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Compressed Sensing encompasses exciting and surprising
developments in signal processing resulting from sparse
representations.

It is about the interplay between sparsity and signal regowoots
trace back td

@ Mathematics and harmonic analysis

@ Physical sciences and geophysics

@ Vision

@ Optimization and computational tools

This course describes this fascinating topic and the toeésled in its
applications.

fD. Donoho, "Scanning the Technology,” Proceedings of tHeHEVol. 98, No. 6,

June 2010
=a
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Shannon-Nyquist Sampling Theorem

The Shannon-Nyquist Theorem: sampling frequency of arognal
signal must be greater than twice the highest frequencysdditinal in
order to perfectly reconstruct the original signal from slaenpled
version.

Theorem

If a function f (t) contains no frequencies higher than W cps, it is
completely determined by giving its ordinates at a series of points
spaced (¥) seconds apart.’

Nyquist Shannon
1923 1948
 C. E. Shannon. "Communication in the presence of noise ¢&adings of the IRE, Vol. 37, no.1, pp.10-21, Jan.1949. ]

H. Nyquist. "Certain topics in telegraph transmission ttygdlrans. AIEE, vol.47, pp.617-644, Apr.1928.
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e Traditional signal sampling and signal compression.

Stage

Sampling

Compression

N;x N,
pixels

Algorithm

Transmission/

Storage

Nix N, >> K

@ Nyquist sampling rate gives exact reconstruction.

Pessimistic for some types of signals!
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Sampling and Compression

e Transform data and keep important coefficients.

Original Image Biorthogonal Spline Wavelet Transform
Wavelet

il
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Sampling and Compression

@ Lots of work to then throw away majority of data!.
e e.g. JPEG 2000 Lossy Compression: A digital camera can take
millions of pixels but the picture is encoded on a few hundred
kilobytes.

s
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Problem:Recent applications require a very large number of sample

@ Higher resolution in medical imaging devices, cameras, etc
@ Spectral imaging, confocal microscopy, radar arrays, etc.

Spectral Imaging

Medical Imaging

-
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Sampling and Compressive Sensing

e Donohof, Candés, Romberg and Tao, discovered important
results on the minimum number of data needed to reconstruct
signal

@ Compressive Sensing (CS) unifies sensing and compressooa ir
single task

@ Minimum number of samples to reconstruct a signal depends ¢
its sparsity rather than itdandwidth.

T D. Donoho. "Compressive Sensing”. IEEE Trans. on Inforomaiiheory. Vol.52(2), pp.5406-5425, Dec.2006.

¥ E. candes, J. Romberg and T. Tao. "Robust Uncertainty iptes Exact Signal Reconstruction from Highly IncomplEtequency
Information”. IEEE Trans. on Information Theory. Vol.53(4p.1289-1306, Apr.2006.

]
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Vector Spaces and the Nyquist-Shannon Samg
Theorem

Vector space: set of vectoks satisfying the following axioms:

@ Associativity propertyv; + (Vo + V3) = (Vi + Vo) + Vs.

o Commutativity propertyv; + Vo = Vo + V.
Identity element30 € H, such thav + 0 = v, Vv € H.
@ Inverse element/v € H, thend — v € H, such thav + (—v) = 0.
o Distribut. of scalarsis a scalar, such thatv; + v,) = sv; + sv,.
@ Distribut. of scalars,, s, are scalars, such that

(S1+S)V =5V + V.
@ Associat. of scalarss;, s, are scalars, such thaf(s,v) = (5,5)V.
o ldentity element of productl a scalar 1, such thavX= v.

(]

]
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Norms: A norm|| - || on the vector spadd satisfies:

@ Vxe H, ||x|| >0,and||x]| =0« x=0.
@ Ya € C, ||ax|| = |a|||X||. (Homogeneity).
o WX,y € H, [ x+y| < x|+ ]|yl (Triangle inequality).

