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Compressive Measurements

Measurements in CS are different than samples taken in
traditionalA/D converters.
The compressed measurements are given byy = Φx.
The signalx is acquired as a series of non-adaptive inner products
of different waveforms{φ1, φ2, ..., φM}

yk =< φk, x >; k = 1, ...,M; with M ≪ N

y
xΦ

       M x 1

Measurements
          M x N

Sampling Operator

       N x 1

Sparse Signal
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Example of Compressive Measurements:
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Random measurements can be used for signals sparse in any
basis.
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yk =< φk, x >; k = 1, ...,M; with M ≪ N

Need to solve an under determined system of equationsy = Φx.

Infinitely solutions for the system sinceM ≪ N.

A sparse solutionx is recovered fromy by solving the following
inverse problem

(P0) : min
x

‖x‖ℓ0 s.t. y = Φx (1)
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Example of the recovery of an under determined system of equations:
A

m
p
lit

u
d

e

A
m

p
lit

u
d

e

Original sparse signal Compressed measurements Reconstructed signal using least-squares.

             Solution not sparse
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Sparsity is what makes it possible to recover a signal from
undersampled data.

The number of measurements we need for successful
reconstruction depends on the nature of the waveformsφk, andS

1. Incoherent Orthobasis
Ordered Hadamard

      Ensemble

   Scrambled Block

Hadamard Ensemble

2. Random waveformsφk

Gaussian Random

Ensemble
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Recoverability

Sparsity is what makes it possible to recover a signal from
undersampled data.

The number of measurements we need for successful
reconstruction depends on the nature of the waveformsφk, andS

1. Incoherent Orthobasis
Ordered Hadamard

      Ensemble

   Scrambled Block

Hadamard Ensemble

2. Random waveformsφk

Gaussian Random

Ensemble
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Incoherent Orthobasis Example

Example of incoherent basis: the ”spike” basis (identity) and the
Fourier basis.

Consider the case where the dictionary is the union of two orthobasis:

I: the ”spike” basis (identity).

F: the Fourier basis (sinusoids).

Φ = [I;F]

whereI is aN × N matrix andF is aN × N matrix with

fm,ℓ =
1

√

(N)
ej2π(m−1)(ℓ−1)/N
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Incoherent Orthobasis Example

Note that:

It takesN spikes to build up a single sinusoid.

It takesN sinusoids to build a single spike.
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Then, if f is a sinusoidal, there are two ways to
decompose the signal with the given dictionary:
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But only oneis sparse.
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Incoherent Orthobasis (Uncertainty Principle)

Previous example of incoherent basis can be generalized using the
Uncertainty Principle.

Theorem: Uncertainty Principle

Let f ∈ R
N be a discrete signal, and letf̂ ∈ R

N be its discrete Fourier
Transform, then

|supp(f )| · |supp(f̂ )| ≥ N (2)

where supp(f ) is the support off .

Uncertainty Principle implies thatf andf̂ cannot both be highly
concentrated or be sparse.
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Proof of (2):

Let T be a subset of the time domain and letΩ be a subset of the
frequency domain. LetΦTΩ = [IT ;FΩ].

Let x =

[

f
−f̂

]

, wheref is supported onT (Time domain), and̂f = F∗f

is supported onΩ (frequency domain), then

Φx = Φ

[

f
−f̂

]

= ΦTΩ

[

fT

−f̂Ω

]

= IT fT −FΩf̂Ω = IT fT −FΩF∗
ΩfT = 0 (3)

This is true, sincefT ∈ R
|T| andf̂Ω ∈ R

|Ω|, throwing away all the
columns ofΦ that multiplies components in the vector that are zero.
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If (ΦH
TΩΦTΩ) is positive definite, then for any vectorx =

[

f
−f̂

]

6= 0 the

following is true:

xHΦH
TΩΦTΩx = (ΦTΩx)H(ΦTΩx) > 0.

This means thatΦTΩx is either> 0, or< 0, butΦTΩx can not be= 0,
for x 6= 0.

Remark
However, from (3), we know that there exists a matrixΦTΩ such that
ΦTΩx = 0, for x 6= 0. This means thatΦTΩ is a matrix such that
(ΦH

TΩΦTΩ) is not positive definite.
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We need to find the conditions such that(ΦH
TΩΦTΩ) is NOT positive

definite.

