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Compressed Sensing encompasses exciting and surprising
developments in signal processing resulting from sparse
representations.

It is about the interplay between sparsity and signal recovery. Roots
trace back to†

Mathematics and harmonic analysis

Physical sciences and geophysics

Vision

Optimization and computational tools

This course describes this fascinating topic and the tools needed in its
applications.

†D. Donoho, ”Scanning the Technology,” Proceedings of the IEEE. Vol. 98, No. 6,

June 2010
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Shannon-Nyquist Sampling Theorem

The Shannon-Nyquist Theorem: sampling frequency of an analog
signal must be greater than twice the highest frequency of the signal in
order to perfectly reconstruct the original signal from thesampled
version.

Theorem

If a function f (t) contains no frequencies higher than W cps, it is
completely determined by giving its ordinates at a series of points
spaced (W

2 ) seconds apart.†

† C. E. Shannon. ”Communication in the presence of noise.” Proceedings of the IRE, Vol. 37, no.1, pp.10-21, Jan.1949.
H. Nyquist. ”Certain topics in telegraph transmission theory.” Trans. AIEE, vol.47, pp.617-644, Apr.1928.
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Traditional signal sampling and signal compression.

Nyquist sampling rate gives exact reconstruction.

Pessimistic for some types of signals!
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Sampling and Compression

Transform data and keep important coefficients.

Original Image Biorthogonal Spline

        Wavelet

Wavelet Transform
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Sampling and Compression

Lots of work to then throw away majority of data!.
e.g. JPEG 2000 Lossy Compression: A digital camera can take
millions of pixels but the picture is encoded on a few hundredof
kilobytes.

Original Image Wavelet Transform
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Problem:Recent applications require a very large number of samples:

Higher resolution in medical imaging devices, cameras, etc.

Spectral imaging, confocal microscopy, radar arrays, etc.

Medical Imaging

y

x

λ

Spectral Imaging
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Sampling and Compressive Sensing

Donoho†, Candès‡, Romberg and Tao, discovered important
results on the minimum number of data needed to reconstruct a
signal

Compressive Sensing (CS) unifies sensing and compression into a
single task

Minimum number of samples to reconstruct a signal depends on
its sparsity rather than itsbandwidth.

† D. Donoho. ”Compressive Sensing”. IEEE Trans. on Information Theory. Vol.52(2), pp.5406-5425, Dec.2006.
‡ E. Candès, J. Romberg and T. Tao. ”Robust Uncertainty Principles: Exact Signal Reconstruction from Highly IncompleteFrequency
Information”. IEEE Trans. on Information Theory. Vol.52(4), pp.1289-1306, Apr.2006.
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Vector Spaces and the Nyquist-Shannon Sampling
Theorem

Vector space: set of vectorsH satisfying the following axioms:

Associativity property:v1 + (v2 + v3) = (v1 + v2) + v3.

Commutativity property:v1 + v2 = v2 + v1.

Identity element:∃0 ∈ H, such thatv + 0 = v, ∀v ∈ H.

Inverse element:∀v ∈ H, then∃− v ∈ H, such thatv + (−v) = 0.

Distribut. of scalar:s is a scalar, such thats(v1 + v2) = sv1 + sv2.

Distribut. of scalar:s1, s2 are scalars, such that
(s1 + s2)v = s1v + s2v.

Associat. of scalars:s1, s2 are scalars, such thats1(s2v) = (s1s2)v.

Identity element of product:∃ a scalar 1, such that 1v = v.
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Norms: A norm‖ · ‖ on the vector spaceH satisfies:

∀x ∈ H, ‖x‖ ≥ 0, and‖x‖ = 0 ⇔ x = 0.

∀α ∈ C, ‖αx‖ = |α|‖x‖. (Homogeneity).

∀x, y ∈ H, ‖x + y‖ ≤ ‖x‖+ ‖y‖. (Triangle inequality).
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Examples of norms:

H is the spaceRn, with norm‖x‖ℓp = (
∑n

k=1 |xk|p)1/p, for p ≥ 1.

