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Outline

@ Compressive Measurements

@ Incoherent Orthobasis

@ Restricted Isometry Property (RIP)
@ Sparse Signal Recovery
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Compressive Measurements

@ Measurements in CS are different than samples taken in
traditionalA/D converters.

@ The compressed measurements are giveyn-bybx.

@ The signak is acquired as a series of non-adaptive inner produ
of different waveformq ¢4, ¢z, ..., dm }

Yk =< ¢, X>; k=1,....,M; with M < N

MxN
Sampling Operator

Measurements

Nx1 =]
Sparse Signal
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Example of Compressive Measurements:

Compressive Measurements

Chirp Signal

o 100 200 300 400 500 600 700 800 900 1000 ,

Sparse signal in the Time-Frequency Compressive Measurements.
basis.

il
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@ Random measurements can be used for signals sparse in any
basis.

Signal x in sparse basis ¥

=
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Vi =< ¢, X>; k=1,....M; with M <N

@ Need to solve an under determined system of equatien®Xx.
@ Infinitely solutions for the system sind¢ < N.

@ A sparse solution is recovered frony by solving the following
inverse problem

(PO): min||x||s, St y=®x 1)

]
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Example of the recovery of an under determined system oftemsa

Amplitud
Pu—

Compressed measurements

I R R R )

n
Reconstructed signal using least-squares.
Solution not sparse

:ﬂ\ow

jw M M U N’\f” WM I MM

Original sparse signal

Compressed Measurements Reconstructed signal using
in Time-Frequency basis

least-squares

=
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@ Sparsity is what makes it possible to recover a signal from
undersampled data.

@ The number of measurements we need for successful
reconstruction depends on the nature of the wavefeynandS

o e ]

1. Incoherent Orthobasis

‘Ordered Hadamard Scrambled Block
Ensemble

Hadamard Ensemble

.
|
| | i
2. Random waveformgy
| |
Gaussian Random
Ensemble
o
Compressive Measurements
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@ Sparsity is what makes it possible to recover a signal from
undersampled data.

@ The number of measurements we need for successful
reconstruction depends on the nature of the wavefafnandS

1. Incoherent Orthobasis

Scrambled Block
Ensemble Hadamard Ensemble

| I | -. IIIL

P

2. Random waveformey - 5-

Gaussian Random
Ensemble

=
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Recoverability

@ Sparsity is what makes it possible to recover a signal from
undersampled data.

@ The number of measurements we need for successful
reconstruction depends on the nature of the wavefafnandS

1. Incoherent Orthobasis

Ordered Hadamard Scrambled Block
Ensemble Hadamard Ensemble

[ | x T | ]
| |
2. Random waveforms ' e 1

Gaussian Random
Ensemble

=
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Incoherent Orthobasis Example

Example of incoherent basis: the "spike” basis (identity) ¢he
Fourier basis.

Consider the case where the dictionary is the union of twiodrdsis:
o |: the "spike” basis (identity).
o F: the Fourier basis (sinusoids).
O = I;F]
wherel is aN x N matrix andF is aN x N matrix with

iei&r(m—l) (&-1)/N

(N)

my¢ —

]
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Incoherent Orthobasis Example

Note that:
o It takesN spikes to build up a single sinusoid.
o It takesN sinusoids to build a single spike.

Then, iff is a sinusoidal, there are two ways to
decompose the signal with the given dictionary

(0] X1

PO 1| P Y
o f=da=[;F|]| of=oa=][;F]|7]

[0, | 0]
But only oneis sparse. o
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Incoherent Orthobasis (Uncertainty Principle)

Previous example of incoherent basis can be generalizad tre
Uncertainty Principle.

Theorem: Uncertainty Principle

Letf € RN be a discrete signal, and e RN be its discrete Fourier

Transform, then )
supgtf)| - |suppf)[ > N 2)

where supff) is the support of.

@ Uncertainty Principle implies thdtandf cannot both be highly
concentrated or be sparse.

=
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Proof of (2):

Let T be a subset of the time domain and{lebe a subset of the
frequency domain. Lebrq = [I1; Fql.

