The course provides an introduction to the mathematics of data analysis and a detailed overview of statistical models for inference and prediction.

Course Structure:
- Weekly lectures [notes: www.ece.udel.edu/~arce/Courses]
- Homework & computer assignments [30%]
- Midterm & Final examinations [70%]

Textbooks:
- Papoulis and Pillai, Probability, random variables, and stochastic processes.
- Hastie, Tibshirani and Friedman, The elements of statistical learning.
- Haykin, Adaptive Filter Theory.
Objective: Utilize tools from linear algebra to characterize and analyze matrices, especially the correlation matrix

- The correlation matrix plays a large role in statistical characterization and processing.
- Previously result: \mathbf{R} is Hermitian.
- Further insight into the correlation matrix is achieved through eigen analysis
 - Eigenvalues and vectors
 - Matrix diagonalization
 - Application: Optimum filtering problems
Objective: For a Hermitian matrix \mathbf{R}, find a vector \mathbf{q} satisfying

$$
\mathbf{R}\mathbf{q} = \lambda \mathbf{q}
$$

- **Interpretation:** Linear transformation by \mathbf{R} changes the scale, but not the direction of \mathbf{q}
- **Fact:** A $M \times M$ matrix \mathbf{R} has M eigenvectors and eigenvalues

$$
\mathbf{R}\mathbf{q}_i = \lambda_i \mathbf{q}_i \quad i = 1, 2, 3, \ldots, M
$$

To see this, note

$$(\mathbf{R} - \lambda \mathbf{I})\mathbf{q} = \mathbf{0}$$

For this to be true, the row/columns of $(\mathbf{R} - \lambda \mathbf{I})$ must be linearly dependent,

$$\Rightarrow \det(\mathbf{R} - \lambda \mathbf{I}) = 0$$
Note: \(\text{det}(R - \lambda I) \) is a \(M \)th order polynomial in \(\lambda \)

- The roots of the polynomial are the eigenvalues \(\lambda_1, \lambda_2, \cdots, \lambda_M \)

\[
Rq_i = \lambda_i q_i
\]

- Each eigenvector \(q_i \) is associated with one eigenvalue \(\lambda_i \)
- The eigenvectors are not unique

\[
Rq_i = \lambda_i q_i \\
\Rightarrow R(aq_i) = \lambda_i (aq_i)
\]

Consequence: eigenvectors are generally normalized, e.g., \(|q_i| = 1 \) for \(i = 1, 2, \ldots, M \)
Example (General two dimensional case)

Let $M = 2$ and

$$
R = \begin{bmatrix}
R_{1,1} & R_{1,2} \\
R_{2,1} & R_{2,2}
\end{bmatrix}
$$

Determine the eigenvalues and eigenvectors.

Thus

$$
\det(R - \lambda I) = 0
$$

$$
\Rightarrow \begin{vmatrix}
R_{1,1} - \lambda & R_{1,2} \\
R_{2,1} & R_{2,2} - \lambda
\end{vmatrix} = 0
$$

$$
\Rightarrow \lambda^2 - \lambda (R_{1,1} + R_{2,2}) + (R_{1,1} R_{2,2} - R_{1,2} R_{2,1}) = 0
$$

$$
\Rightarrow \lambda_{1,2} = \frac{1}{2} \left[(R_{1,1} + R_{2,2}) \pm \sqrt{4 R_{1,2} R_{2,1} + (R_{1,1} - R_{2,2})^2} \right]
$$
Back substitution yields the eigenvectors:

\[
\begin{bmatrix}
R_{1,1} - \lambda & R_{1,2} \\
R_{2,1} & R_{2,2} - \lambda
\end{bmatrix}
\begin{bmatrix}
q_1 \\
q_2
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

In general, this yields a set of linear equations. In the \(M = 2 \) case:

\[
\begin{align*}
(R_{1,1} - \lambda)q_1 + R_{1,2}q_2 &= 0 \\
R_{2,1}q_1 + (R_{2,2} - \lambda)q_2 &= 0
\end{align*}
\]

Solving the set of linear equations for a specific eigenvalue \(\lambda_i \) yields the corresponding eigenvector, \(q_i \).
Example (Two–dimensional white noise)

Let \mathbf{R} be the correlation matrix of a two–sample vector of zero mean white noise

$$
\mathbf{R} = \begin{bmatrix}
\sigma^2 & 0 \\
0 & \sigma^2
\end{bmatrix}
$$

Determine the eigenvalues and eigenvectors.

