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Compressive Sensing Signal Reconstruction

@ Goal: Recover signak from measurements

@ Problem:Random projectio® not full rank (ill-posed inverse
problem)

@ Solution: Exploit the sparse/compressible geometry of acquirec
signalx

x
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Suppose there is&sparse solution tg = dx
@ Combinatorial optimization problem

(PO) minf[x|lo s.t. dx=y
X
@ Convex optimization problem

(P1) min||x||y s.t. dPx=vy
X

@ If 2035+ s < 1, the solutiongP0) and(P1) are the sanie

T E. Candes."Compressive Sampling”. Proc. Intern. Corsgoéath., China, April 2006.
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The Geometry of CS

@ Sparse signals have few non-zero coefficients

X1 X1

R3 R3

X2
X2
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X3
1-sparse 2-sparse
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/o Recovery

Reconstruction should be
e Consistent with the modek as sparse as possible nfjixj|o

@ Consistent with the measuremengs= dx

X4 R3

X
X3

N
y

X:y=®x
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/o Recovery

min||xjo s.t. Px=y
X

@ ||X|lo number of nonzero elements

@ Sparsest signal consistent with the measurements

@ Requires onljM << N measurements

@ Combinatorial NP-hard problem: farc RN with sparsityS, the
complexity iSO(N®)

@ Too slow for implementation

]
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/1 Recovery
A more realistic model

min||x|[; s.t. Px=y
X

@ The/; norm also induces sparsity.

@ The constraint is given by = ®x.
X1

/Xz

X3

x:y= ®x
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Phase Transition Diagram

In the ¢, minimization, there is a defined region d /N, S/M) which
ensures successful recovery

SIM

P
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@ 0 = M/Nis a normalized measure of the problem indeterminacy.
® p = S/Mis a normalized measure of the sparsity.

@ Red region+ unsuccessful recovery or exact reconstruction typically
fails.

@ Blue region- successful recovery or exact reconstruction typically

occurs.
=
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/> Recovery

min||x||z s.t. Px=y
X

o Least square solution= (®T®) o7y
@ Solved by using quadratic programming:

v Least squares solution
V" Interior-point methods

@ Solution is almost never sparse
X4

=

R3
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/> Recovery

@ Problem:small/, does not imply sparsity

o

X' oy e b A1y, gy

@ X has small, norm but it is not sparse

-
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CS Example in the Time Domain
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CS Example in the Wavelet Domain

@ Reconstruction of an imagél(= 1 megapixel) sparse
(S= 25,000) in the wavelet domain frorvl = 96, 000
incoherent measuremerits.

Original (25K wavelets) Recovered Image

T E. J. Candes and J. Romberg "Sparsity and Incoherence ipf@ssive Sampling.” Inverse Problems.
vol.23, pp.969-985. 2006.
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Reconstruction Algorithms

o Different formulations and implementations have been psepl
to find the sparsestsubject toy = &x
o Difficult to compare results obtained by different methods
@ Those are broadly classified in:
v Regularization formulations (Replace combinatorial peabwith
convex optimization)
v Greedy algorithms (Iterative refinement of a sparse saijitio
v/ Bayesian framework (Assume prior distribution of sparse
coefficients)

]
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Greedy Algorithms

Iterative algorithms that select an optimal subset of trerdd signak
at each iteration. Some examples:

Matching Pursuit (MP) ming [[Xlo S.t. ®x=y
Orthogonal Matching Pursuit(OMP) ming [xlo st dx=y
Compressive Sampling Matching Pursuit

(CoSaMP) miny |ly — ®x||3 st |[xlo < S
Iterative Hard Thresholding (ITH) miny |ly — ®x||3 st |[xlo < S
Weighted Median Regression min ||y — ®x||1 + AllX]lo

Those methods build an approximation of the sparse sigreacit iteration.

]
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Matching Pursuit (MP)

Sparse approximation algorithm used to find the solution to
min|x|lo s.t. Px=y
X

Key ideas:
@ Measurementg = ®x are composed of sum &columns ofd.
@ The algorithm needs to identify whichcolumns contribute tg.