Assume, first, that(ΦH
TΩΦTΩ) is positive definite, then all the

eigenvalues of the matrixΦH
TΩΦTΩ are positive:

λmax(Φ
H
TΩΦTΩ) > ... > λmin(Φ

H
TΩΦTΩ) > 0

It is clear that all the eigenvalues are positive, ifλmin(Φ
H
TΩΦTΩ) > 0.

The square matrix(ΦH
TΩΦTΩ) can be decomposed as follows:

ΦH
TΩΦTΩ =

[

IH
T

FH
Ω

]

[

IT FΩ

]

=

[

IH
T IT IH

T FΩ

FH
ΩIT FH

ΩFΩ

]

= I +

[

0 M
MH 0

]

ΦH
TΩΦTΩ = I + G.
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By properties of the eigenvalues:

λi(I + A) = λi(I) + λi(A) = 1+ λi(A), (4)

whereI is the identity matrix with all the eigenvalues= 1. Thus,

λmin(Φ
H
TΩΦTΩ) = 1+ λmin(G) > 0,

which means thatλmin(Φ
H
TΩΦTΩ) > 0, if

λmin(G) > −1 (5)

Homework: Derive a proof of equation (4).
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By eigen decomposition:

G = QΛQH, wherediag(Λ) = [λmax(G), ..., λmin(G)],

and
GHG = QΛQHQΛQH = QΛ2QH

where,

diag(Λ2) = [λmax(G
HG), ..., λmin(G

HG)]

= [λ2
1(G), λ2

2(G), ...]

≥ 0

If 0 < λmax(GHG) < 1, then all the eigenvalues ofG satisfy, from (5):

− 1 < λi(G) < 1,⇒ λmin(Φ
H
TΩΦTΩ) > 0. (6)
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GHG =

[

0 M
MH 0

] [

0 M
MH 0

]

=

[

MMH 0
0 MHM

]

,

where,
MMH = IH

T FΩFH
ΩIT ; with size: |T| × |T|

and,
MHM = FH

ΩIT IH
T FΩ with size: |Ω| × |Ω|.

The eigenvalues

λi(MMH) = λi((MMH)H) = λi(M
HM),

therefore the eigenvalues of the block diagonal matrix
λi(GHG) = λi(MMH) = λi(MHM).
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Simple Example:

If |T| = |Ω| = N, then

MMH = IH
T FΩFH

ΩIT = I{N×N} and, MHM = FH
ΩIT IH

T FΩ = I{N×N}.

Therefore,

GHG =

[

MMH 0
0 MHM

]

= I{2N×2N}

Since the eigenvalues ofGHG, MMH andMHM are equal, then

λmax(G
HG) = λmax(MMH) = λmax(M

HM). (7)

We need to derive conditions such thatλmax(MHM) < 1, and from (6)
λmax(GHG) < 1, andλmin(Φ

H
TΩΦTΩ) > 0.
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λmax(M
HM) ≤ Trace(MHM) (8)

= Trace(FH
ΩITIH

T FΩ) (9)

=
1
N

∑

w∈Ω

∑

t∈T

e−j 2πwt
N ej 2πwt

N .

Therefore,

Trace(MHM) =
|Ω||T|

N
, andλmax(M

HM) ≤ |Ω||T|
N

.

Thus,(ΦH
TΩΦTΩ) is PD when|Ω||T| < N.
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Hence, the condition such that(ΦH
TΩΦTΩ) is NOT positive definite is

|supp(f )| · |supp(f̂ )| ≥ N� (10)
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Consequence of the Uncertainty Principle (UP):

Sincef andf̂ cannot both be highly sparse, a sparse representation off
in Time has aunique image under the Fourier dictionary.

Proof:
If f is an unknown sparse signal in Time such that‖f ‖ℓ0 = S, and we
measure any 2S Fourier coefficients off as:

y = F2Sf ;

where,F2S is the Fourier dictionary having only 2S rows.
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Assume that there exist anotherS-sparse (in Time) signalf ′. Take the
same 2S Fourier coefficients off ′ as:

y′ = F2Sf ′.