Letx = fA , wheref is supported off (Time domain), and = F*f

is supported o2 (frequency domain), then

dx = |: ff} = ®1q |: f}: :| = |'|'f'|' — FQfQ = |'|'f'|'— FQF;}fT =0 (3)
- —1IQ

This is true, sincér € RI™ andf, € R, throwing away all the
columns of® that multiplies components in the vector that are zero.

=
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If (PH,Pro) is positive definite, then for any vectrr= {_ff] =# 0 the

following is true:
xHOH drox = (Prox)™ (Prox) > 0.

This means thabrqx is either> 0, or< 0, but®tox can not be= 0,
for x # 0.

Remark

However, from (3), we know that there exists a matpix, such that
drox = 0, forx # 0. This means thabt(, is a matrix such that
(®H,P1q) is not positive definite.

=
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We need to find the conditions such tiié@t,d1) is NOT positive
definite.

Assume, first, thatdt,®1q) is positive definite, then all the
eigenvalues of the matrikt, dq are positive:

It is clear that all the eigenvalues are positive)if,(PH, Ptq) > 0.
The square matrix®t, ®1q) can be decomposed as follows:
IH [H] fay= 0O M
H _ _ T hT THQ |
Probra = {FQ] v Fo] = {th FSFJ = [MH o]
PH g =1+G.
=]
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By properties of the eigenvalues:

A+ A) = X (1) + AN (A) = 1+ N(A), (4)

wherel is the identity matrix with all the eigenvaluesl1. Thus,
Amin(PoPra) = 14 Amin(G) > 0,
which means thak (P, d1q) > 0, if
Amin(G) > —1 (5)

Homework: Derive a proof of equation (4).

]
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By eigen decomposition:
G = QAQM, wherediag(A) = Mmex(G), ..., Anin(G)],

and
GG = QAQ"QAQM = QAZQY
where,
diag(A?) = [Amex(G"G), ..., Amin(G"G)]
= [M(G), X(6), ]
0

v

If 0 < \mex(GHG) < 1, then all the eigenvalues Gf satisfy, from (5):

— 1< X(G) <1, = Ain(PHPrq) > 0. (6)
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O M{|O0O M MMP 0
He —
e'o= [y o b 0] =0 i

where,
MM" = I¥FoFaIT;  with size: |T| x |T|

and,
M"M = FHITIMF,  with size: |Q x |Q].

The eigenvalues
A(MMYY = N (MMTH) = X (MPM),

therefore the eigenvalues of the block diagonal matrix
A (GHG) = N\(MMH) = N (MHM).

]
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Simple Example:
If |T| = |2 =N, then

MM™ = IFFoFGlT = Iineny and, MM = FiItIYFo = Ly -
Therefore,

MMH 0
GG = { 0 MHM} = l{onxany

Since the eigenvalues &G, MM" andM"M are equal, then

Amax(GG) = A (MMP) = A\ (MPM). (7)

We need to derive conditions such thag,(M"M) < 1, and from (6)
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Amex(MPM) - < TracgM™M) 8)

= TracdFqltlYFq) (9)
1 2wt 27wt
- - IS d N
- L et
weQ) teT
Therefore,
QT
TracéM"M) = [T , and\pax(M" M)g%
Thus,(®4,P1q) is PD whenQ||T| < N. |

=

Compressive Sensing  G. Arce Incoherent Orthobasis Fall, 2011 21/60



Hence, the condition such th@bt,®q) is NOT positive definite is

|supr(f)| - |suppf)| > Na (10)

=
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Consequence of the Uncertainty Principle (UP):

Sincef andf cannot both be highly sparse, a sparse representation
in Time has ainique image under the Fourier dictionary.

Proof:
If f is an unknown sparse signal in Time such tHaf, = S, and we
measure any2Fourier coefficients of as:

y = Fasf;

where,Fys is the Fourier dictionary having onlyStows.
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Assume that there exist anoti@sparse (in Time) signdl. Take the
same & Fourier coefficients of’ as:

y = Fasf’.