=]
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Examples of norms:

o His the spac®", with norm||x||,, = (3_p_; [%/P)>P, forp > 1.

In R?, set the unit balBy = {x: ||X|[s, = L, p > 1}:

X2 Xo

A

X2

B.,

S

X1

The unit ball is the set of all pointx,, X;) which satisfy the equations:

@ |x1| + |%| = 1, forB;.
o X2+ x5 =1, forB,.
@ max{xy, %} =1, forB,.
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INR", |IX]l,, = > on_; [X is @ norm since it satisfies:
o Vx € R", then||x|l,, = Y r_; %/ > 0. Also,>"¢_, %] = 0, if and
only if x, = 0, Vk.
® Va € C, then(lax]|e, = 35y loxd] = |o g X = [a[[X]]e,-
o Vx,y € R", then .
X+ 9lle = D %+ Wd
k=1

n

> (1% + [y«)); Convex Function
k=1

n n
= D I+ D Iw
k=1 k=1

= |Xllex + M1¥llex-

IN

=]
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INR", [[X[¢, = (Xp_q [%/P)*P, with p = 0.5, isnot a norm:

o Vx € R, then||X||s, = (3__y [%]"?)? > 0. Also,
(S0, [%]%%)2 = 0, if and only ifx, = 0, Vk.

® YVa ne C! tTe2n|’O§_X2H£§5 = <Zlk§l ‘%Xk‘l/z)l 2:2
(Xl lal2x 2)% = (|2 300y IdM2)? = [ X dos-
@ VX, y € R", then

X+ Yles = (Z X+ Y22

Z\xkll/2+2|y\l/2 22|xk\1/22\y|”2;

= Z\in”z Zwﬂ — Xlleos + Vlleo

k_

v

(Triangle inequality is not satisfied) =
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Other Examples of Norms:

@ Operator normH is the space ain x n matricesA
|All = omax(A) = maximum singular value dA.

@ Frobenius normH is the space afn x n matricesA

IAlle = (30, A)Y2 = (X 0i) Y2

Normed vector spaces: vector spateesatisfying the norm properties.

Examples of normed vector spaces:

@ /»(R) (also known ag? or Euclidean space): the vector spéte
satisfying the properties of thig-norm.

o /- (R): the vector spacR satisfying the properties of the
{-norm.

=
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Inner Products

An inner produck -, - > onH satisfiesyx,y,z € H anda € C:
0 I XY>=<Y,X>"
O < aX\y>=a <XYy>
O <X+VY,Z2>=<XZ>+<Y,Z2>
0 <X,X>>0,<x,x>=0&x=0

A inner product operator induces a normtan,/< X, X > = ||X]|.

In /,(R), for instance, the inner product is given by:

<X Y >= /Oo X(t)y*(t)dt. 1)
<X X >= /Oo X(t)x* (t)dt = [|X||7. @),
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Hilbert Spaces

A vector spacéd that satisfies the inner product properties is known
Hilbert space.

Examples of Hilbert spaces:

@ The Euclidean spadR" with the dot product as inner product:
<Xy >= Y0 Xy

@ The space of real-valued, finite variance, zero-mean random
variables:< x,y >= E[xy]|.

@ The space ofn x n matrices with:< A, B > = trac€ AB).

]
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Definitions

@ Orthogonality: two signalg, y are orthogonal ik x,y >= 0.

@ Orthonormal basis: a basis of a vector space is orthonofmal i
their vectors are orthonormal.

@ Orthonormal sequencé s, }nez is an orthonormal sequence if:
||5n|| = 17 vn’ and< 5n, ﬁm >= O, vn 7& m

Example:

o Fourier series{ 3y} nez = {€%™} ¢z is an orthobasis for
/5([0,1]), since:

° [IBnlle, =1
C IR ﬁna,ﬁm >= 0

]
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Definitions

@ Cauchy-Schwarz Inequality:< x,y > | < ||x]|[|yll-

e For the Euclidean spad¢ = R" :
[<xy > = S < /(S0 () = Xl Wl

o For the space of real-valued, finite variance, zero-meatoran
variablesf < x,y > | = E[xy] < (E[X))(E[y]) = [Ix[|[|yll-

=
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Shannon-Nyquist Sampling Theorem

Sampling of a bandlimited signal.