In R2, set the unit ballBp = {x : ‖x‖ℓp = 1; p ≥ 1}:

The unit ball is the set of all points(x1, x2) which satisfy the equations:

|x1|+ |x2| = 1, for B1.

x2
1 + x2

2 = 1, for B2.

max{x1, x2} = 1, for B∞.
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In Rn, ‖x‖ℓ1 =
∑n

k=1 |xk| is a norm since it satisfies:

∀x ∈ Rn, then‖x‖ℓ1 =
∑n

k=1 |xk| ≥ 0. Also,
∑n

k=1 |xk| = 0, if and
only if xk = 0,∀k.

∀α ∈ C, then‖αx‖ℓ1 =
∑n

k=1 |αxk| = |α|
∑n

k=1 |xk| = |α|‖x‖ℓ1.

∀x, y ∈ Rn, then

‖x + y‖ℓ1 =
n∑

k=1

|xk + yk|

≤
n∑

k=1

(|xk|+ |yk|); Convex Function

=
n∑

k=1

|xk|+
n∑

k=1

|yk|

= ‖x‖ℓ1 + ‖y‖ℓ1.
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In Rn, ‖x‖ℓp = (
∑n

k=1 |xk|p)1/p, with p = 0.5, isnot a norm:

∀x ∈ Rn, then‖x‖ℓ0.5 = (
∑n

k=1 |xk|1/2)2 ≥ 0. Also,
(
∑n

k=1 |xk|0.5)2 = 0, if and only ifxk = 0, ∀k.

∀α ∈ C, then‖αx‖ℓ0.5 = (
∑n

k=1 |αxk|1/2)2 =
(
∑n

k=1 |α|1/2|xk|1/2)2 = (|α|1/2
∑n

k=1 |xk|1/2)2 = |α|‖x‖ℓ0.5.

∀x, y ∈ Rn, then

‖x + y‖ℓ0.5 = (

n∑

k=1

|xk + yk|1/2)2

≥ (

n∑

k=1

|xk|1/2 +

n∑

k=1

|yk|1/2)2 − 2
n∑

k=1

|xk|1/2
n∑

k=1

|yk|1/2;

= (

n∑

k=1

|xk|1/2)2 + (

n∑

k=1

|yk|1/2)2 = ‖x‖ℓ0.5 + ‖y‖ℓ0.5

(Triangle inequality is not satisfied)
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Other Examples of Norms:

Operator norm:H is the space ofm × n matricesA
‖A‖ = σmax(A) = maximum singular value ofA.

Frobenius norm:H is the space ofm × n matricesA
‖A‖F = (

∑

i,j A2
i,j)

1/2 = (
∑

k σ
2
k )

1/2

Normed vector spaces: vector spacesH satisfying the norm properties.

Examples of normed vector spaces:

ℓ2(R) (also known asℓ2 or Euclidean space): the vector spaceR

satisfying the properties of theℓ2-norm.

ℓ∞(R): the vector spaceR satisfying the properties of the
ℓ∞-norm.
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Inner Products

An inner product< ·, · > on H satisfies∀x, y, z ∈ H andα ∈ C:

< x, y >=< y, x >∗

< αx, y >= α < x, y >

< x + y, z >=< x, z > + < y, z >

< x, x >≥ 0,< x, x >= 0 ⇔ x = 0

A inner product operator induces a norm onH:
√
< x, x > = ‖x‖.

In ℓ2(R), for instance, the inner product is given by:

< x, y >=
∫ ∞

−∞

x(t)y∗(t)dt. (1)

< x, x >=
∫ ∞

−∞

x(t)x∗(t)dt = ‖x‖2
ℓ2
. (2)
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Hilbert Spaces

A vector spaceH that satisfies the inner product properties is known as
Hilbert space.

Examples of Hilbert spaces:

The Euclidean spaceRn with the dot product as inner product:
< x, y >=

∑n
i=1 xiyi.

The space of real-valued, finite variance, zero-mean random
variables:< x, y >= E[xy].

The space ofm × n matrices with:< A,B >tr= trace(AB).
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Definitions

Orthogonality: two signalsx, y are orthogonal if< x, y >= 0.

Orthonormal basis: a basis of a vector space is orthonormal if
their vectors are orthonormal.