The signal(f — f') is 2S-sparse in Time. 1§ =y, then the S Fourier
coefficients of the signdl — f’ are given by:

Fas(f — ') = 0.

and sinceéFLFos is PD, therf = f'.

]
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The UP guarantees that we can recov&rsparse (in Time) signdil
from 2SFourier coefficients by solving

(PO) : rnfin||f||go st. y= Fudf (11)

-
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Random Waveforms

Randomness plays a major role in the measurement scenario.

Examples
@ Each entry ofb can be drawn from i.i.d.

qD - Gaussian distribution (i.e; ~ N(O, 1)).

@ Each entry ofb can be drawn from i.i.d.
Bernoulli distribution (i.e £1).

=

Compressive Sensing  G. Arce Incoherent Orthobasis Fall, 2011 26 /60



In random projections:

y = OX
where,® follows a given random distributiom,can be recovered from
M samples with high probability whevl satisfies:

M>C-S-log(N/S), C>1

@ Proved through the Restricted Isometry Property (RIP) as
described shortly.

Remark

Note that when using incoherent orthobasis, the requiredoeu of
measurements gl = 2Sand when using random projections, we
require more measurememts> C- S-log(N/S), to recover the signal.

=
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Restricted |sometry Property (RIP)

1. Gives the probability that angtsparse signal can be recovered
from its random projections.

2. Uses probabilistic methods to prove [1].

3. Gives the minimum number of projections required to guaant
the recovery of ang-sparse signal from its random projections.

=
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Restricted |sometry Property (RIP)

Theorem

A matrix A €¢ R™" satisfies the Restricted Isometry Property if there
exists a constardt > 0 such that

(1= )[IX[3 < [IAX]I3 < (1+8)x]13
with high probability.

Outline of the proof:

1. Show that for a fixed sparse vector|Ax||3 ~ ||x||3 with high
probability.

2. Count up the "number” of sparse vectors, and show that
|AX||3 =~ ||x||3 for all of them with high probability.

TBaraniuk, Ret al.. A simple proof of the Restricted Isometry Property for RamdViatrices. =
Springer science 2008.
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RIP for Gaussian Random M atrices

Let A € R™" with m < n, be a matrix with i.i.d. Gaussian random

entries: 1
(o)
al,j 9 m

Fix x € R"and seb = Ax.
1. Show that for a fixed sparse veciof|Ax||3 ~ ||x||3 with high
probability. Thei'" element ob is

n
bi:zaivjxj ~ N<070|2>
=1

Wheregi2 = E{b,z} = Zjnzl E{alzd})(J2 = Zjnzl %)(12 = %HXH% The
¢>-norm ofbis -
IbI3=">" |bi|* is a Chi-square r.v.
i=1
andE{[|bl|3} = 27, E{|bi|?} = 322, 4 IXI13 = [|x][3:
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To find the probability thal Ax||3 ~ ||x||3, the Markov Inequality is
used:

Markov Inequality
If yis a positive r.v.:

Ply> 1) < “W (12)

Proof:

Efy} = / yf (y)dy

> [y
/ f(y)dy
t
(y>1) (13)e
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Lety = ||b||3 (a positive r.v.), and without loss of generality, assume
that|[x||3 = 1

Py> (146)) = P(e¥>e'1); eis a monotonic functiofi4)
y
< Z{(ié}' Markov Inequality
B E{e)\ (1 bP) }
a e\(1+9)
_ E{eMie. et}
- e\(1+9)
= 11 elA(EL{H; } ; by independence of thes
b2 ym
= E;e(iw} bis are identically distributed
E e)\bi m
Ply> (140) < Coo )t

]
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Givenb; ~ N(0,1/m), then

E{e\} = / e\t (b)db (15)
[T e [ M
= /m@ € db
m o Im—=2\ _m-2y
- \/m—Z)\/_OO\/ P
b2 . m s
E{e"} = ’/7m—2>\’ if A <m/2

=]
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Replacing (15) in (14),

Ply>(1+446)) <

Ply>(1+446)) <

Choose\ = m

Ply> (1+9))

Compressive Sensing ~ G. Arce

Restricted Isometry Property (RIP)

E{e/\bf}m
e\(1+9)

m m/2
<m72>\>

e\(1+9)
<e2>\(l+5) /m

1-2\/m

(16)

m/2
) YA < m/2

g ¢ m/2
< (1=5ass)
— ((1+0)e?)™?