S columns

=
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Matching Pursuit (MP) Algorithm

Inputand | Observation vectoy

Initialize Measurement Matrixp
Parameters Initial Solutionk(® = 0
Initial residualr© =y

Iteration k
Compute the currenterrocj(k) = (¢, r®)
Identify the index such thatj = ma |c|
Update)?ﬁk) =Y 4 e

J J j

i
K) _ (k=1 (k)
Updater® = r(~1 _ "y

D. Donoho et. al, SparseLab Version 2.0. 2007.
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MP Reconstruction Example
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reconstruc. signal
Iteration 0

E) o0

residue - Iteration 0

reconstruc. signal
Iteration 5
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MP Reconstruction Example
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Orthogonal Matching Pursuit (MP)

Sparse approximation algorithm used to find the solution to
min|x|lo s.t. Px=y
X

Key ideas:
@ Measurementg = ®x are composed of sum &columns ofd.
@ The algorithm needs to identify whichcolumns contribute tg.

S columns

=]
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Orthogonal Matching Pursuit (OMP) Algorithm

Inputand | Observation vectoy

Initialize Measurement Matri®

Parameters Initial Solutionk(©® =0
Initial Solution Suppor8®@=suppor{x(®} = 0
Initial residualr (@ =y

Iteration k | Compute the current erroc( ) = (¢;,r®)

Identify the index such that; = max |cj(k)|

Update the suppoB®=Sk-Dj

Update the matri®gw = [0, ..., ¢i,...,0, ..., @}, ..., 0]
Update the solutioi® = (9%, ) 1L,y
Updater® =y — &g x®)

D. Donoho et. al, SparseLab Version 2.0. 2007.
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Remarks on the OMP Algorithm

o S¥ is the support ok at the iteratiork and® is the matrix that
contains the columns froh that belongs to this support.

e The updated solution gives ti& that solves the minimization
problem||®4ix — y||3. The solution is given by

Do (Pswx—y) = 0
“eLr® = 0

This solution shows that the columnsdt,, are orthogonal to®.

]
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OMP Reconstruction Example

L e e e e

o E W w0 a0 20w E) 0 150

reconstruc. signal residue - Iteration 0
Iteration 0

50 100 150 200 250 0 K E) 100 150
reconstruc. signal
Iteration 5

residue - lteration 5
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OMP Reconstruction Example
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Iterative Hard Thresholding

@ Sparse approximation algorithm that solves the problem
min [}y — |13 + AlX]o

@ lterative algorithm that computes a descent directionrgiwethe
gradient of the,-norm.

@ The solution at each iteration is given by finding:
XD = H, (x0 + dT(y — &x))
@ H, is a non-linear operator that only retains the coefficierth w
the largest magnitude.

T T. Blumensath and M. Davies. "lterative Hard Thresholdiag@ompressed Sensing.” Journal of Appl. Comp. Harm.
Anal. vol. 27, no. 3, pp. 265-274, 2009.
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Iterative Hard Thresholding

Inputand | Observation vectoy
Initialize Measurement Matrix
Parameterg X© =0

Iteration k

Compute an update(*t1) = x® + &T(y — dx*)))
Select the largest elementg<tt) = H, (alk+D).
Pull other elements toward zero.

D. Donoho et. al, SparseLab Version 2.0. 2007.
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ITH Reconstruction Example

N

reconstruc. signal
Iteration 1

E 50 100 50

residue - Iteration 1

reconstruc. signal
Iteration 5
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ITH Reconstruction Example

03]

IR

-08|

o 50 100 150 200 250 00 50 100 750 20 250 300

Original Signal reconstruc. signal
Iteration 10
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residue - lteration 10
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Weighted Median Regression Reconstruction
Algorithm

When the random measurements are corrupted by noise the most
widely used CS reconstruction algorithms solve the problem

min{ly — ©x|[3 + 7x]|.

wherer is the regularization parameter that balances the confijcti
task of minimizing the, norm while yielding a sparse solution.

@ As T increases the solution is sparser.
@ As T decreases the solution approximates to least squareasulut

]
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In the solution to the problem

min||y — x5 + 7I||1.

@ The/, term is the data fitting term, induced by the Gaussian
assumption of the noise contamination.

@ The/; term is the sparsity promoting term.