Orthonormal sequence:{βn}n∈Z is an orthonormal sequence if:
‖βn‖ = 1, ∀n, and< βn, βm >= 0, ∀n 6= m

Example:
Fourier series:{βn}n∈Z = {ej2πnt}n∈Z is an orthobasis for
ℓ2([0,1]), since:

‖βn‖ℓ2 = 1
< βn, βm >= 0
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Definitions

Cauchy-Schwarz Inequality:| < x, y > | ≤ ‖x‖‖y‖.

For the Euclidean spaceH = R
n :

| < x, y > | = ∑

i xiyi ≤
√

(
∑

i x2
i )
√

(
∑

i y2
i ) = ‖x‖ℓ2‖y‖ℓ2.

For the space of real-valued, finite variance, zero-mean random
variables:| < x, y > | = E[xy] ≤ (E[x])(E[y]) = ‖x‖‖y‖.
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Shannon-Nyquist Sampling Theorem

Sampling of a bandlimited signal.

Let f̂ (w) be the Fourier transform off (t). Let the space of bandlimited
signals be

Bπ/T = {f (t) ∈ R
n s.t. f̂ (w) = 0, ∀|w| > π/T}.

Define

hT(t) =

√
T sin(πt/T)

πt
↔ ĥ(w) =

{ √
T ;if |w| ≤ π/T

0 ;if |w| > π/T.
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By the linear shift property of the Fourier series

hT(t − nT) ↔
√

TejwnT .

Using the Parseval theorem definition

Parseval theorem:
∫∞

−∞
f (t)g∗(t)dt = 1

2π

∫∞

−∞
f̂ (w)ĝ(w)dw,

note thathT(t − nT) is an orthobasis for the bandlimited signalsf (t) in
Bπ/T :

∫ ∞

−∞

hT(t)h(t − nT)dt =
1

2π

∫ π/T

−π/T
TejwnTdw

=
1

2jπn
ejwnT |π/T

−π/T

=
1

2jπn
(ejπn − e−jπn)

= 0, ∀n ∈ Z.
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The signalsf (t) in Bπ/T can be expressed in terms of its orthobasis

f (t) =
∑

n∈Z

〈f (t), h(t − nT)〉h(t − nT). (3)

Using the inner product definition in (2) and the parseval theorem, the
coefficients for the signal expansion in terms of its orthobasis are

〈f (t), h(t − nT)〉 =
1

2π

∫ π/T

−π/T
f̂ (w)

√
TejwnT dw

=
√

Tf (nT) (4)
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Replacing (4) in (3), the signalsf (t) in Bπ/T can then be expressed in
terms of a sequence

f (t) =
√

T
∑

n∈Z

f (nT)h(t − nT). (5)

where, the coefficientsf (nT) of the sequence are samples off (t).

Nyquist-Shannon-Kotelnikov Theorem

If a signalf (t) contains frequencies satisfying|w| < π/T, the signal is
completely determined by series of points spacedT seconds apart.
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Sparsity

Signal sparsity critical to CS

Plays roughly the same role in CS that bandwidth plays in
Shannon-Nyquist theory

A signalx ∈ RN is S-sparse on the basisΨ if x can be represented
by a linear combination ofS vectors ofΨ asx = Ψα with S ≪ N

Ψx

α

At most S non-zero components
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Theℓ1 Norm and Sparsity

Theℓ0 norm is defined by: ‖x‖0 = #{i : x(i) 6= 0}
Sparsity of x is measured by its number of non-zero elements.

Theℓ1 norm is defined by: ‖x‖1 =
∑

i |x(i)|
ℓ1 norm has two key properties:

Robust data fitting
Sparsity inducing norm

Theℓ2 norm is defined by: ‖x‖2 = (
∑

i |x(i)|2)1/2

ℓ2 norm is not effective in measuringsparsity of x
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Why ℓ1 Norm Promotes Sparsity?

Given twoN-dimensional signals:

x1 = (1, 0, ..., 0) → ”Spike” signal

x2 = (1/
√

N, 1/
√

N, ..., 1/
√

N) → ”Comb” signal

x1 andx2 have the sameℓ2 norm:
‖x1‖2 = 1 and‖x2‖2 = 1.