(17)

=]
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By Taylor expansion:

IN(1+6) = §—6%/2+8%/3—6%4+ ... (18)
IN1+0) < §—6%/2+6%/2
(1+0) < &7/
(1+0)e? < e @252
(18) in (17):
Ply> (1+4)) < e @ &mA (19)
Thus, in general:
P([b3 > (L+ )3 < e —om* (20)
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Similarly, for the lower bound can be shown that

P(IblI3 < (1= d)lx|3) < eI (21)

proof:
Lety = ||b||3 (a positive r.v.), and without loss of generality, assume
that||x||3 = 1.

Ply<(1-94)) = P(-y>—-(1-9)) (22)

= P(eV > e *179): ¢ is a monotonic function

E{eV}

e (1-0)
E{e*A(Zimzl biz)}

e (1-0)

E{e e e bh}

e (1-0)

Markov Inequality

]
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Py<(1-94)) <

Ply < (1-9)) <

Compressive Sensing ~ G. Arce

E{e g b e \bh}

I, E{eﬂ\biz},

e A\1-9)

by independence of thgs

e A1-0)
E{feiym -
ST bis are identically distributed
2

E{ef)\bl}m (23)

e \(1-9)

o
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Givenb ~ N(0,1/m), then
E{e ) — / &% (b)db
T e /M n
= e 2 b
/ooe 27Te d
m M4 2\ ey
_\/m+2)\/_oo\/ e @
7)\b2 m .
_ : _ 24
E{e"} —T% if A > —-m/2 (24)

=]
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Replacing (24) in (23),

_ 2 m
Ply < (1-a)) < S @5)
m m/2
(7)
Tea
A (1-6)/m | m
Py<(1-9¢)) < (m) /Z;V)\<m/2
Choose\ = 2(1 5
e m/
Ply<(1-9) = (1+5/(1 5)) 2
= (1-a)e)™ (26)
=

Compressive Sensing ~ G. Arce Restricted Isometry Property (RIP) Fall, 2011 39/60



By Taylor expansion:

NL-08) = —6- 0220633~ 6*/4+ .
In(-) < —0-0/2-0%3
(1-6) < e?d-9/2-03
(1- 5)e‘S < e (%/2+5°/3) o7
(27) in (26):
P<y < (1 — 5)) < e_(52/2+53/3)m/2
Py< (1—4)) < e @=oIm4 sinces?/2+6%/3 > (52 — 6%)(28)

Thus, in general:

P(blI3 < (1—d)[Ix|I3) < e **=Im4 (29)
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From (20) and (29),

P((1—8)[Ix]12 < |bl3 < (1+6)|x]3) > 1— e @-Im4 _ g-(0*=*)m/4

P((1— 8)[XII3 < [[blI3 < (1+)[x||3) > 1 — 2e"=I™*  (30)

il
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Example:
If 6 =1/2 andm = 1000, then

1 3
(31 < D13 < I|3) > 1~ 26 (i-pees

1 3 _
P(5IXE < IIblE < SIxIZ) >1-54x 10 (31)

Form = 1000, the following plot shows the probability of satisfgin
the bound as a function of

1F

Pliyll, 11l I<8lixll,)
o o o o o o o o
S 22822258

Ll
[

]

01 02 03 04 05 06 07 08 09
3
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It has been proved that for a fixed sparse sighalmatrixA with i.i.d.
Gaussian entries satisfies:

P(IAXIZ — [IXI[3] > d[Ix3]) < 2~ (32)

whereCy(§) = e~ (*~9%/4 is some constant that depends onlyson

To show the RIP for all sparse signalgt is necessary to find the
probability for all possible support setswith cardinality|T| < 2S.

