ‖x‖1.

whereτ is the regularization parameter that balances the conflicting
task of minimizing theℓ2 norm while yielding a sparse solution.

As τ increases the solution is sparser.

As τ decreases the solution approximates to least square solution.
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In the solution to the problem

min
x

‖y − Φx‖2
2 + τ‖x‖1.

Theℓ2 term is the data fitting term, induced by the Gaussian
assumption of the noise contamination.

Theℓ1 term is the sparsity promoting term.

However, theℓ2 term leads to the least square solution which is known
to be very sensitive to high-noise level and outliers present in the
contamination.
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Example of signal reconstruction when outliers are presentin the
random projections
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To mitigate the effect of the impulsive noise in the compressive
measurements, a more robust norm for the data-fitting term is

min
x

‖y − Φx‖1︸ ︷︷ ︸+ λ‖x‖0︸ ︷︷ ︸ (1)

Data fitting Sparsity

LAD offers robustness to a broad class of noise, in particular to heavy tail
noise.

Optimum under the maximum likelihood principle when the underlying
contamination follows a Laplacian-distributed model.

† J. L. Paredes and G. Arce. ”Compressive Sensing Signal Reconstruction by Weighted Median Regression Estimate.”
ICASSP 2010.
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Drawbacks:

Solvingℓ0-LAD optimization isNp-hard problem.

Direct solution is unfeasible even for modest-sized signal.

To solve this multivariable minimization problem:

Solve a sequence of scalar minimization subproblems.

Each subproblem improves the estimate of the solution by
minimizing along a selected coordinate with all other coordinates
fixed.

Closed form solution exists for the scalar minimization problem.
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Signal reconstruction

x̂ = min
x

M∑

i=1

|(y − Φx)i|+ λ‖x‖0

The solution usingCoordinate Descent Methodis given by

x̂n = min
xn

M∑

i=1

|yi −

N∑

j=1,j6=n

φi,jxj − φi,nxn|+ λ|xn|0 +

N∑

j=1,j6=n

λ|xj|0

x̂n = min
xn

M∑

i=1

|φin||
yi −

∑N
j=1,j6=n φi,jxj

φin
− xn|

︸ ︷︷ ︸
+ λ|xn|0︸ ︷︷ ︸

Weighted least absolute deviation Regulariz.

Q(xn)
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The solution to the minimization problem is given by

x̂n = min
xn

Q(xn) + λ|xn|0

x̃n = MEDIAN(|φin| ⋄
yi −

∑N
j=1,j6=n φi,jxj

φin
) |Mi=1; n = 1, 2, ...,N

At kth iteration:

x̂(k)n =

{
x̃n, if Q(x̃n) + λ ≤ Q(0)
0, otherwise
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The iterative algorithm detects the non-zero entries of thesparse vector
by

Robust signal estimation: computing a rough estimate of the
signal that minimizes the LAD by the weighted median operator.

Basis selection problem: applying a hard-threshold operator on
the estimated values.

Removing the entry’s influence from the observation vector.

Repeating these steps again until a performance criterion is
reached.

IterationOriginal Signal
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Input and Observation vectory
Initialize Measurement MatrixΦ
Parameters Number of IterationsK0

Iteration counter:k = 1
Hard-thresholding value:λ = λi

Estimation atk = 1, x̂(0) = 0
Iteration
Step A For then-th entry ofx, n = 1, 2, ...,N compute

x̃n = MEDIAN

{
φin ⋄

yi−
∑N

j=1;j 6=n φijx̂j

φin

}
|ki=1

x̂(k)
n =

{
x̃n, if Q(x̃n) + λ ≤ Q(0)
0, otherwise,

Step B
Update the hard-thresholding parameter and the estimationof x
x(k+1) = x(k)

λ = λiβ
k

Step C
Check stopping criterium
If k ≤ K0 then setk = k + 1 and go to Step A; otherwise, end.

Output
Recovered sparse signalx̂
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Example Signal Reconstruction from Projections
in Non-Gaussian Noise

Original signal and 

 noisy projections

CoSaMP L1-Ls

Matching Pursuit Weighted Median
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Performance Comparisons

Exact reconstruction for noiseless signals (normalized error is smaller
than 0.1% of the signal energy).
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Performance Comparisons

SNR vs. Sparsity for different types of noise
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Convex Relaxation Approach:

Theℓ0-LAD problem can be relaxed by solving the following problem

min
x

‖y − Φx‖1︸ ︷︷ ︸+ λ‖x‖1︸ ︷︷ ︸ . (2)

Data fitting Sparsity

This problem is convex and can be solved by linear programming.

ℓ1-norm may not induce the necessary sparsity in the solution.

It requires more measurements to achieve a target reconstruction
error.
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The solution for the problem

x̂ = min
x

M∑

i=1

|yi − Φix|+ λ‖x‖1

is given by

x̂ = MEDIAN(λ ⋄ 0, |φ1| ⋄
y1

φ1
, ..., |φM| ⋄

yM

φM
).

The regularization process induced by theℓ1-term leads to a
weighting operation with the zero-valued sample in the WM
operation.

Large values of the regularization parameter implies largevalue
for the weight corresponding to the zero-valued sample (this
favors sparsity).

The solution is biased.
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