The signal(f − f ′) is 2S-sparse in Time. Ify = y′, then the 2S Fourier
coefficients of the signalf − f ′ are given by:

F2S(f − f ′) = 0.

and sinceFH
2SF2S is PD, thenf = f ′.
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The UP guarantees that we can recover aS-sparse (in Time) signalf ,
from 2S Fourier coefficients by solving

(P0) : min
f

‖f ‖ℓ0 s.t. y = F2Sf (11)
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Random Waveforms

Randomness plays a major role in the measurement scenario.

Φ

Examples

Each entry ofΦ can be drawn from i.i.d.
Gaussian distribution (i.e.φi,j ∼ N(0, 1)).

Each entry ofΦ can be drawn from i.i.d.
Bernoulli distribution (i.e.±1).
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In random projections:
y = Φx

where,Φ follows a given random distribution,x can be recovered from
M samples with high probability whenM satisfies:

M ≥ C · S · log(N/S), C ≥ 1

Proved through the Restricted Isometry Property (RIP) as
described shortly.

Remark
Note that when using incoherent orthobasis, the required number of
measurements isM = 2S and when using random projections, we
require more measurementsM ≥ C · S · log(N/S), to recover the signal.
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Restricted Isometry Property (RIP)

1. Gives the probability that anys-sparse signal can be recovered
from its random projections.

2. Uses probabilistic methods to prove [1].

3. Gives the minimum number of projections required to guarantee
the recovery of anys-sparse signal from its random projections.
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Restricted Isometry Property (RIP)

Theorem

A matrix A ∈ Rm×n satisfies the Restricted Isometry Property if there
exists a constantδ > 0 such that

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+ δ)‖x‖2
2

with high probability†.

Outline of the proof:
1. Show that for a fixed sparse vectorx, ‖Ax‖2

2 ≈ ‖x‖2
2 with high

probability.
2. Count up the ”number” of sparse vectors, and show that

‖Ax‖2
2 ≈ ‖x‖2

2 for all of them with high probability.
†Baraniuk, R.et al.. A simple proof of the Restricted Isometry Property for Random Matrices.
Springer science 2008.
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RIP for Gaussian Random Matrices
Let A ∈ Rm×n, with m < n, be a matrix with i.i.d. Gaussian random
entries:

ai,j ∼ N
(

0,
1
m

)

Fix x ∈ Rn and setb = Ax.
1. Show that for a fixed sparse vectorx, ‖Ax‖2

2 ≈ ‖x‖2
2 with high

probability. Theith element ofb is

bi =
n

∑

j=1

ai,jxj ∼ N(0, σ2
i )

whereσ2
i = E{b2

i } =
∑n

j=1 E{a2
i,j}x2

j =
∑n

j=1
1
mx2

j =
1
m‖x‖2

2. The
ℓ2-norm ofb is

‖b‖2
2 =

m
∑

i=1

|bi|2 is a Chi-square r.v.

andE{‖b‖2
2} =

∑m
i=1 E{|bi|2} =

∑m
i=1

1
m‖x‖2

2 = ‖x‖2
2.
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To find the probability that‖Ax‖2
2 ≈ ‖x‖2

2, the Markov Inequality is
used:

Markov Inequality

If y is a positive r.v.:

P(y > t) ≤ E{y}
t

(12)

Proof:

E{y} =

∫ ∞

0
yf (y)dy

≥
∫ ∞

t
yf (y)dy

≥ t
∫ ∞

t
f (y)dy

= tP(y > t) (13)
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Let y = ‖b‖2
2 (a positive r.v.), and without loss of generality, assume

that‖x‖2
2 = 1

P(y > (1+ δ)) = P(eλy > eλ(1+δ)); ex is a monotonic function(14)

≤ E{eλy}
eλ(1+δ)

; Markov Inequality

=
E{eλ(

∑m
i=1 b2

i )}
eλ(1+δ)

=
E{eλb2

1eλb2
2...eλb2

m}
eλ(1+δ)

=

∏m
i=1 E{eλb2

i }
eλ(1+δ)

; by independence of theb′
is

=
E{eλb2

1}m

eλ(1+δ)
; b′

is are identically distributed

P(y > (1+ δ)) ≤ E{eλb2
1}m

eλ(1+δ)
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Givenbi ∼ N(0, 1/m), then

