Objective: Given a discrete time sequence \(\{ x(n) \} \), develop

- Statistical and spectral signal representation
- Filtering, prediction, and system identification algorithms
- Optimization methods that are
 - Statistical
 - Adaptive

Course Structure:

- Weekly lectures [notes: www.ece.udel.edu/~arce]
- Periodic homework (theory & Matlab implementations) [15%]
- Midterm & Final examinations [85%]

Textbook:

- Haykin, Adaptive Filter Theory.
Course Objectives & Structure

- Broad Applications in Communications, Imaging, Sensors.
- Emerging application in
 - Brain-imaging techniques
 - Brain-machine interfaces,
 - Implantable devices.
- Neurofeedback presents real-time physiological signals from MRIs in a visual or auditory form to provide information about brain activity. These signals are used to train the patient to alter neural activity in a desired direction.
- Traditionally, feedback using EEGs or other mechanisms has not focused on the brain because the resolution is not good enough.
Motivation:

- Adaptive equalizers typically require a training period during which they operate on known signals/statistics.
- This known signal training is not always appropriate, e.g., in mobile communications
 - Cost is too high (time/bandwidth)
 - Multipathing or other time varying interference
- In such cases, we must use blind equalization
System components and assumptions:

- Channel introduces distortion (dominant)
- System has additive noise (not dominant)
- Assume a baseband model of communications
 - Multilevel pulse amplitude modulation (M-ary PAM)
 - Received signal:
 \[u(n) = \sum_{k} h_k x(n - k) \]
- Dominating interference is due to intersymbol interference (ISI) from channel distortion
 \[\Rightarrow \] The noise is ignored
Also assume that:

\[h \neq 0 \text{ for } n < 0 \] (noncausal)

\[\sum_{k} h_k^2 = 1 \] (to keep the variance of the output constant)

Example (4-ary PAM modulation)

A 4–ary PAM modulation scheme uses 4 signals

\[S_1 \quad S_2 \quad S_3 \quad S_4 \]

Or

\[S_4 \quad S_2 \quad S_1 \quad S_3 \]
To solve the equalization problem, we need a statistical model of the data. Assume,

1. The data is white

\[E\{x(n)\} = 0 \]
\[E\{x(n)x(k)\} = \begin{cases} 1 & k = n \\ 0 & \text{otherwise} \end{cases} \]

2. The pdf of \(x(n) \) is symmetric and uniform
Deconvolution Objective: If \(\{ w_i \} \) are the coefficients of the ideal inverse filter, then

\[
\sum_i w_i h_{l-i} = \delta_l = \begin{cases} 1 & l = 0 \\ 0 & \text{else} \end{cases}
\]

If this is the case, the output of the equalizer is

\[
y(n) = \sum_i w_l u(n - i) \\
= \sum_i \sum_k w_i h_k x(n - i - k) \quad \text{[let } k = l - i\text{]} \\
= \sum_l x(n - l) \sum_i w_i h_{l-i} \\
= \sum_l x(n - l) \delta_l \\
= x(n)
\]

Problem: \(h_n \) is not known \(\Rightarrow \) the exact inverse can not be used
Solution: Use an iterative procedure to find the filter.

Let the output at iteration n be given by

$$ y(n) = \sum_{i=-L}^{L} \hat{w}_i(n) u(n - i) $$

where a $2L + 1$ tap filter is used.

Setting $\hat{w}_i(n) = 0$ for $|i| > L$, we can write

$$ y(n) = \sum_{i} \hat{w}_i(n) u(n - i) $$

$$ = \sum_{i} w_i u(n - i) + \sum_{i}[\hat{w}_i(n) - w_i] u(n - i) $$

$$ = x(n) + v(n) \quad \left[\text{since } x(n) = \sum_{i} w_i u(n - i) \right] $$

Note $v(n) = \sum_i[\hat{w}_i(n) - w_i] u(n - i)$ is the residual ISI.
Interpretation: $v(n) = \sum_i[\hat{w}_i(n) - w_i]u(n-i)$ is the convolution noise (residual ISI) resulting from the fact that ideal filter was not used.