Carrying out the analysis yields eigenvalues

$$
\lambda_{1,2} = \frac{1}{2} \left[(R_{1,1} + R_{2,2}) \pm \sqrt{4R_{1,2}R_{2,1} + (R_{1,1} - R_{2,2})^2} \right] = \sigma^2
$$

and eigenvectors

$$
\mathbf{q}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \mathbf{q}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

Note: The eigenvectors are unit length (and orthogonal)
Eigen Properties

Property (eigenvalues of \mathbf{R}^k)

If $\lambda_1, \lambda_2, \cdots, \lambda_M$ are the eigenvalues of \mathbf{R}, then $\lambda_1^k, \lambda_2^k, \cdots, \lambda_M^k$ are the eigenvalues of \mathbf{R}^k.

Proof: Note $\mathbf{R}q_i = \lambda_i q_i$. Multiplying both sides by \mathbf{R}^{k-1} times,

$$\mathbf{R}^k q_i = \lambda_i \mathbf{R}^{k-1} q_i = \lambda_i^k q_i$$

Property (linear independence of eigenvectors)

The eigenvectors q_1, q_2, \cdots, q_M, of \mathbf{R} are linearly independent, i.e.,

$$\sum_{i=1}^{M} a_i q_i \neq 0$$

for all nonzero scalars a_1, a_2, \cdots, a_M.
Property (Correlation matrix eigenvalues are real & nonnegative)

The eigenvalues of R are real and nonnegative.

Proof:

$$R q_i = \lambda_i q_i$$

$$\Rightarrow q_i^H R q_i = \lambda_i q_i^H q_i$$ [pre–multiply by q_i^H]

$$\Rightarrow \lambda_i = \frac{q_i^H R q_i}{q_i^H q_i} \geq 0$$

Follows from the facts: R is positive semi-definite and $q_i^H q_i = |q_i|^2 > 0$

Note: In most cases, R is positive definite and

$$\lambda_i > 0, \quad i = 1, 2, \ldots, M$$
Property (Unique eigenvalues \Rightarrow orthogonal eigenvectors)

If $\lambda_1, \lambda_2, \cdots, \lambda_M$ are unique eigenvalues of R, then the corresponding eigenvectors, q_1, q_2, \cdots, q_M, are orthogonal.

Proof:

$$Rq_i = \lambda_i q_i$$

$$\Rightarrow q_j^H Rq_i = \lambda_i q_j^H q_i \quad (\ast)$$

Also, since λ_j is real and R is Hermitian

$$Rq_j = \lambda_j q_j$$

$$\Rightarrow q_j^H R = \lambda_j q_j^H$$

$$\Rightarrow q_j^H Rq_i = \lambda_j q_j^H q_i$$

Substituting the LHS from (\ast)

$$\Rightarrow \lambda_i q_j^H q_i = \lambda_j q_j^H q_i$$
Thus

\[\lambda_i q_j^H q_i = \lambda_j q_j^H q_i \]
\[\Rightarrow (\lambda_i - \lambda_j) q_j^H q_i = 0 \]

Since \(\lambda_1, \lambda_2, \ldots, \lambda_M \) are unique

\[q_j^H q_i = 0 \quad i \neq j \]

\[\Rightarrow q_1, q_2, \ldots, q_M \text{ are orthogonal.} \]

QED
Diagonalization of R

Objective: Find a transformation that transforms the correlation matrix into a diagonal matrix.