E{eλb2} =

∫ ∞

−∞
eλb2

f (b)db (15)

=

∫ ∞

−∞
eλb2

√

m
2π

e−
b2m

2 db

=

√

m
m − 2λ

∫ ∞

−∞

√

m − 2λ
2π

e−
b2(m−2λ)

2 db

E{eλb2} =

√

m
m − 2λ

; if λ < m/2
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Replacing (15) in (14),

P(y > (1+ δ)) ≤ E{eλb2
1}m

eλ(1+δ)
(16)

=

(

m
m−2λ

)m/2

eλ(1+δ)

P(y > (1+ δ)) ≤
(e−2λ(1+δ)/m

1− 2λ/m

)m/2
; ∀λ < m/2

Chooseλ = mδ
2(1+δ)

;

P(y > (1+ δ)) ≤
( e−δ

1− δ/(1+ δ)

)m/2
(17)

=
(

(1+ δ)e−δ
)m/2
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By Taylor expansion:

ln(1+ δ) = δ − δ2/2+ δ3/3− δ4/4+ ... (18)

ln(1+ δ) < δ − δ2/2+ δ3/2

(1+ δ) < eδ−δ2/2+δ3/2

(1+ δ)e−δ < e−(δ2/2−δ3/2)

(18) in (17):

P(y > (1+ δ)) ≤ e−(δ2−δ3)m/4 (19)

Thus, in general:

P(‖b‖2
2 > (1+ δ)‖x‖2

2) ≤ e−(δ2−δ3)m/4 (20)
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Similarly, for the lower bound can be shown that

P(‖b‖2
2 < (1− δ)‖x‖2

2) ≤ e−(δ2−δ3)m/4 (21)

proof:
Let y = ‖b‖2

2 (a positive r.v.), and without loss of generality, assume
that‖x‖2

2 = 1.

P(y < (1− δ)) = P(−y > −(1− δ)) (22)

= P(e−λy > e−λ(1−δ)); ex is a monotonic function

≤ E{e−λy}
e−λ(1−δ)

; Markov Inequality

=
E{e−λ(

∑m
i=1 b2

i )}
e−λ(1−δ)

=
E{e−λb2

1e−λb2
2...e−λb2

m}
e−λ(1−δ)
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P(y < (1− δ)) ≤ E{e−λb2
1e−λb2

2...e−λb2
m}

e−λ(1−δ)

=

∏m
i=1 E{e−λb2

i }
e−λ(1−δ)

; by independence of theb′
is

=
E{e−λb2

1}m

e−λ(1−δ)
; b′

is are identically distributed

P(y < (1− δ)) ≤ E{e−λb2
1}m

e−λ(1−δ)
(23)
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Givenb ∼ N(0, 1/m), then

E{e−λb2} =

∫ ∞

−∞
e−λb2

f (b)db

=

∫ ∞

−∞
e−λb2

√

m
2π

e−
b2m

2 db

=

√

m
m + 2λ

∫ ∞

−∞

√

m + 2λ
2π

e−
b2(m+2λ)

2 db

E{e−λb2} =

√

m
m + 2λ

; if λ > −m/2 (24)
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Replacing (24) in (23),

P(y < (1− δ)) ≤ E{−eλb2
1}m

e−λ(1−δ)
(25)

=

(

m
m+2λ

)m/2

e−λ(1−δ)

P(y < (1− δ)) ≤
( e2λ(1−δ)/m

1+ 2λ/m

)m/2
; ∀λ < m/2

Chooseλ = mδ
2(1−δ)

;

P(y < (1− δ)) ≤
( eδ

1+ δ/(1− δ)

)m/2

=
(

(1− δ)e−δ
)m/2

(26)
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By Taylor expansion:

ln(1− δ) = −δ − δ2/2− δ3/3− δ4/4+ ...

ln(1− δ) < −δ − δ2/2− δ3/3

(1− δ) < e−δ−δ2/2−δ3/3

(1− δ)eδ < e−(δ2/2+δ3/3) (27)

(27) in (26):

P(y < (1− δ)) ≤ e−(δ2/2+δ3/3)m/2

P(y < (1− δ)) ≤ e−(δ2−δ3)m/4; since:δ2/2+ δ3/3 > (δ2 − δ3)/2(28)