Let f(w) be the Fourier transform 6ft). Let the space of bandlimited
signals be

Bt = {f(t) € R"s.t.f(w) = 0,V|w| > 7/T}.

Define
VTsin(nt/T) . VT it wl < n/T
hT(t)‘THhON)_{o if (| > /T
: - el
AT A . T W] -
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By the linear shift property of the Fourier series
hT(t — nT) < ﬁéwnT

Using the Parseval theorem definition
o Parseval theoremf™_f(t)g*(t)dt = = [*_f(w)g(w)dw,
note thathr(t — nT) is an orthobasis for the bandlimited signg(g) in

o0

Bﬂ/T:
0 1 w/T )
/ hr(t)h(t —nT)dt = =— Te" T dw
—00 2m —7/T
_ 1 'wnT‘ﬂ/T
2jmn /T
1 . .
— éﬂ'n_ —Jmn
2j7rn( &)
= 0, VneZ.

]
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The signalg (t) in B, /r can be expressed in terms of its orthobasis
f(t) = (f(t),h(t — nT))h(t — nT). (3)
NeZ

Using the inner product definition in (2) and the parsevabtbm, the
coefficients for the signal expansion in terms of its orttsidare

FO,ht—nT) = — ﬂ/Tf(w)ﬁéW“wa

2m —7/T

= VTf(nT) (4)

]
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Replacing (4) in (3), the signafst) in B, r can then be expressed in
terms of a sequence

f(t) = VT Y _f(nT)h(t—nT). (5)

where, the coefficientsnT) of the sequence are sampled (.

Nyquist-Shannon-Kotelnikov Theorem

If a signalf (t) contains frequencies satisfying| < 7/T, the signal is
completely determined by series of points spatestconds apart.

=
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Sparsity

@ Signal sparsity critical to CS

@ Plays roughly the same role in CS that bandwidth plays in
Shannon-Nyquist theory

@ Asignalx € RN is Ssparse on the basisif x can be represented
by a linear combination dbvectors of¥ asx = ¥ with S< N

At most S non-zero components

VAV

‘ =
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The/, Norm and Sparsity

@ The/lo normis defined by: |[x|lo = #{i : x(i) # 0}
Soarsity of x is measured by its number of non-zero elements.

@ The/; normis defined by: |[|x|l1 = >, [X(i)|
£, norm has two key properties:

o Robust data fitting
e Sparsity inducing norm

@ The/, norm is defined by: ||x||l2 = (3, [x(i)[?)%2
/, norm is not effective in measurirgparsity of x
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Why /; Norm Promotes Sparsity?

Given twoN-dimensional signals:
® x; =(1,0,...,0) — "Spike” signal
@ X = (1/vN,1/VN, ..., 1/4/N) — "Comb” signal

@ X; andx, have the samé, norm:
%]z = 1 and||x;[[> = 1.

@ However,|[x;||; = 1 and

1%/l = v/N.
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/1 Norm in Regression

@ Linear regression is widely used in science and engineering

Given Ae R™" and be R", m>n
Find x s.t. b= Ax (overdetermined)

—;5 =

.f.;TﬁEI

o FININ 1
i'

=
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/1 Norm Regression

Two approaches:
@ Minimize the/, norm of the residuals

min||b — Ax||2

The/, norm penalizes large residuals
@ Minimizes the/; norm of the residuals

min||b — Ax||;
XER"

The/; norm puts much more weight on small residuals

]
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Matlab Code
@ MiNyern ||AX — b||2

A=randn(500,150);

b=randn(500,1);

x = (A A)Y x A x b; Least Squares Solution
) minxeRn ||AX— b”l

A=randn(500,150);
b=randn(500,1);
X = medrec(b,A,max(A *b),0,100,1e-5);