Let $\lambda_1, \lambda_2, \cdots, \lambda_M$ be unique eigenvectors of R and take q_1, q_2, \cdots, q_M to be the M orthonormal eigenvectors

$$q_i^H q_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Define $Q = [q_1, q_2, \cdots, q_M]$ and $\Omega = \text{diag}(\lambda_1, \lambda_2, \cdots, \lambda_M)$. Then consider

$$Q^H R Q = \begin{bmatrix} q_1^H \\ q_2^H \\ \vdots \\ q_M^H \end{bmatrix} R [q_1, q_2, \cdots, q_M]$$
\[Q^H R Q = \begin{bmatrix} q_1^H & q_2^H & \cdots & q_M^H \end{bmatrix} R [q_1, q_2, \cdots, q_M] \]

\[= \begin{bmatrix} q_1^H & q_2^H & \cdots & q_M^H \end{bmatrix} [\lambda_1 q_1, \lambda_2 q_2, \cdots, \lambda_N q_M] \]

\[= \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_M \end{bmatrix} \]

\[\Rightarrow Q^H R Q = \Omega \quad \text{(eigenvector diagonalization of } R) \]
Property (Q is unitary)

Q is unitary, i.e., $Q^{-1} = Q^H$

Proof: Since the q_i eigenvectors are orthonormal

$$Q^H Q = \begin{bmatrix} q_1^H & q_2^H & \cdots & q_M^H \end{bmatrix} [q_1, q_2, \cdots, q_M] = I$$

$\Rightarrow Q^{-1} = Q^H$

Property (Eigen decomposition of R)

The correlation matrix can be expressed as

$$R = \sum_{i=1}^{M} \lambda_i q_i q_i^H$$
Proof: The correlation diagonalization result states

\[Q^H R Q = \Omega \]

Isolating \(R \) and expanding,

\[R = Q \Omega Q^H = [q_1, q_2, \ldots, q_M] \Omega \]

\[= [q_1, q_2, \ldots, q_M] \begin{bmatrix} \lambda_1 q_1^H \\ \lambda_2 q_2^H \\ \vdots \\ \lambda_M q_M^H \end{bmatrix} = \sum_{i=1}^{M} \lambda_i q_i q_i^H \]

Note: This also gives

\[R^{-1} = (Q^H)^{-1} \Omega^{-1} Q^{-1} = Q \Omega^{-1} Q^H \]

where \(\Omega^{-1} = \text{diag}(1/\lambda_1, 1/\lambda_2, \ldots, 1/\lambda_M) \)
Aside (trace & determinant for matrix products)

Note $\text{trace}(A) \equiv \sum_i A_{i,i}$. Also,

$$\text{trace}(AB) = \text{trace}(BA) \quad \text{similarly} \quad \text{det}(AB) = \text{det}(A)\text{det}(B)$$

Property (Determinant–Eigenvalue Relation)

The determinant of the correlation matrix is related to the eigenvalues as follows:

$$\text{det}(R) = \prod_{i=1}^{M} \lambda_i$$

Proof: Using $R = \mathbf{Q}\Omega\mathbf{Q}^H$ and the above,

$$\text{det}(R) = \text{det}(\mathbf{Q}\Omega\mathbf{Q}^H) = \text{det}(\mathbf{Q})\text{det}(\mathbf{Q}^H)\text{det}(\Omega) = \text{det}(\Omega) = \prod_{i=1}^{M} \lambda_i$$
Property (Trace–Eigenvalue Relation)

The trace of the correlation matrix is related to the eigenvalues as follows:

\[
\text{trace}(R) = \sum_{i=1}^{M} \lambda_i
\]

Proof: Note

\[
\text{trace}(R) = \text{trace}(Q \Omega Q^H) = \text{trace}(Q^H \Omega Q) = \text{trace}(\Omega) = \sum_{i=1}^{M} \lambda_i
\]

QED
Definition (Normal Matrix)
A complex square matrix \(A \) is a normal matrix if

\[
A^H A = AA^H
\]

That is, a matrix is normal if it commutes with its conjugate transpose.

