ELEG 867 - Compressive Sensing and Sparse Signal Representations

Introduction to Matrix Completion and Robust PCA

Gonzalo Garateguy
Depart. of Electrical and Computer Engineering
University of Delaware

Fall 2011
Matrix Completion Problems - Motivation

Recomender Systems

<table>
<thead>
<tr>
<th>Items</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>x</td>
<td>x</td>
<td>?</td>
<td>?</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>User 2</td>
<td>?</td>
<td>?</td>
<td>x</td>
<td>x</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Collaborative filtering (Amazon, last.fm)
Content based (Pandora, www.nanocrowd.com)
Netflix prize competition boosted interest in the area

http://sahd.pratt.duke.edu/Videos/keynote.html
Matrix Completion Problems - Motivation

Sensor location estimation in Wireless Sensor Networks

Distance matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>$d_{1,2}$</td>
<td>$d_{1,3}$</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>$d_{2,1}$</td>
<td>0</td>
<td>?</td>
<td>$d_{2,4}$</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
<td>$d_{3,1}$</td>
<td>0</td>
<td>$d_{3,4}$</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>?</td>
<td>$d_{4,2}$</td>
<td>$d_{4,3}$</td>
<td>0</td>
<td>$d_{4,5}$</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>5</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>$d_{5,4}$</td>
<td>0</td>
<td>$d_{5,6}$</td>
<td>$d_{5,7}$</td>
</tr>
<tr>
<td>6</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>$d_{6,5}$</td>
<td>0</td>
<td>$d_{6,7}$</td>
</tr>
<tr>
<td>7</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>$d_{7,5}$</td>
<td>$d_{7,6}$</td>
<td>0</td>
</tr>
</tbody>
</table>

- The problem is to find the positions of the sensors in \mathbb{R}^2 given the partial information about relative distances.
- A distance matrix like this has rank 2 in \mathbb{R}^2.
- For certain types of graphs the problem can be solved if we know the whole distance matrix.
Matrix Completion Problems - Motivation

Image reconstruction from incomplete data

Reconstructed image

Incomplete image 50% of the pixels
Robust PCA - Motivation

Foreground identification for surveillance applications

E.J. Candes, X. Li, Y. Ma, and Wright, J. “Robust principal component analysis?” http://arxiv.org/abs/0912.3599
Robust PCA - Motivation

Image alignment and texture recognition

(a) Input \(r = 35\) (b) Input \(r = 15\) (c) Input \(r = 53\) (d) Input \(r = 13\)

(e) Output \(r = 14\) (f) Output \(r = 8\) (g) Output \(r = 19\) (h) Output \(r = 6\)

Z. Zhang, X. Liang, A. Ganesh, and Y. Ma, “TILT: transform invariant low-rank textures” Computer Vision–ACCV 2010
Robust PCA - Motivation

Camera calibration with radial distortion

Motivation

Many other applications

- System Identification in control theory
- Covariance matrix estimation
- Machine Learning
- Computer Vision

Videos to watch

Matrix Completion via Convex Optimization: Theory and Algorithms by Emmanuel Candes
http://videolectures.net/mlss09us_candes_mccota/

Low Dimensional Structures in Images or Data by Yi Ma, Workshop in Signal Processing with Adaptive Sparse Structured Representations (June 2011)
http://ecos.maths.ed.ac.uk/SPARS11/YiMa.wmv
Problem Formulation

Matrix completion

\[
\text{minimize} \quad \text{rank}(A) \\
\text{subject to} \quad A_{ij} = D_{ij} \quad \forall (i,j) \in \Omega
\]

Robust PCA

\[
\text{minimize} \quad \text{rank}(A) + \lambda ||E||_0 \\
\text{subject to} \quad A_{ij} + E_{ij} = D_{ij} \quad \forall (i,j) \in \Omega
\]

- Very hard to solve in general without any assumptions, some times NP hard.
- Even if we can solve them, are the solutions always what we expect?
- Under which conditions we can have exact recovery of the real matrices?
Outline

- Convex Optimization concepts

- Matrix Completion
 - Exact Recovery from incomplete data by convex relaxation
 - ALM method for Nuclear Norm Minimization

- Robust PCA
 - Exact Recovery from incomplete data and corrupted data by convex relaxation
 - ALM method for Low rank and Sparse separation
Convex sets and Convex functions