]
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/1 Norm Regression

m = 500,n = 150.A = randn(m, n) andb = randn(m, 1)

30

25F

20F

151

101

/> Residuals /1 Residuals

=
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/1 Norm in Regression

Given AcR™ and beR™ m<n

Find x s.t. b= Ax (underdetermined)

xPInEE 1 EEmn

=
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/1 Norm Regression

Two approaches:
@ Minimize the/, norm ofx

min|x|z subjectto Ax=Db
XERN
@ Minimize thef; norm ofx

min||x||; subjectto Ax=Db
xeRn
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Matlab Code

@ Minewo ||X||2 Subjectto Ax=Db

A=randn(150,500);
b=randn(150,1);
C=eye(150,500);
d=zeros(150,1);
X=Isglin(C,d,[].[1,Ab);

@ In general:
minern f(X) subjectto Ax=Db

X= fmincon(@(x) f(x),zeros(500,1),[],[],A,b,[].[],0ptions);
wheref (x) is a convex function.

]
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/1 Norm Regression

/5 Solution ¢4 Solution

=
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/1 Norm Regression

Considem observation pairéx;, bj) modeled in a linear fashion
b, = Ax +c+ U, i=12...,N (6)

A: Unknown slope of the fitting line.
c: Intercept.
U;: Unobservable errors

The Least Absolute Deviation regression is

N
Fi(Ac) =) |b—Ax -, (7)
i=1

]
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£
e Samples
LS
LAD
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.
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ZiN:1|bi — A% —C|

c=—XA+Db

Compressive Sensing G. Arce
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/1, Norm in Estimation

L ocation Estimate in Gaussian Noise

Letxq, %o, - - - , Xn, I.i.d. Gaussian with a constant but unknown mean
. The Maximum Likelihood estimate of location is the vafgiahich
maximizes the likelihood function

(X, %, Xn; 8) = f(x —05)

:z

Il
iR

1
\V2mo

N/2
— 1 2) o MiLi(6—B)?/20%
2no

o (x—B)?/20? (8)

I
.zz

Il
iR

]

Compressive Sensing ~ G. Arce Sparsity and thé;-Norm Fall, 2011 40/75



/1, Norm in Estimation

The ML estimate3 minimizes the least squares sum

N
AuL = arg rrginZ(x,- — B2 9)
i=1
Results in the sample mean
. 1
PuL = N ;K (10)
=
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/1, Norm in Estimation

Location Estimate in Generalized Gaussian Noise
If the X's obey a generalized Gaussian distribution, the ML estimfate
location is

N
fxe, %, -, Xn; 8) = va(xi_ﬁ)
i=1

N
= Hce_bq_ﬁ"y/o-
i=1
= CNe* Zi’\‘:ﬂxi*m’y/"’ (11)

whereC is a normalizing constant, andis the dispersion parameter.
]
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/1, Norm in Estimation

Maximizing the likelihood function is equivalent to

N
P = argmind _ [x — 5|
i=1

Figure: Cost function fory = 0.5, 1, and 2. -
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/1, Norm in Estimation

ForN odd there is an integde such that the slopes over the intervals
(Xk=1), X0 ] @and (X, Xk4-1)], are negative and positive, respectively.

N
P = arg ”ﬂ“nz X — B

i=1
{ X a1, N odd
(X<%>’X<%>] N even
— MEDIAN (g, X2, - - - , Xn). (12)

=]
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/1 Norm Regression

ML Estimate of Location for Generalized Gaussian
Here the samples have a common location paransetent different
scale parameter,. The ML estimate of location is