Note
- All Hermitian symmetric matrices are normal
- Every matrix that can be diagonalized by the unitary transform is normal

Definition (Condition Number)
The condition number reflects how numerically well–conditioned a problem is, i.e, a low condition number ⇒ well–conditioned; a high condition number ⇒ ill–conditioned.
Definition (Condition Number for Linear Systems)

For a linear system

\[A\mathbf{x} = \mathbf{b} \]

defined by a normal matrix \(A \), the condition number is

\[\chi(A) = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \]

where \(\lambda_{\text{max}} \) and \(\lambda_{\text{min}} \) are the maximum/minimum eigenvalues of \(A \)

Observations:

- Large eigenvalue spread \(\Rightarrow \) ill–conditioned
- Small eigenvalue spread \(\Rightarrow \) well–conditioned
The discrete Karhmen-Loeve Transform (KLT)

Definition (The discrete Karhmen-Loeve Transform (KLT))

A M sample vector $x(n)$ from the process $\{x(n)\}$ can be expressed as

$$x(n) = \sum_{i=1}^{M} c_i(n) q_i$$

where q_1, q_2, \cdots, q_M are the orthonormal eigenvectors of the process correlation matrix, R, and $c_1(n), c_2(n), \cdots, c_M(n)$ are a set of KLT coefficients.

- Signal is represented as a weighted sum of eigenvectors
- Need to determine the coefficients
Determining Coefficients: Write the expression in matrix form

\[x(n) = \sum_{i=1}^{M} c_i(n) q_i \]

\[= Qc(n) \quad (\star) \]

where

\[Q = [q_1, q_2, \cdots, q_M] \]

and

\[c(n) = [c_1(n), c_2(n), \cdots, c_M(n)]^T. \]

Solving (\star) for \(c(n) \):

\[c(n) = Q^{-1}x(n) = Q^Hx(n) \]

or

\[c_i(n) = q_i^Hx(n) \]

Note: \(c_i(n) \) is the projection of \(x(n) \) onto \(q_i \)
Question: How related are the coefficients to reach other?

Answer: Consider the correlation between \(c_i(n) \) terms

\[
R_{c(n)} = E\{c(n)c^H(n)\} = E\{(Q^Hx(n))(Q^Hx(n))^H\} = E\{(Q^Hx(n)x^H(n)Q\} = Q^H R_x Q = \Omega
\]

Result:

\[
E\{c_i^*(n)c_j(n)\} = \begin{cases} \lambda_i & i = j \\ 0 & \text{otherwise} \end{cases}
\]

\(\Rightarrow \) KLT transform coefficients are uncorrelated

- A desirable property – Why?
Question: Can we represent $x(n)$ with fewer terms? If so, how do we minimize the representation error?

Approach: Use fewer terms in the KLT transform

$$x(n) = \sum_{i=1}^{M} c_i(n) q_i$$

$$\Rightarrow \hat{x}(n) = \sum_{i=1}^{N} c_i(n) q_i \quad N < M$$

Thus

$$x(n) = \hat{x}(n) + \epsilon(n)$$

$$= \sum_{i=1}^{N} c_i(n) q_i + \sum_{i=N+1}^{M} c_i(n) q_i$$

Question: How do we minimize the representation error?
Approach: Analyzed and minimize the error power

The error power is given by

\[
\varepsilon = E\{\varepsilon^H(n)\varepsilon(n)\} = E\left\{ \sum_{i=N+1}^{M} c_i^*(n)q_i^H \sum_{j=N+1}^{M} c_j(n)q_j \right\}
\]

\[
= \sum_{i=N+1}^{M} E\{c_i^*(n)c_i(n)\} \quad [\text{result of orthogonality}]
\]

\[
= \sum_{i=N+1}^{M} \lambda_i \quad [\text{from prior result}]
\]

Result: To minimize the error select the \(q_i\) eigenvectors associated with \(M\) largest eigenvalues.