Convex set

A set C is convex if the line segment between any two points in C lies in C. For any $x_1, x_2 \in C$ and any θ with $0 \leq \theta \leq 1$ we have

$$\theta x_1 + (1 - \theta)x_2 \in C.$$
Convex sets and Convex functions

Convex combination
A convex combination of k points x_1, \ldots, x_k is defined as

$$\theta_1 x_1 + \ldots + \theta_k x_k$$

where $\theta_i \geq 0$ and $\theta_1 + \ldots + \theta_k = 1$

Convex hull
The convex hull of C is the set of all convex combinations of points in C

$$\text{conv } C = \{ \theta_1 x_1 + \ldots + \theta_k x_k | x_i \in C, \theta_i \geq 0, i = 1, \ldots, k, \theta_1 + \ldots + \theta_k = 1 \}$$
Convex sets and Convex functions

Operations that preserve convexity

Intersection

If S_1 and S_2 are convex, then $S_1 \cap S_2$ is convex.
In general if S_α is convex for every $\alpha \in \mathcal{A}$, then $\bigcap_{\alpha \in \mathcal{A}} S_\alpha$ is convex.

Subspaces, affine sets and convex cones are therefore closed under arbitrary intersections.

Affine functions

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be affine, $f(x) = Ax + b$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. If $S \subseteq \mathbb{R}^n$ is convex, then the image of S under f

$$f(S) = \{f(x) \mid x \in S\}$$

is convex
Convex sets and Convex functions

Convex functions

A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if $\text{dom} f$ is a convex set and if for all $x, y \in \text{dom} f$, and θ with $0 \leq \theta \leq 1$, we have

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta f(y))$$

we say that f is strictly convex if the strict inequality holds whenever $x \neq y$ and $0 < \theta < 1$.
Operations that preserve convexity

Composition with an affine mapping

Suppose \(f : \mathbb{R}^n \rightarrow \mathbb{R}, A \in \mathbb{R}^{n \times m} \) and \(b \in \mathbb{R}^n \). Define \(g : \mathbb{R}^m \rightarrow \mathbb{R} \) by

\[
g(x) = f(Ax + b)
\]

with \(\text{dom} g = \{ x | Ax + b \in \text{dom} f \} \). Then if \(f \) is convex, so is \(g \).

Pointwise maximum

If \(f_1 \) and \(f_2 \) are convex functions then their pointwise maximum \(f \) defined by

\[
f(x) = \max\{f_1(x), f_2(x)\}
\]

with \(\text{dom} f = \text{dom} f_1 \cap \text{dom} f_2 \) is also convex. This also extend to the case where \(f_1, ..., f_m \) are convex, then

\[
f(x) = \max\{f_1(x), ..., f_m(x)\}, \quad \text{is also convex}
\]
Pointwise maximum of convex functions

\[f(x) = \max \{ f_1(x), f_2(x) \} \]
Convex sets and Convex functions

Convex differentiable functions

If f is differentiable (i.e. its gradient ∇f exist at each point in $\text{dom} f$). Then f is convex if and only if $\text{dom} f$ is convex and

$$f(y) \geq f(x) + \nabla f(x)^T (y - x)$$

holds for all $x, y \in \text{dom} f$.
Second order conditions

If f is twice differentiable, i.e. its Hessian $\nabla^2 f$ exist at each point in $\text{dom} f$. Then f is convex if and only if $\text{dom} f$ is convex and its Hessian is positive semidefinite for all $x \in \text{dom} f$

$$\nabla^2 f(x) \succeq 0$$
Convex non-differentiable functions

The concept of gradient can be extended to non-differentiable functions introducing the subgradient

Subgradient of a function

A vector $g \in \mathbb{R}^n$ is a subgradient of $f : \mathbb{R}^n \rightarrow \mathbb{R}$ at $x \in \text{dom} f$ if for all $z \in \text{dom} f$

$$f(z) \geq f(x) + g^T(z - x)$$
Subgradients

Observations

- If f is convex and differentiable, then its gradient at x, $\nabla f(x)$ is its only subgradient

Subdifferentiable functions

A function f is called subdifferentiable at x if there exist at least one subgradient at x

Subdifferential at a point

The set of subgradients of f at the point x is called the subdifferential of f at x, and is denoted $\partial f(x)$

Subdifferentiability of a function

A function f is called subdifferentiable if it is subdifferentiable at all $x \in \text{dom} f$
Existence of the subgradient of a convex function

If f is convex and $x \in \text{int dom} f$, then $\partial f(x)$ is nonempty and bounded.