However,‖x1‖1 = 1 and
‖x2‖1 =

√
N.

x 2

x 1

Compressive Sensing G. Arce Sparsity and theℓ1-Norm Fall, 2011 26 / 75



ℓ1 Norm in Regression

Linear regression is widely used in science and engineering.

Given A ∈ Rm×n and b ∈ Rm; m > n

Find x s.t. b = Ax (overdetermined)
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ℓ1 Norm Regression

Two approaches:

Minimize theℓ2 norm of the residuals

min
x∈Rn

‖b − Ax‖2

Theℓ2 norm penalizes large residuals

Minimizes theℓ1 norm of the residuals

min
x∈Rn

‖b − Ax‖1

Theℓ1 norm puts much more weight on small residuals
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Matlab Code

minx∈Rn ‖Ax − b‖2

A=randn(500,150);
b=randn(500,1);
x = (A′ ∗ A)(−1) ∗ A′ ∗ b; Least Squares Solution

minx∈Rn ‖Ax − b‖1

A=randn(500,150);
b=randn(500,1);
X = medrec(b,A,max(A’*b),0,100,1e-5);
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ℓ1 Norm Regression

m = 500,n = 150.A = randn(m, n) andb = randn(m, 1)
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ℓ1 Norm in Regression

Given A ∈ Rm×n and b ∈ Rm; m < n

Find x s.t. b = Ax (underdetermined)
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ℓ1 Norm Regression

Two approaches:

Minimize theℓ2 norm ofx

min
x∈Rn

‖x‖2 subject to Ax = b

Minimize theℓ1 norm ofx

min
x∈Rn

‖x‖1 subject to Ax = b
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Matlab Code

minx∈Rn ‖x‖2 subject to Ax = b

A=randn(150,500);
b=randn(150,1);
C=eye(150,500);
d=zeros(150,1);
X=lsqlin(C,d,[],[],A,b);

In general:
minx∈Rn f (x) subject to Ax = b

X= fmincon(@(x) f(x),zeros(500,1),[],[],A,b,[],[],options);
wheref (x) is a convex function.

Compressive Sensing G. Arce Sparsity and theℓ1-Norm Fall, 2011 33 / 75



ℓ1 Norm Regression
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ℓ1 Norm Regression

ConsiderN observation pairs(xi, bi) modeled in a linear fashion

bi = Axi + c + Ui, i = 1, 2, . . . ,N (6)

A: Unknown slope of the fitting line.

c: Intercept.

Ui: Unobservable errors

The Least Absolute Deviation regression is

F1(A, c) =
N∑

i=1

|bi − Axi − c|, (7)
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∑N
i=1 |bi − Axi − c| c = −xiA + bi

A

c
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ℓ1 Norm in Estimation

Location Estimate in Gaussian Noise
Let x1, x2, · · · , xN , i.i.d. Gaussian with a constant but unknown mean
β. The Maximum Likelihood estimate of location is the valueβ̂ which
maximizes the likelihood function

f (x1, x2, · · · , xN ; β) =

N∏

i=1

f (xi − β)

=
N∏

i=1

1√
2πσ

e−(xi−β)2/2σ2
(8)

=

(
1

2πσ2

)N/2

e−
∑N

i=1(xi−β)2/2σ2
.
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ℓ1 Norm in Estimation

The ML estimatêβ minimizes the least squares sum

β̂ML = arg min
β

N∑

i=1

(xi − β)2. (9)

Results in the sample mean

β̂ML =
1
N

N∑

i=1

xi. (10)
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ℓ1 Norm in Estimation

Location Estimate in Generalized Gaussian Noise
If the x′s obey a generalized Gaussian distribution, the ML estimate of
location is

f (x1, x2, · · · , xN ; β) =
N∏

i=1

fγ(xi − β)

=

N∏

i=1

C e−|xi−β|γ/σ

= CNe−
∑N

i=1|xi−β|γ/σ, (11)

whereC is a normalizing constant, andγ is the dispersion parameter.
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ℓ1 Norm in Estimation

Maximizing the likelihood function is equivalent to

β̃ML = arg min
β

N∑

i=1

|xi − β|γ.