Thus, in general:

P(‖b‖2
2 < (1− δ)‖x‖2

2) ≤ e−(δ2−δ3)m/4 (29)
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From (20) and (29),

P((1− δ)‖x‖2
2 ≤ ‖b‖2

2 ≤ (1+ δ)‖x‖2
2) > 1− e−(δ2−δ3)m/4− e−(δ2−δ3)m/4

P((1− δ)‖x‖2
2 ≤ ‖b‖2

2 ≤ (1+ δ)‖x‖2
2) > 1− 2e−(δ2−δ3)m/4 (30)
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Example:
If δ = 1/2 andm = 1000, then

P
(1

2
‖x‖2

2 ≤ ‖b‖2
2 ≤

3
2
‖x‖2

2

)

> 1− 2e−( 1
4−

1
8)1000/4

P
(1

2
‖x‖2

2 ≤ ‖b‖2
2 ≤

3
2
‖x‖2

2

)

> 1− 5.4× 10−14 (31)

Form = 1000, the following plot shows the probability of satisfying
the bound as a function ofδ:
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δ

P
(|

||y
|| 2−

||x
|| 2|<

δ|
|x

|| 2)
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It has been proved that for a fixed sparse signalx, a matrixA with i.i.d.
Gaussian entries satisfies:

P(|‖Ax‖2
2 − ‖x‖2

2| > δ‖x‖2
2|) ≤ 2e−C0(δ)m (32)

whereC0(δ) = e−(δ2−δ3)/4 is some constant that depends only onδ.

To show the RIP for all sparse signalsx, it is necessary to find the
probability for all possible support setsT with cardinality|T| ≤ 2S.
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2. Count up the “number” of sparse vectors, and show that
‖Ax‖2

2 ≈ ‖x‖2
2 for all of them with high probability.

To count the “number” of sparse vectors, it is necessary to find how
many vectorsx satisfy

max
|T|≤2S

sup
x∈BT

2

|‖Ax‖2
2 − ‖x‖2

2| ≤ δ (33)

where,

BT
2 = {x ∈ R

n : x is supported only inT and‖x‖2
2 = 1}.

supx∈BT
2

is the smallest upper bound of vectorsx ∈ BT
2 satisfying

|‖Ax‖2
2 − ‖x‖2

2| ≤ δ.

max|T|≤2S is the maximum over all support setsT of size≤ 2S.
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Solution:
First, fix a setT of size|T| ≤ 2S and find the

P
(

supx∈BT
2
|‖Ax‖2

2 − ‖x‖2
2| > δ

)

.

Lemma 1

Let A ∈ Rn×m be a random matrix that satisfies (32). LetT a fixed set
of size|T| ≤ 2S and letδ be a fixed constant between 0 and 1, then

P
(

sup
x∈BT

2

|‖Ax‖2
2 − ‖x‖2

2| > δ
)

≤ 2
(12
δ

)2S
e−C0(δ/2)m (34)
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Proof: Approximate the setBT
2 by a finite setQ. The finite setQ, with

elements{q0, q1, ...}, is such that everyx ∈ BT
2 is within δ/4 of an

element inQ, i.e.

min
q∈Q

‖x − q‖2 ≤ δ/4, ∀x ∈ BT
2 . (35)

Essentially,Q is a set containing all the vectorsx in BT
2 with a

distortion≤ δ/4.

The number of elements in the setQ is given by†:

|Q| ≤
(12
δ

)2S
; where|T| ≤ 2S. (36)

†Lorentz, G., von Golitschek, M., Makovoz, Y.Constructive Approximation: Advanced Problems.
vol. 304., Springer, Berlin. 1996
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For any fixedq0 ∈ Q, then, according to (32)

P(|‖Aq0‖2
2 − ‖q0‖2

2| > δ/2) ≤ 2e−C0(δ/2)m (37)

Recall the union bound probability:

P(W1 ∪ W2 ∪ ... ∪ Wk) ≤
k

∑

i=1

P(Wi)

Applying the union bound probability along all the elementsgiven in
(36), then

P(max
q∈Q

|‖Aq‖2
2 − ‖q‖2

2| > δ/2) ≤ 2
(12
δ

)2S
e−C0(δ/2)m (38)
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Note that, if it is true that all theq ∈ Q are ”well behaved” in that

max
q∈Q

|‖Aq‖2
2 − ‖q‖2

2| ≤ δ/2. (39)