N

Gp(B) = pm BIP. (13)

|lI

For the Gaussian distributiop & 2), the ML estimate reduces to

N
A - 1 a2 Zu 1W Xi
A =arg n/}m; g (% — B) ST (14)

whereW, = 1/0? > 0.
]
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For the Laplacian distributiorp(= 1), the ML estimate minimizes
N1
Gi(f) = 2; b= (15)
whereW; £ 1/0i > 0. G1(5) is piecewise linear and convex. The
weighted median output is defined as
N
Y(n) = argminy  Wix — |
i=1
= MEDIAN [W;0x:(n), WaOXa(n), - -+, W OXn ()]

whereW, > 0 and¢ is the replication operator defined as
w times

WOX =%, X, -, X
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/1 Norm Regression

Next, consideN observation pair§x;, by)
b, = Ax +c+ U, i=12...,N (16)

A: Unknown slope of the fitting line.
c: Intercept.
U;: Unobservable errors
Thel, or Least Absolute Deviation (LAD) regression is

N
Fi(Ac) =) |b—Ax -, (17)
i=1

]
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Sample spacdy = Ax + C
1. Each sample paiix, b;) represents a point on the plane
2. The solution is a line with slop&* and intercept®.
3. If this line goes through some sample p@ir, b;), then
the equatior; = A*x + c* is satisfied
Parameter space:= —xA+ b
1. The solution(A*, b*) is a point.
2. The sample paifx;, b;) defines a line with slope x and
interceptb;.
3. Whenc* = —x,A* + b; holds, it can be inferred that the
point (A*, c*) is on the line defined by—x;, by)

=]
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SetA = Ay, the objective function now becomes a one-parameter
function ofc

N
Fc) =) |b — A —cl. (18)
i=1  Observations

The parametet* is the Maximum Likelihood estimator of location for
c. It can be obtained by

¢ = MED(b — Agx) | V.. (19)

]
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Setc = ¢y, the objective function reduces to

N
Fla) = Z|bi—Co—AXi\
IEl b._co
— Z|>q| "T—A’. (20)

The parametefA* can be seen as the ML estimator of locationApr
and can be calculated as tveighted median,

N
A* = MED <\>q\ - CO)

: (21)

i=1

]
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A simple and intuitive way of solving the LAD regression plein is:

1. Setk = 0. Find an initial value’, for A, such as the Least
Squares (LS) solution.

2. Setk = k4 1 and obtain a new estimate ofor a fixedA,_; using
Cc = MED(bi — A1) [ g

3. Obtain a new estimate @ffor a fixedc, using

A = MED (m|<> b‘_ck)

N

i=1

4. OnceA, andc, do not deviate from#\,_; andc,_1 within a
tolerance range, end the iteration. Otherwise, go baclef2x.

=]
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Signal Representation

@ A sparse signat € RN can be represented by a linear
combination of basis of an orthogonal representation matri

X(t) = Z aiti(t)

-
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Sparse Signhal Representation

Active development for effective signal representatiothim90’s
e Fourier
o Wavelet
@ Curvelet

There is no universal best representation
@ Best representatior sparsest

=]
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Wavelets

A wavelet is a "small wave” with finite energy that allows theadysis
of transient, or time-varying phenomena.

Figure: Daubechies (D20) Wavelet example

=
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A signalx(t) can be represented in terms of its wavelet coefficients

X(t) = Z Z(X, Ujn) Win(t)

JEZ nEZ

where:
e U, , are the wavelets that form an orthogonal basis.
® (x, ;) are the wavelet coefficients.

Wavelets are vectors of a orthogonal basis formed by sbitimd
dilating amother wavelet, W (t):

Ui o(t) =27920(27t —n), Vj,neZ

wherej is the scale parameter ands the location parameter.
=]
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Examples of wavelet expansion functions are:

-1

Figure: Haar wavelet Figure: Daubechies Figure: Symlet wavelet
wavelet

-
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Daubechies Wavelet

o Daubechies Wavelets are continuous and smooth wavelets.
@ Themother wavelet is defined by means ofsgaling function.

o A daubechies wavelet (t) hasp — 1 vanishing moments if:

/ t*U(t)dt = 0; for 0 <k < p.