]
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2. Count up the “number” of sparse vectors, and show that
|AX||2 = ||x||3 for all of them with high probability.

To count the “number” of sparse vectors, it is necessary tbHow
many vectorx satisfy

max sup|||Ax||3 — |IX|3] < § 33
max suplAxf? — [ < (33
where,
e B] = {x e R": xis supported only ifT and||x||5 = 1}.

® SUPcgy is the smallest upper bound of vecters B} satisfying
1415 — [IX/13] < 6.
@ maxr|<s is the maximum over all support séftsof size< 2S,
=]
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Solution:
First, fix a sefl of size|T| < 2Sand find the

P suncer lI/AXIE — [IxI3] > o).

Lemma 1

Let A € R™™be a random matrix that satisfies (32). Dea fixed set
of size|T| < 2Sand letd be a fixed constant between 0 and 1, then

12\ 28 B
P( suplAX3— I3 > 6) <2(=) e @A (34)

T
XeB,

=

Compressive Sensing ~ G. Arce Restricted Isometry Property (RIP) Fall, 2011 45/ 60



Proof: Approximate the seB] by a finite seQQ. The finite setQ, with
elements{qo, qy, ...}, is such that every € B] is within §/4 of an
element inQ, i.e.

min||x — <6/4, VxeBl. 35
inx — al < 3/4, vx < B} )

EssentiallyQ is a set containing all the vectaxsn B} with a
distortion< §/4.

The number of elements in the $@is given by:
12\ 2s
Q| < <7> ; where|T| < 2S (36)

fLorentz, G., von Golitschek, M., Makovoz, Eonstructive Approximation: Advanced Problems. =
vol. 304., Springer, Berlin. 1996
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For any fixedyy € Q, then, according to (32)
P(/[|Adol[2 — [lcollz| > §/2) < 2e~/2m (37)

Recall the union bound probability:

k
P(Wy UW, U ... UW) <>~ P(W)
i=1
Applying the union bound probability along all the elemegitgen in
(36), then

12
< a—Co(6/2)m
P(max|Adl5 — lal}] > 5/2) <2(=) e (38)

]
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Note that, if it is true that all thg € Q are "well behaved” in that

max|[|Ag|5 — llall3] < 6/2. (39)
9eQ
Then, it is also true that
supl||Ax||5 — [IX][5] < 6. (40)
xeB{

This concludes that the probability of sug: [[|AX[|Z — [|x[[3] > d is
given by:
1242
P(llAxI3 = X3 > 8) < 2(%) e @A™ (41
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Now, for all 25—sparsex signals simultaneousljAx||3 ~ ||x||3 has to
be established.

Lemma 2
Let A € R™™be a random matrix that satisfies (32). Then there exis
constantC,(¢) depending only o, such that

P(”‘axlTlszs sup||AX|[3 — [IXI[5] = 5) is small (42)

T
XeB,

when

m > C,(9)Sog(n/S).

=
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Proof: For a fixed &-dimensional subspadz}
P( max||AX|3 — [IXI3] > §) < 2(12/6)%e /2
XeB,

In R", there are( ;) such subspaces:

n n! n2s ne- 25
(28) ~h-29129 = (25 = <2_s) : (43)

Homework: Provide a proof of Eq. (43).

Applying the union bound:

2S
P max sup|IAX|Z — X3 > 6) < 2(2) " (12/8)%e G2
‘ ‘_ XEB; ZS

]
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ne\ 2S
P( max sup|||Ax||2 — [|x/|2| > 5) < 2(_) 12/8)25=Co(6/2m
TSZSxesg)'H 12— IIXI[2] > < 2(5g (12/6)

o (m o (82))

(44)

2S 12ne)

M2 &6/2) ' (s

then, the probabilit)P( MaXr|<2s SURgr | |AXI[Z — [|X[13] > 5) is
small.

Homework:

Prove that Eq. (44) can be rewrittenras> C,(4)Slog(n/S), when
n > 6eS/J.