The subdifferential $\partial f(x)$ is always a closed convex set, even if f is not convex. This follows from the fact that it is the intersection of an infinite set of halfspaces

$$\partial f(x) = \bigcap_{z \in \text{dom} f} \{g | f(z) \geq f(x) + g^T(z - x)\}.$$
Basic properties

Nonnegative scaling
For $\alpha \geq 0$, $\partial(\alpha f)(x) = \alpha \partial f(x)$

Subgradient of the sum
Given $f = f_1 + ... + f_m$, where $f_1, ..., f_m$ are convex functions, the subgradient of f at x is given by $\partial f(x) = \partial f_1(x) + ... + \partial f_m(x)$

Affine transformations of domain
Suppose f is convex, and let $h(x) = f(Ax + b)$. Then $\partial h(x) = A^T \partial f(Ax + b)$.

Pointwise maximum
Suppose f is the pointwise maximum of convex functions $f_1, ..., f_m$, $f(x) = \max_{i=1,...,m} f_i(x)$, then $\partial f(x) = \text{Co} \cup \{\partial f_i(x) | f_i(x) = f(x)\}$
Subgradient of the pointwise maximum of two convex functions

\[f(x) = \max\{f_1(x), f_2(x)\} \]

\[f_1(x) + f'_1(x_0)(x - x_0) \]

\[f_2(x) + f'_2(x_0)(x - x_0) \]
Subgradient of the pointwise maximum of two convex functions

\[f(x) = \max\{f_1(x), f_2(x)\} \]

\[f(x) + g(x - x_0) \]

\[f_1(x_0) + f'_1(x_0)(x - x_0) \]

\[f_2(x_0) + f'_2(x_0)(x - x_0) \]
Subgradient of the pointwise maximum of two convex functions

\[g \in [f_2'(x_0), f_1'(x_0)] \rightarrow g = \theta f_2'(x_0) + (1 - \theta) f_2'(x_0) \text{ with } 0 \leq \theta \leq 1 \]
Examples

Consider the function \(f(x) = |x| \). At \(x_0 = 0 \), the subdifferential is defined by the inequality

\[
f(z) \geq f(x_0) + g(z - x_0), \quad \forall z \in \text{dom} \ f \\
|z| \geq gz, \quad \forall z \in R \\
\partial f(0) = \{ g \mid g \in [-1, 1] \}
\]

then for all \(x \)

\[
\partial f(x) = \begin{cases}
-1 & \text{for } x < 0 \\
1 & \text{for } x > 0 \\
\{ g \mid g \in [-1, 1] \} & \text{for } x = 0
\end{cases}
\]
Example: ℓ_1 norm

Consider $f(x) = \|x\|_1 = |x_1| + \cdots + |x_n|$, and note that f can be expressed as the maximum of 2^n linear functions

$$\|x\|_1 = \max\{ f_1(x), \ldots, f_{2^n}(x) \}$$

$$\|x\|_1 = \max\{ s_1^T x, \ldots, s_{2^n}^T x \mid s_i \in \{-1, 1\}^n \}$$

The active functions $f_i(x)$ at x are the ones for which $s_i^T x = \|x\|_1$. Then denoting

$$s_i = [s_{i,1}, \ldots, s_{i,n}]^T, \; s_{i,j} \in \{-1, 1\}$$

the set of indices of the active functions at x is

$$\mathcal{A}_x = \left\{ i \mid \begin{array}{ll} s_{i,j} = -1 & \text{for } x_j < 0 \\ s_{i,j} = 1 & \text{for } x_j > 0 \\ s_{i,j} = -1 \text{ or } 1 & \text{for } x_j = 0 \end{array} \right\}$$
subgradient of the ℓ_1 norm