Then, it is also true that

sup
x∈BT

2

|‖Ax‖2
2 − ‖x‖2

2| ≤ δ. (40)

This concludes that the probability of supx∈BT
2
|‖Ax‖2

2 − ‖x‖2
2| > δ is

given by:

P(|‖Ax‖2
2 − ‖x‖2

2| > δ) ≤ 2
(12
δ

)2S
e−C0(δ/2)m (41)
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Now, for all 2S−sparsex signals simultaneously,‖Ax‖2
2 ≈ ‖x‖2

2 has to
be established.

Lemma 2

Let A ∈ Rn×m be a random matrix that satisfies (32). Then there exist a
constantC1(δ) depending only onδ, such that

P
(

max|T|≤2S sup
x∈BT

2

‖Ax‖2
2 − ‖x‖2

2| ≥ δ
)

is small (42)

when

m ≥ C1(δ)Slog(n/S).
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Proof: For a fixed 2S-dimensional subspaceBT
2

P
(

max
x∈BT

2

‖Ax‖2
2 − ‖x‖2

2| > δ
)

≤ 2(12/δ)2Se−C0(δ/2)m

In R
n, there are

( n
2S

)

such subspaces:
(

n
2S

)

=
n!

(n − 2S)!(2S)!
≤ n2S

(2S)!
≤

(ne
2S

)2S
. (43)

Homework: Provide a proof of Eq. (43).

Applying the union bound:

P
(

max
|T|≤2S

sup
x∈BT

2

|‖Ax‖2
2 − ‖x‖2

2| ≥ δ
)

≤ 2
(ne

2S

)2S
(12/δ)2Se−C0(δ/2)m
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P
(

max
|T|≤2S

sup
x∈BT

2

|‖Ax‖2
2 − ‖x‖2

2| ≥ δ
)

≤ 2
(ne

2S

)2S
(12/δ)2Se−C0(δ/2)m

= 2e
−C0(δ/2)

(

m− 2S
C0(δ/2) log

(

12ne
2δS

))

.

If

m ≥ 2S
C0(δ/2)

log
(12ne

2δS

)

, (44)

then, the probabilityP
(

max|T|≤2S supx∈BT
2
|‖Ax‖2

2 − ‖x‖2
2| ≥ δ

)

is

small.

Homework:
Prove that Eq. (44) can be rewritten asm > C1(δ)S log(n/S), when
n ≥ 6eS/δ.

This ends the proof of Lemma 2.
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The Restricted Isometry Property (RIP) guarantees that we can recover
a S-sparse signalx as a unique solution of the following problem:

min
x

‖x‖0 s.t. b = Ax. (P0)

Because:
Assuming that there exists another signalx1 having also minimum
ℓ0-norm (i.e. ‖x1‖0 ≤ S), then, ifx 6= x1

‖x − x1‖2
2 6= 0 (45)

and, by the RIP we know that‖x − x1‖2
2 ≈ ‖Ax − Ax1‖2

2, then

‖Ax − Ax1‖2
2 = ‖b − b1‖2

2 6= 0 (46)

which means that any otherS-sparse signalx1 does not satisfy the
constraint of the problem in (P0).
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Recovery Viaℓ1 Minimization

If the random matrixR obeys the RIP, then:

EveryS-sparse signal has a unique image underR; which means
thatb = Rx is different for eachS-sparse signal x.

Givenb, x can be recovered by solving: minx ‖x‖0 s.t. b = Rx.

MAIN PROBLEM:
Theℓ0 minimization is NP-hard, then we want to solve a convex
minimization problem, i.e.:

min
x

‖x‖1 s.t. b = Rx. (P1)

If x0 is the solution to (P0) andx∗ is the solution to (P1), we need to

find the conditions under whichx0 = x∗.
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Recovery Viaℓ1 Minimization

Conditions for EXACT recovery usingℓ1 Minimization.

Call x∗ the solution to (P1) andx0 the solution to (P0). Seth = x∗ − x0

as the recovery error. We need to show thath = 0 in order to show
EXACT recovery.