Estimation Approach: Apply the output $y(n) = x(n) + v(n)$ to a zero memory nonlinear estimator

$$\hat{x}(n) = g[y(n)]$$

Complete System:

- The nonlinear estimate $g[y(n)]$ can be used to update the equalizer to produce a better estimate at time $n + 1$.
Define the equalizer error to be

\[e(n) = \hat{x}(n) - y(n) \]

Use \(e(n) \) in the LMS algorithm to update the equalizer weights

\[\hat{w}_i(n + 1) = \hat{w}_i(n) + \mu u(n - i)e(n) \quad i = 0, \pm 1, \pm 2, \cdots, \pm L \]

Note that in this case, the cost function is

\[J(n) = E\{e^2(n)\} \]
\[= E\{(\hat{x}(n) - y(n))^2\} \]
\[= E\{(g[y(n)] - y(n))^2\} \]

Observation: \(J(n) \) is a nonconvex function of the filter weights \((g[\cdot] \text{ is nonlinear})\)

- The cost function can have numerous local minima
To solve the optimization, first evaluate the convolution noise,

\[u(n) = \sum_k h_k x(n - k) \]

\[\Rightarrow u(n - i) = \sum_k h_k x(n - i - k) \]

Next, use this in

\[y(n) = \sum_i w_i u(n - i) + \sum_i [\hat{w}_i(n) - w_i] u(n - i) \]

\[\underline{x(n)} \quad \underline{v(n)} \]

where recall

\[w_i \equiv \text{perfect equalizer weights} \]

\[\hat{w}_i(n) \equiv \text{finite approximate equalizer with } \hat{w}_i(n) = 0 \text{ for } |i| > L \]
Then using $u(n - i) = \sum_k h_k x(n - i - k)$

$$v(n) = \sum_i [\hat{w}_i(n) - w_i] u(n - i) = \sum_i \sum_k h_k [\hat{w}_i(n) - w_i] x(n - i - k) = \sum_l x(l) \nabla(n - l)$$

where the last line follows from letting $n - i - k = l$ and defining

$$\nabla(n) = \sum_k h_k [\hat{w}_{n-k}(n) - w_{n-k}]$$

- $\nabla(n)$ is the residual impulse response of the channel due to imperfect equalization
- $\nabla(n)$ is small in value, but long and oscillatory
Since the convolution noise is given by

\[v(n) = \sum_l x(l) \nabla (n - l) \]

\[\Rightarrow E\{v(n)\} = \sum_l E\{x(l)\} \nabla (n - l) = 0 \]

Also

\[E\{v(n)v(n - j)\} = E \left\{ \sum_l x(l) \nabla (n - l) \sum_m x(m) \nabla (n - m - j) \right\} \]

\[= \sum_l \sum_m \nabla (n - l) \nabla (n - m - j) E\{x(l)x(m)\} \]

\[= \sum_l \nabla (n - l) \nabla (n - l - j) \]
Since $\nabla(n)$ is long and oscillatory

$$E\{v(n)v(n-j)\} = \sum_l \nabla(n-l)\nabla(n-l-j)$$

tends to average to 0 for $j \neq 0$. Thus

$$E\{v(n)v(n-j)\} = \begin{cases} \sigma^2 & j = 0 \\ 0 & j \neq 0 \end{cases}$$

where

$$\sigma^2 = \sigma^2(n) = \sum_l \nabla^2(n-l)$$

Observation: $v(n) = \sum_l x(l)\nabla(n-l)$ is a weighted sum of i.i.d. RVs \Rightarrow
$v(n)$ is Gaussian (central limit theorem)
Lastly, consider the cross correlation of $x(n)$ and $v(n)$,

$$E\{x(n)v(n - j)\} = E\{x(n)\sum_l x(l)\nabla(n - l - j)\}$$

$$= \sum_l \nabla(n - l - j)E\{x(n)x(l)\}$$

$$= \nabla(-j)$$

$$\ll \sum_l \nabla^2(l) = \sigma^2$$

Observation: Thus we can say $x(n)$ and $v(n)$ are essentially independent
Finally, consider the nonlinear estimation of $x(n)$