—00

@ The smoothness of the scaling and wavelet functions inerass
the number of vanishing moments increases.

]
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Examples of Daubechies wavelets:

15 15 ™ v v
1 B ‘_‘
\
0% \ I N
0% \ am
0 \ A N
LY =a— /' D —
05 \/ NEIR
s V|
* 1!
15 -1 \ .
: scaling function
wavelet function
2 -5 . A h
o 2 4 ] 8 10 12

(b)

i

| Vscaling function
, wavelet function

0 2 4 6 8 10 12 14 16 18 20

()

@ (a) Daubechies scaling and wavelet functions with 2 vangghi

moments.

o (b) Daubechies scaling and wavelet functions with 6 vangghi

moments.

@ (c) Daubechies scaling and wavelet functions with 10 vangsh

moments.
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Examples of Wavelet decompositions

Decomposition at level 8.8 = af +d8 + d7 + d6 +d5 + d4 +d3 + 2 + d1
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Examples of Wavelet decompositions

Decornposition atlevel 8 15 =al + d8 + d7 +df + db + dd +dd +d2 + il
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Other examples: original signals

1 (a) Blocks

20
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1(b) ]IBmups
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Noisy signals

2 (a) Noisy Blocks

60

2 (b) Noisy Bumps
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2 (c) Noisy HeaviSine

2 (d) Noisy Doppler
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Denoising using wavelet approximation

3 (a) \"isuShlrink[Blu_c ks]
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Denoising using wavelet approximation

30 6 (a) Z\Tm'lsv Data v

20

10 1
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20 =8 (b) HaarShrink Reconstruction
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Sampling and Compression

JPEG JPEG2000
L]
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Sparse Signhal Representation

o Different representations are best for different appioce.

o Fourier Dictionary— For oscillatory phenomena
o Wavelet Dictionary— For images with isolated singularities
o Curvelet Dictionary— For images with contours and edges

This motivates overcomplete signal representation

¥ s.Mallat and Z. Zhang. "Matching Pursuit in a Time-Frequebectionary”. IEEE Trans. on Signal Proc. Vol.41, pp.339415, 1993.

=
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Sparse Signhal Representation

Overcomplete dictionary representation

o Different bases merged into a combined dictionary
U = [y, Uy, ..., Ty
@ Representation of in an overcomplete dictionary

X= gy, withthe sparsesty
i

=

Compressive Sensing ~ G. Arce Sparse Signal Representation Fall, 2011 70/75



Basis Pursuit (BP)

Basis Pursuit— find the sparsest approximationof

min|jal; s.t. X= Y«
[e%

wherellall; = 7, Jail.

@ BP decomposes a signal into a superposition of dictionary
elements having the smallggtnorm among all such
decompositions.

T D. L. Donoho and X. Huo. Uncertainty principles and ideahaitodecomposition. IEEE Trans. Inform. Theory, 47:284%528001.

=
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Compressible Signals

In most applications

@ Signals are not perfectly sparse, but only a few coefficients
concentrate most of the energy.

@ Most of the transform coefficients are negligible.

@ Compressible signals can be approximated Bysparse signal:

- There is a transform vectars with only Sterms such that
llas — |2 is small.

]
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Compressible Signals

e Wavelet coefficients of natural scenes exhibit thén)-decay.

ol

4

5 8

g 8 8 8

g g E 2

1 Megapixel Image Wavelet Coefficients - Sorted Wavelet Coeff.

T E.J. Candes and J. Romberg "Sparsity and Incoherence ipf@ssive Sampling.” Inverse Problems.
vol.23, pp.969-985. 2006.

=
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Examples of Compressible Signals

I \H\Il

Time Signal

1l I'I\ -

H’u'ﬂ'

@ Bat echolocation

Time-Frequency
Representation

@ Confocal microscopy

3D Image.

<
£
2 r»“{‘i —
g
<

@ Ultra wideband signaling

Time[ps]

=]
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