The subgradient of $\|x\|_1$ at a generic point x is defined by

\[
\partial \|x\|_1 = \text{co} \cup \{ \partial f_i(x) \mid i \in A_x \}
\]
\[
\partial \|x\|_1 = \text{co} \{ \nabla f_i(x) \mid i \in A_x \}
\]
\[
\partial \|x\|_1 = \text{co} \{ s_i \mid i \in A_x \}
\]
\[
\partial \|x\|_1 = \{ g \mid g = \sum_{i \in A_x} \theta_i s_i \, , \, \theta_i \geq 0 \, , \, \sum_i \theta_i = 1 \}
\]

or equivalently

\[
\partial \|x\|_1 = \begin{cases}
 g & g_j = -1 \quad \text{for } x_j < 0 \\
 g & g_j = 1 \quad \text{for } x_j > 0 \\
 g_j = \zeta \in [-1, 1] \quad \text{for } x_j = 0
\end{cases}
\]
ℓ_1 norm on R^2

in R^2 the set of subgradients are

$$s_1 = [-1, 1]^T$$
$$s_2 = [-1, -1]^T$$
$$s_3 = [1, 1]^T$$
$$s_4 = [1, -1]^T$$
An optimization problem is convex if its objective is a convex function, the inequality constraints f_j are convex and the equality constraints h_j are affine.

$$\begin{align*}
\text{minimize} & \quad f_0(x) \quad \text{(Convex function)} \\
\text{s.t.} & \quad f_i(x) \leq 0 \quad \text{(Convex sets)} \\
& \quad h_j(x) = 0 \quad \text{(Affine)}
\end{align*}$$

or equivalently

$$\begin{align*}
\text{minimize} & \quad f_0(x) \quad \text{(Convex function)} \\
\text{s.t.} & \quad x \in C \quad C \text{ is a convex set} \\
& \quad h_j(x) = 0 \quad \text{(Affine)}
\end{align*}$$
Theorem
If \(x^* \) is a local minimizer of a convex optimization problem, it is a global minimizer.

Optimality conditions
A point \(x^* \) is a minimizer of a convex function \(f \) if and only if \(f \) is subdifferentiable at \(x^* \) and
\[
0 \in \partial f(x^*)
\]
Convex optimization problems

Given the convex problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{s.t.} & \quad f_i(x) \leq 0, \quad i = \{1, \ldots, k\} \\
& \quad h_j(x) = 0, \quad j = \{1, \ldots, l\}
\end{align*}
\]

its Lagrangian function is defined as

\[
\mathcal{L}(x, \lambda, \nu) = f_0(x) + \sum_{j=1}^{l} \lambda_j h_j(x) + \sum_{i=1}^{k} \nu_i f_i(x)
\]

where \(\nu_i \geq 0, \lambda_i \in R \)
Augmented Lagrangian Method

Considering the problem

$$\begin{align*}
\text{minimize} & \quad f(x) \\
\text{s.t.} & \quad x \in C \\
& \quad h(x) = 0
\end{align*}$$

The augmented lagrangian is defined as

$$\mathcal{L}(x, \lambda, c) = f(x) + \lambda^T h(x) + \frac{\mu}{2} \| h(x) \|^2_2$$

where μ is a penalty parameter and λ is the multiplier vector.
The augmented lagrangian method consist of solving a sequence of problems of the form

$$\min_x \mathcal{L}(x, \lambda_k, \mu_k) = f(x) + \lambda_k^T h(x) + \frac{\mu_k}{2} \|h(x)\|_2^2$$

s.t. $x \in C$

where $\{\lambda_k\}$ is a bounded sequence in \mathbb{R}^l and $\{\mu_k\}$ is a penalty parameter sequence satisfying

$$0 < \mu_k < \mu_{k+1} \quad \forall k, \mu_k \to \infty$$
Augmented Lagrangian Method

The exact solution to problem (3) can be found using the following iterative algorithm

set $\rho > 1$

while not converged do

solve $x_{k+1} = \text{argmin}_{x \in C} \mathcal{L}(x, \lambda_k, \mu_k)$

$\lambda_{k+1} = \lambda_k + \mu_k h(x_{k+1})$

$\mu_k = \rho \mu_k$

end while

Output x_k
Matrix completion

Optimization problem

\[
\begin{align*}
\text{minimize} & \quad \text{rank}(A) \\
\text{subject to} & \quad A_{ij} = D_{ij} \quad \forall (i,j) \in \Omega
\end{align*}
\] (4)

- We look for the simplest explanation for the observed data
- Given enough number of samples, the likelihood of the solution to be unique should be high
Matrix completion

\[\begin{align*}
\text{minimize} & \quad \text{rank}(A) \\
\text{subject to} & \quad A_{ij} = D_{ij} \quad \forall (i, j) \in \Omega
\end{align*} \]

- The minimization of the rank(·) function is a combinatorial problem, with exponential complexity in the size of the matrix!