Component statistics:
- $x(n)$ is uniformly distributed with zero mean and unit variance
- $v(n)$ is white Gaussian noise with zero mean and variance $\sigma^2(n)$
- $x(n)$ and $v(n)$ are independent

Estimation Approach: Utilize Bayes estimation, which exploits knowledge of the distributions
The estimation risk is defined by

\[R = E\{c(x, \hat{x}(n))\} \]

\[= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c(x, \hat{x}(n)) f_{xy}(x, y) dy dx \]

Recall that if \(c(x, \hat{x}(n)) = (x - \hat{x}(n))^2 \), then the risk is minimized by

\[\hat{x} = \int_{-\infty}^{\infty} x f_{x}(x|y) dx \]

\[= E\{x|y\} \quad \text{[conditional expectation]} \]

where we can use the fact that

\[f_{x}(x|y) = \frac{f_{y}(y|x) f_{x}(x)}{f_{y}(y)} \]
Employ the current model,

\[y = c_0 x + \nu \]

where \(c_0 < 1 \) is a scaling factor included to ensure \(E\{y^2\} = 1 \).

Thus since \(x \) and \(\nu \) are independent, \(f_y(y|x) = f_\nu(y - c_0 x) \) and

\[\hat{x} = \int_{-\infty}^{\infty} x f_x(x|y) \, dx \]

\[= \frac{1}{f_y(y)} \int_{-\infty}^{\infty} x f_y(y|x) f_x(x) \, dx \]

\[= \frac{1}{f_y(y)} \int_{-\infty}^{\infty} x f_\nu(y - c_0 x) f_x(x) \, dx \]

where

![Graph showing \(f_x(x) \) and \(f_\nu(\nu) \) with variance \(\sigma^2 \).]
Evaluating this yields (Berllini, 1988)

\[
\hat{x} = \frac{1}{c_0 y} - \frac{\sigma}{c_0} \frac{Z(y_1) - Z(y_2)}{Q(y_1) - Q(y_2)}
\]

where

\[
y_1 = \frac{1}{\sigma}(y + \sqrt{3}c_0)
\]

\[
y_2 = \frac{1}{\sigma}(y - \sqrt{3}c_0)
\]

and

\[
Z(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \quad \text{[normalized Gaussian pdf]}
\]

\[
Q(y) = \frac{1}{\sqrt{2\pi}} \int_{y}^{\infty} e^{-\frac{u^2}{2}} \, du \quad \text{[normalized Gaussian cdf]}
\]
Results for an 8 level PAM system:

- Plotted for three different noise to (signal + noise) ratios
- Note that this tends to a step function as the noise goes to zero
Implementation Point: When the blind equalizer has converged, the algorithm is switched to decision-directed mode.

In the case of binary symbols,

\[x(n) = \begin{cases}
+1 & \text{for symbol 1} \\
-1 & \text{for symbol 2}
\end{cases} \]

which results in the sample estimate

\[\hat{x}(n) = \text{sgn}(y(n)) = \begin{cases}
+1 & \text{if } y(n) \geq 0 \\
-1 & \text{else}
\end{cases} \]
Final System:

```
  u(n) --> Transversal filter --> y(n) --> Threshold decision device --> x̂(n)
     |                                   |     +
     |                                   |     \
     v                                   v     
  e(n) --> LMS algorithm --> y(n)
```

Final Observation: This system works well as long as what?
Blind Deconvolution

Adaptive equalizers typically require a training period during which they operate on known signals/statistics. This known signal training is not always appropriate such as in mobile communications:

- Cost is too high (time/bandwidth)
- Multipathing or other interference

In such cases, we must use blind equalization.