However, the/, term leads to the least square solution which is knov
to be very sensitive to high-noise level and outliers presethe
contamination.

]
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Example of signal reconstruction when outliers are preisetite
random projections

Original sparse signal and random projections
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Matching Pursuit Solution L1-Ls solution
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To mitigate the effect of the impulsive noise in the compiress
measurements, a more robust norm for the data-fitting term is

min ly — ®x]y + Al (1)
X H,—/ N’

Data fitting Sparsity

@ LAD offers robustness to a broad class of noise, in partidolheavy tail
noise.

@ Optimum under the maximum likelihood principle when the eriging
contamination follows a Laplacian-distributed model.

T J. L. Paredes and G. Arce. "Compressive Sensing Signal Reaation by Weighted Median Regression Estimate.”
ICASSP 2010.

]
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Drawbacks:
@ Solving/,-LAD optimization isNy-hard problem.
@ Direct solution is unfeasible even for modest-sized signal

To solve this multivariable minimization problem:
@ Solve a sequence of scalar minimization subproblems.

@ Each subproblem improves the estimate of the solution by
minimizing along a selected coordinate with all other caaites
fixed.

@ Closed form solution exists for the scalar minimizationtgeon.

=]
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@ Signal reconstruction
M

R = mxinz [(y — ®X)i| + Allx]lo

i=1
The solution usin@oordinate Descent Methasl given by

M N N
%= MinD Y= D G — bkl + Ao+ D Ao

j=1j#n j=1Lj#n
Z :I.7 n¢|7JXJ
%o = mmZ N L R YA
i=1 ¢In J
Weighted least absolute deviation Regulariz.
Q(xn)

]
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@ The solution to the minimization problem is given by

X = ernQ(xn) + AXalo

X, = MEDIAN (| ¢in| © YM;;n=212_.,N

Yi — Zszl,j;én i j%
¢in

@ At kM iteration:

ok _ ) %, i Q%) + A < Q(0)
%' = 0, otherwise

=
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The iterative algorithm detects the non-zero entries osfiase vector
by
@ Robust signal estimation: computing a rough estimate of the
signal that minimizes the LAD by the weighted median operato

@ Basisselection problem: applying a hard-threshold operator on
the estimated values.

@ Removing the entry’s influence from the observation vector.

@ Repeating these steps again until a performance critegion i
reached.

" Original Signal Iteration =
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Input and

Observation vectoy

Initialize Measurement Matrix
Parameters Number of Iteration¥g
Iteration counterk = 1
Hard-thresholding valuex = ),
Estimation ak = 1,%% =0
[teration
Step A For then-th entry ofx, n=1,2, ..., N compute
NN s
% = MEDIAN { g o Y= 2Ziztizn @ 4 |
g _ [ %, if Q) +A < Q(O)
“ 1 0, otherwise,
Step B _ -
Update the hard-thresholding parameter and the estimation
(k1) — x(K)
A=\
Step C ...
Check stopping criterium _
If K <Kgpthensek=Kk-+1andgoto Step A, otherwise, end.
Output

Recovered sparse signal

=
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Example Signal Reconstruction from Projectior
in Non-Gaussian Noise

CoSaMP L1-Ls
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Performance Comparisons

Exact reconstruction for noiseless signals (normalizear és smaller
than 01% of the signal energy).
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Performance Comparisons

SNR vs. Sparsity for different types of noise
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Convex Relaxation Approach:
The/y-LAD problem can be relaxed by solving the following probler
min|ly — @x{|; + A[1X] )
X e e N~
Data fitting Sparsity
@ This problem is convex and can be solved by linear progrargmi

@ /,-norm may not induce the necessary sparsity in the solution.

@ It requires more measurements to achieve a target recotistru
error.

=]
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The solution for the problem

M
— mxinz Vi — Oix| + A|[X||1

is given by

% = MEDIAN (A 0, |¢] o 2 |¢M|<> )

¢1’

@ The regularization process induced by théerm leads to a
weighting operation with the zero-valued sample in the WM
operation.

@ Large values of the regularization parameter implies lagjee
for the weight corresponding to the zero-valued sampls (thi
favors sparsity).

@ The solution is biased.
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