- Need for a convex relaxation

\[\begin{align*}
\text{rank}(A) &= \| \text{diag}(\Sigma) \|_0 \\
A &= U\Sigma V^T \\
\downarrow \\
\| A \|_* &= \| \text{diag}(\Sigma) \|_1
\end{align*} \]

Convex relaxation

\[\begin{align*}
\text{minimize} & \quad \| A \|_* \\
\text{subject to} & \quad A_{ij} = D_{ij} \quad \forall (i, j) \in \Omega
\end{align*} \]
Matrix Completion

Nuclear Norm

The nuclear norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as $\|A\|_* = \sum_{i=1}^{r} \sigma_i(A)$, where $\{\sigma_i(A)\}_{i=1}^{r}$ are the elements of the diagonal matrix Σ from the SVD decomposition of $A = U\Sigma V^T$.

Observations

- $r = \text{rank}(A)$ can be $r < m, n$. If this is the case we say that the matrix is low rank.
- The singular values $\sigma_i(A) = \sqrt{\lambda_i(A^T A)}$ are obtained as the square root of the eigenvalues of $A^T A$ and are always $\sigma_i \geq 0$.
- The left singular vectors U are the eigenvectors of AA^T.
- The right singular vectors V are the eigenvectors of $A^T A$.
Matrix Completion

Spectral Norm

The spectral norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as $\|A\|_2 = \sigma_{\text{max}}(A)$, where

$$\sigma_{\text{max}} = \max \{ \sigma_i(A) \}^r_{i=1}$$

Dual Norm

Given an arbitrary norm $\| \cdot \|_\diamond$ in \mathbb{R}^n, its dual norm $\| \cdot \|_\dagger$ is defined as

$$\|z\|_\dagger = \sup \{ z^T x \mid \|x\|_\diamond \leq 1 \}$$

Observations

- The nuclear norm is the dual norm of the spectral norm

$$\|A\|_* = \sup \{ \text{tr}(A^T X) \mid \|X\|_2 \leq 1 \}$$
Matrix Completion

Convex relaxation of the rank

Convex envelope of a function

Let $f : C \rightarrow R$ where $C \subseteq R^n$. The convex envelope of f (on C) is defined as the largest convex function g such that $g(x) \leq f(x)$ for all $x \in C$

Theorem

The convex envelope of the function $\phi(X) = \text{rank}(X)$ on $C = \{X \in R^{m \times n} \|X\|_2 \leq 1\}$, is $\phi_{env}(X) = \|X\|_\ast$.

Observations

- The convex envelope of rank(X) on a the set $\{X \|X\|_2 \leq M\}$ is given by $\frac{1}{M} \|X\|_\ast$
- By solving the heuristic problem we obtain a lower bound on the optimal value of the original problem (provided we can identify a bound M on the feasible set).

Convex relaxation

\[
\text{minimize} \quad \|A\|_* \\
\text{subject to} \quad A_{ij} = D_{ij} \quad \forall (i, j) \in \Omega
\]

- The original problem is now a problem with a non-smooth but convex function as the objective.
- The remaining problem is the number of measurements and in which positions have to be taken in order to guarantee that the solution is equal to the matrix D?
Matrix completion

Which types of matrices can be completed exactly?
Consider the matrix

\[M = e_1.e_n^T = \begin{pmatrix}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{pmatrix} \]

- Can it be recovered from 90% of its samples?
- Is the sampling set important?
- Which sampling sets work and which ones doesn’t?
Matrix completion

Sampling set \(\Omega \)

The sampling set \(\Omega \) is defined as \(\Omega = \{(i,j) \mid D_{ij} \text{ is observed} \} \)

Consider

\[
D = xy^T \quad x \in \mathbb{R}^m, \ y \in \mathbb{R}^n
\]

\[
D_{ij} = x_i y_j
\]