X
1

X
4

X
3

X
5

X
2

γ = 2

γ = 1

γ = 0.5

Figure:Cost function forγ = 0.5,1, and 2.
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ℓ1 Norm in Estimation

ForN odd there is an integerk, such that the slopes over the intervals
(x(k−1), x(k)] and(x(k), x(k+1)], are negative and positive, respectively.

β̂ML = arg min
β

N∑

i=1

|xi − β|

=

{
x(N+1

2 ) N odd
(

x( N
2 )
, x( N

2 )

]

N even

= MEDIAN(x1, x2, · · · , xN). (12)
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ℓ1 Norm Regression

ML Estimate of Location for Generalized Gaussian
Here the samples have a common location parameterβ, but different
scale parameterσi. The ML estimate of location is

Gp(β) =
N∑

i=1

1
σp

i

|xi − β|p. (13)

For the Gaussian distribution (p = 2), the ML estimate reduces to

β̂ = arg min
β

N∑

i=1

1
σ2

i

(xi − β)2 =

∑N
i=1 Wi · xi
∑N

i=1 Wi

(14)

whereWi = 1/σ2
i > 0.
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For the Laplacian distribution (p = 1), the ML estimate minimizes

G1(β) =

N∑

i=1

1
σi
|xi − β|. (15)

whereWi
△
= 1/σi > 0. G1(β) is piecewise linear and convex. The

weighted median output is defined as

Y(n) = arg min
β

N∑

i=1

Wi|xi − β|

= MEDIAN [W1♦x1(n), W2♦x2(n), · · · , WN♦xN(n)]

whereWi > 0 and♦ is the replication operator defined as

Wi♦xi =

Wi times
︷ ︸︸ ︷
xi, xi, · · · , xi.
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ℓ1 Norm Regression

Next, considerN observation pairs(xi, bi)

bi = Axi + c + Ui, i = 1, 2, . . . ,N (16)

A: Unknown slope of the fitting line.

c: Intercept.

Ui: Unobservable errors

TheL1 or Least Absolute Deviation (LAD) regression is

F1(A, c) =
N∑

i=1

|bi − Axi − c|, (17)
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Sample space:bi = Axi + c

1. Each sample pair(xi, bi) represents a point on the plane

2. The solution is a line with slopeA∗ and interceptc∗.

3. If this line goes through some sample pair(xi, bi), then
the equationbi = A∗xi + c∗ is satisfied

Parameter space:c = −xiA + bi

1. The solution(A∗, b∗) is a point.

2. The sample pair(xi, bi) defines a line with slope−xi and
interceptbi.

3. Whenc∗ = −xiA∗ + bi holds, it can be inferred that the
point (A∗, c∗) is on the line defined by(−xi, bi)
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c

A

(A*,c*)
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SetA = A0, the objective function now becomes a one-parameter
function ofc

F(c) =
N∑

i=1

| bi − A0xi
︸ ︷︷ ︸

Observations

−c|. (18)

The parameterc∗ is the Maximum Likelihood estimator of location for
c. It can be obtained by

c∗ = MED(bi − A0xi) | N
i=1. (19)
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Setc = c0, the objective function reduces to

F(a) =

N∑

i=1

|bi − c0 − Axi|

=
N∑

i=1

|xi|
∣
∣
∣
∣

bi − c0

xi
− A

∣
∣
∣
∣
. (20)

The parameterA∗ can be seen as the ML estimator of location forA,
and can be calculated as theweighted median,

A∗ = MED

(

|xi| ⋄
bi − c0

xi

) ∣
∣
∣
∣

N

i=1

, (21)
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A simple and intuitive way of solving the LAD regression problem is:

1. Setk = 0. Find an initial valueA0 for A, such as the Least
Squares (LS) solution.

2. Setk = k +1 and obtain a new estimate ofc for a fixedAk−1 using

ck = MED(bi − Ak−1xi) | N
i=1.

3. Obtain a new estimate ofA for a fixedck using

Ak = MED

(

|xi| ⋄
bi − ck

xi

) ∣
∣
∣
∣

N

i=1

.