1. Given the random projectionsb, thenx∗ andx0 are both feasible
solutions. Butx∗ is defined to be the feasible point with smallest
ℓ1-norm, i.e.,

‖x∗‖1 ≤ ‖x0‖1, or ‖x0 + h‖1 ≤ ‖x0‖1. (47)

Proof: Let the setT be the support ofh, this is:

hT [i] =

{

h[i] if i ∈ T
0 if i /∈ T.

And, let the setT0 be the support ofx0.
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By the triangle inequality:

‖x0 + h‖1 =
∑

i∈T0

|x0[i] + h[i]|+
∑

i∈TC
0

|h[i]|

≥
∑

i∈T0

|x0[i] + h[i]|+
∑

i∈TC
0

|h[i]|

= ‖x0‖1 − ‖hT0‖1 + ‖hTC
0
‖1. (48)

Using (47) in (48), then:

‖x0‖1 ≥ ‖x0‖1 − ‖hT0‖1 + ‖hTC
0
‖1

‖hT0‖1 ≥ ‖hTC
0
‖1 (49)
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2. Since the matrixR obeys the RIP, then∀h ∈ Null(R):

‖hT0‖1 ≤ ρ‖hTC
0
‖1; ρ < 1

for every setT0 with |T0| ≤ s.

Proof: Let TC
0 divided into decreasing subsetsT1, T2, ... of sizes′. We

know thath = x∗ − x0 belongs to the Null space ofR, (i.e. Rh = 0),
then:

R(hT0∪T1 + h(T0∪T1)C) = 0; or R(hT0∪T1) = −
∑

j=2

RhTj

and so
‖RhT0∪T1‖2 = ‖

∑

j=2

RhTj‖2 ≤
∑

j=2

‖RhTj‖2 (50)
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SincehT0∪T1 is as + s′ sparse vector, applying thes + s′-RIP

√

1− δs+s′‖hT0∪T1‖2 ≤ ‖RhT0∪T1‖2. (51)

Since eachhTj is s′-sparse, applying thes′-RIP

‖hTj‖2 ≤
√

1+ δs′‖hTj‖2. (52)

Replacing (51) and (52) in (50), then

√

1− δs+s′‖hT0∪T1‖2 ≤
√

1+ δs′
∑

j≥2

‖hTj‖2. (53)

Compressive Sensing G. Arce Sparse Signal Recovery Fall, 2011 57 / 60



For eachj ≥ 2, all the magnitudes of the values inhTj are less than all
the magnitudes of thehTj−1, since the set is organized in a decreasing
way. Thus, the maximum value inhTj is smaller than the average of the
magnitudes inhTj−1, i.e.

‖hTj‖∞ ≤ 1
s′
‖hTj−1‖1

Thus,

‖hTj‖2 ≤
√

s′‖hTj‖∞ ≤ 1√
s′
‖hTj−1‖1

and
∑

j≥2

‖hTj‖2 ≤
1√
s′

∑

j≥1

‖hTj‖1 =
1√
s′
‖hTC

0
‖1 (54)

Using (54) and (53), then

‖hT0∪T1‖2 ≤
√

1+ δs′
√

1− δs+s′

‖hTC
0
‖1√

s′
. (55)
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Finally,
‖hT0‖1 ≤

√
s‖hT0‖2 ≤

√
s‖hT0∪T1‖2 (56)

Replacing (55) in (56), then

‖hT0‖1 ≤
√

1+ δs′
√

1− δs+s′

√
s‖hTC

0
‖1√

s′

= ρ‖hTC
0
‖1 (57)

with ρ =
√

1+δ2s√
1−δ3s

1√
2
≤ 1 whens′ = 2s and 2δ3s + δ2s ≤ 1.
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1. In (49), it has been proved that:‖hT0‖1 ≥ ‖hTC
0
‖1

2. In (57), it has been proved that:‖hT0‖1 ≤ ρ‖hTC
0
‖1.

The only wayh can obey [1] and [2], is thath = 0 which implies
EXACT recovery.

Compressive Sensing G. Arce Sparse Signal Recovery Fall, 2011 60 / 60


	Compressive Measurements
	Incoherent Orthobasis
	Restricted Isometry Property (RIP)
	Sparse Signal Recovery