- If the sampling set avoids row \(i \), then \(x_i \) can not be recovered by any method whatsoever

Observation

- No columns or rows from \(D \) can be avoided in the sampling set
- There is a need for a characterization of the sampling operator with respect to the set of matrices that we want to recover
Matrix completion

- To recover a low rank matrix, this matrix cannot be in the null space of the sampling operator.
- If the singular vectors of $D = USV^T$ are highly concentrated, then D is more likely to be in the null space of a given sampling operator.
Matrix completion

Intuition
- the singular vectors need to be sufficiently spread, i.e. uncorrelated with the standard basis in order to minimize the number of observations needed to recover a low rank matrix.

Coherence of a subspace
Let U be a subspace of R^n of dimension r and P_U be the orthogonal projection onto U. Then the coherence of U is defined to be

$$\mu(U) = \frac{n}{r} \max_{1 \leq i \leq n} \|P_U e_i\|^2$$

Observations
- The minimum value that $\mu(U)$ can achieve is 1 for example if U is spanned by vectors whose entries all have magnitude $1/\sqrt{n}$
- The largest possible value for $\mu(U)$ is n/r corresponding to a subspace that contains a standard basis element.
Matrix completion

\(\mu_0 \) coherence

A matrix \(D = \sum_{1 \leq k \leq r} \sigma_k u_k v_k^T \) is \(\mu_0 \) coherent if for some positive \(\mu_0 \)
\[\max(\mu(U), \mu(V)) \leq \mu_0 \]

\(\mu_1 \) coherence

A matrix \(D = \sum_{1 \leq k \leq r} \sigma_k u_k v_k^T \) has \(\mu_1 \) coherence if
\[\| UV^T \|_\infty \leq \mu_1 \sqrt{r/mn} \]
for some \(\mu_1 > 0 \)

Observation

- If \(D \) is \(\mu_0 \) coherent then it is \(\mu_1 \) coherent for \(\mu_1 = \mu_0 \sqrt{r} \)
Matrix completion

Theorem

Let $D \in \mathbb{R}^{m \times n}$ of rank r be (μ_0, μ_1)-coherent and let $N = \max(m, n)$. If we observe M entries of D with locations sampled uniformly at random. Then there exist constants C and c such that if

$$M \geq C \max(\mu_1^2, \mu_0^{1/2} \mu_1, \mu_0 N^{1/4})Nr(\beta \log N)$$

for some $\beta > 2$, then the minimizer of (6) is unique and equal to D with probability at least $1 - cn^{-\beta}$. If in addition $r \leq \mu_0^{-1} N^{1/5}$ then the number of observations can be improved to

$$M \geq C\mu_0 N^{6/5}r(\beta \log N)$$

Candès, E.J. and Recht, B. “Exact matrix completion via convex optimization”, Foundations of Computational Mathematics 2009
Matrix completion

Recovery performance

Figure: The x axis corresponds to $\text{rank}(A)/\min\{m,n\}$ and the y axis to $\rho_s = 1 - M/mn$ (probability that an entry is omitted from the observations)

Emmanuel J. Candes, Xiaodong Li, Yi Ma, John Wright “Robust Principal Component Analysis?”

http://arxiv.org/abs/0912.3599
Matrix completion

Other bounds on number of measurements and sampling operators

- Emmanuel J. Candes, Xiaodong Li, Yi Ma, John Wright “Rmdbust Principal Component Analysis?”
 http://arxiv.org/abs/0912.3599
- Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo, Alan S. Willsky “Rank-Sparsity Incoherence for Matrix Decomposition”
 http://arxiv.org/abs/0906.2220
- Zihan Zhou, Xiaodong Li, John Wright, Emmanuel Candes, Yi Ma “Stable Principal Component Pursuit”
- Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh “Matrix Completion from a Few Entries”
 http://arxiv.org/abs/0901.3150
- Sahand Negahban, Martin J. Wainwright “Restricted strong convexity and weighted matrix completion: Optimal bounds with noise”
 http://arxiv.org/abs/1009.2118v2
- Yonina C. Eldar, Deanna Needell, Yaniv Plan “Unicity conditions for low-rank matrix recovery”
 http://arxiv.org/abs/1103.5479