This ends the proof of Lemma 2.
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The Restricted Isometry Property (RIP) guarantees thatane@cover
aS-sparse signat as a unique solution of the following problem:

min [|x||o S.t. b = Ax. (PO)
X

Because:
Assuming that there exists another sigrahaving also minimum
lo-norm (.e. ||x1]|0 < 9), then, ifx # x;

X —X[|5 # O (45)
and, by the RIP we know thdk — x;||3 ~ ||Ax — Ax; |3, then
|AX — Axal|3 = [[b — byl # O (46)

which means that any oth&sparse signal; does not satisfy the
constraint of the problem in (PO). =
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Recovery Viad; Minimization

If the random matrixR obeys the RIP, then:

o EverySsparse signal has a unique image uri@exrhich means
thatb = Rx s different for eacl&-sparse signal x.

@ Givenb, x can be recovered by solving: mijix|/o S.t.b = Rx.

MAIN PROBLEM:
The /o minimization is NP-hard, then we want to solve a convex
minimization problem, i.e.:

min||x||; s.t.b=Rx. (P1)
X

If Xo is the solution to (P0O) ankt is the solution to (P1), we need to

find the conditions under whicky = x*. -
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Recovery Viad; Minimization

Conditions for EXACT recovery using Minimization.

Call x* the solution to (P1) ang, the solution to (P0). Sdt= x* — X
as the recovery error. We need to show that 0 in order to show
EXACT recovery.

1. Given the random projectiors thenx* andxy are both feasible
solutions. Buix* is defined to be the feasible point with smallest
/1-norm, i.e.,

IX°[lx < [Illz, oF %o + hllx < ||l @7)
Proof: Let the sefl be the support dh, this is:
o h[i] ifieT
hT[']—{ 0 ifi¢T.

And, let the sefly be the support afo.
Sparse Signal Recovery Fall, 2011 54 /60
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By the triangle inequality:

Io+hl = [xli] +hii]| + > [hii]

i€To €T
> > " [xoli] + hii]| + > [hi]]
i€To €T
= |I%ollx — [[hmollx + [[hrella- (48)

Using (47) in (48), then:

[%ol|1
g

[Xollx = [[Prolla + l[hrella

>
> [lhnglla (49)

=
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2. Since the matriR obeys the RIP, thevih € Null(R):
[Prolla < plfhrella; p <1

for every sefl, with |To| < s.

Proof: Let T§ divided into decreasing subsétg T, ... of sizes. We
know thath = x* — xg belongs to the Null space &; (i.e. Rh = 0),
then:

(hToUTl =+ h (TouTy)C ) 0 or R hTOUTl = Z Rh_l.J

and so
IRArom ll2 = 11 ) Rhmll2 < Y[R 2 (50)
j=2 j=2

]
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Sincehr,r, is as+ S sparse vector, applying tiset+ S-RIP

V1= dsis | hroum [l2 < [|RrguT [[2- (51)
Since eaclhy, is s-sparse, applying the&-RIP

[hmll2 < v/ 1+ dghr]l2. (52)
Replacing (51) and (52) in (50), then

V1= derslhrumla < V1+6s > |lhyl2. (53)

j>2

]
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For eachj > 2, all the magnitudes of the valueshq are less than all
the magnitudes of thie;,_,, since the set is organized in a decreasing
way. Thus, the maximum value i, is smaller than the average of th
magnitudes irhTH, i.e.

1
Ihrilloe < P ala
Thus, L
b |2 < VS|l < ﬁllhn,llll
and 1
[z < HhTHl —|lhrellx (54)
Using (54) and (53), then
VITds llhrell
Ihroom, 2 < s (55)
V1-dss VS o
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Finally,
[hrell < V8llhrll2 < V/Slhroum |2 (56)

Replacing (55) in (56), then

V1+dy \/é”th”l

hroll1 <
|| JTobes V8
= pllhrellz (57)
with p = ﬁgz% < 1whens = 2sand Dz + dps < 1.

=]
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1. In (49), it has been proved théthr, [ > [[hcl|s
2. In (57), it has been proved thathr,[|» < p|[hre[s.

The only wayh can obey [1] and [2], is thdt = O which implies
EXACT recovery.

]
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