4. OnceAk andck do not deviate fromAk−1 andck−1 within a
tolerance range, end the iteration. Otherwise, go back to step 2).
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Signal Representation

A sparse signalx ∈ RN can be represented by a linear
combination of basis of an orthogonal representation matrix Ψ

x(t) =
∑

i

αiψi(t)
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Sparse Signal Representation

Active development for effective signal representation inthe 90’s

Fourier

Wavelet

Curvelet

There is no universal best representation

Best representation= sparsest
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Wavelets

A wavelet is a ”small wave” with finite energy that allows the analysis
of transient, or time-varying phenomena.

Figure:Daubechies (D20) Wavelet example
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A signalx(t) can be represented in terms of its wavelet coefficients as

x(t) =
∑

j∈Z

∑

n∈Z

〈x,Ψj,n〉Ψj,n(t)

where:

Ψj,n are the wavelets that form an orthogonal basis.

〈x,Ψj,n〉 are the wavelet coefficients.

Wavelets are vectors of a orthogonal basis formed by shifting and
dilating amother wavelet, Ψ(t):

Ψj,n(t) = 2−j/2Ψ(2−jt − n), ∀j, n ∈ Z

wherej is the scale parameter andn is the location parameter.
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Examples of wavelet expansion functions are:

Figure:Haar wavelet Figure:Daubechies
wavelet

Figure:Symlet wavelet
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Daubechies Wavelet

Daubechies Wavelets are continuous and smooth wavelets.

Themother wavelet is defined by means of ascaling function.

A daubechies waveletΨ(t) hasp − 1 vanishing moments if:
∫ ∞

−∞

tkΨ(t)dt = 0; for 0 ≤ k < p.

The smoothness of the scaling and wavelet functions increase as
the number of vanishing moments increases.
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Examples of Daubechies wavelets:

(a) (b) (c)

(a) Daubechies scaling and wavelet functions with 2 vanishing
moments.

(b) Daubechies scaling and wavelet functions with 6 vanishing
moments.

(c) Daubechies scaling and wavelet functions with 10 vanishing
moments.
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Examples of Wavelet decompositions
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Examples of Wavelet decompositions

Compressive Sensing G. Arce Sparse Signal Representation Fall, 2011 63 / 75



Other examples: original signals
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Noisy signals
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Denoising using wavelet approximation
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Denoising using wavelet approximation
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Sampling and Compression

JPEG

JPEG

JPEG2000

JPEG2000
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Sparse Signal Representation

Different representations are best for different applications.
Fourier Dictionary→ For oscillatory phenomena
Wavelet Dictionary→ For images with isolated singularities
Curvelet Dictionary→ For images with contours and edges

This motivates overcomplete signal representation‡

‡ S. Mallat and Z. Zhang. ”Matching Pursuit in a Time-Frequency Dictionary”. IEEE Trans. on Signal Proc. Vol.41, pp.3397-3415, 1993.
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Sparse Signal Representation

Overcomplete dictionary representation

Different bases merged into a combined dictionary

Ψ = [Ψ1,Ψ2, ...,ΨN]

Representation ofx in an overcomplete dictionary

x =
∑

i

αiψi, with the sparsestα
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Basis Pursuit (BP)

Basis Pursuit→ find the sparsest approximation ofx

min
α

‖α‖1 s.t. x = Ψα

where‖α‖1 =
∑

i |αi|.

BP decomposes a signal into a superposition of dictionary
elements having the smallestℓ1-norm among all such
decompositions.

† D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory, 47:2845-2862, 2001.
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Compressible Signals

In most applications

Signals are not perfectly sparse, but only a few coefficients
concentrate most of the energy.

Most of the transform coefficients are negligible.
Compressible signals can be approximated by aS-sparse signal:

- There is a transform vectorαS with only S terms such that
‖αS − α‖2 is small.

Compressive Sensing G. Arce Sparse Signal Representation Fall, 2011 72 / 75



Compressible Signals

Wavelet coefficients of natural scenes exhibit the(1/n)-decay†.

1 Megapixel Image Wavelet Coefficients Sorted Wavelet Coeff.

† E. J. Candès and J. Romberg ”Sparsity and Incoherence in Compressive Sampling.” Inverse Problems.
vol.23, pp.969-985. 2006.
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Examples of Compressible Signals

Bat echolocation
Time Signal

Time-Frequency 

 Representation

Confocal microscopy

3D Image
3D Wavelet Coefficients

Ultra wideband signaling A
m
p
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