The Transport Layer: Tutorial and Survey

SAMI IREN and PAUL D. AMER

Department of Computer and Information Sciences, University of Delaware, Newark,
DE 19716

and

PHILLIP T. CONRAD

Department of Computer and Information Sciences, Temple University, Philadelphia,
PA 19122

This work supported, in part, by the National Science Foundation (NCR 9314056), the
U.S. Army Research Office (DAAL04-94-G-0093), and the Adv Telecomm/Info Dist'n
Research Program (ATIRP) Consortium sponsored by ARL under Fed Lab Program,
Cooperative Agreement DAAL01-96-2-0002.

Transport layer protocols provide for end-to-end communication between two or more hosts. This
paper presents a tutorial on transport layer concepts and terminology, and a survey of transport
layer services and protocols. The transport layer protocol TCP is used as a reference point, and
compared and contrasted with nineteen other protocols designed over the past two decades. The
service and protocol features of twelve of the most important protocols are summarized in both
text and tables.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—
data communications, open systems interconnection reference model (OSI); C.2.1 [Computer-
Communication Networks]: Network Architecture and Design—network communications,
packet-switching networks, store and forward networks; C.2.2 [Computer-Communication
Networks]: Network Protocols—applications, protocol architecture (OSI model); C.2.5 [Computer-
Communication Networks]: Local and Wide-Area Networks—Internet

General Terms: Networks

Additional Key Words and Phrases: Congestion control, flow control, transport protocol, transport
service, TCP/IP

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 . S. Iren, P. Amer, and P. Conrad

1. INTRODUCTION

In the OSI 7-layer Reference Model, the transport layer is the lowest layer that
operates on an end-to-end basis between two or more communicating hosts. This
layer lies at the boundary between these hosts and an internetwork of routers,
bridges, and communication links that moves information between hosts. A good
transport layer service (or simply, transport service) allows applications to use a
standard set of primitives and run on a variety of networks without worrying about
different network interfaces and reliabilities. Essentially, the transport layer isolates
applications from the technology, design, and idiosyncrasies of the network.

Dozens of transport protocols have been developed or proposed over the last two
decades. To put this research in perspective, we focus first on the features of prob-
ably the most well-known transport protocol—namely the Internet’s Transmission
Control Protocol (TCP)—and then contrast TCP with many alternative designs.

Section 2 introduces the basic concepts and terminology of the transport layer
through a simple example illustrating a TCP connection. Section 3 surveys the
range of different services that can be provided by a transport layer. Similarly,
Section 4 surveys the range of protocol designs that provide these services. (The
important distinction between service and protocol is a major theme throughout
this paper.) Section 5 briefly surveys nine widely implemented transport proto-
cols other than TCP (UDP, TP0O, TP4, SNA-APPN, DECnet-NSP, ATM, XTP,
T/TCP and RTP) and two others that, although not widely implemented, have
been particularly influential (VMTP and NETBLT). This section also includes
briefer descriptions of eight experimental protocols that appear in the research
literature (Delta-t, MSP, SNR, DTP, k-XP, TRUMP, POC, and TP++). Section 6
concludes the paper with an overview of past, current, and future trends that
have influenced transport layer design including the impact of wireless networks.
This section also presents a few of the debates concerning transport protocol de-
sign. As an appendix, tables are provided summarizing TCP and eleven of the
transport protocols discussed in Section 5. Similar tables for the experimental pro-
tocols are omitted for reasons of space, but are available on the authors’ Web site:
www.eecis.udel.edu/"amer/PEL/survey/.

This survey concentrates on unicast service and protocols—that is, communica-
tion between exactly two hosts (or two host processes). Multicast protocols [Arm-
strong et al. 1992; Bormann et al. 1994; Braudes and Zabele 1993; Deering 1989;
Floyd et al. 1995; McCanne et al. 1996; Smith and Koifman 1996] provide com-
munication among n > 2 hosts. Multicast represents an important research area
currently undergoing significant change and development, and is worthy of a sepa-
rate survey.

A previous study surveying eight transport protocols can be found in [Doeringer
et al. 1990].

2. TRANSPORT LAYER CONCEPTS AND TERMINOLOGY

From an application programmer’s perspective, the transport layer provides in-
terprocess communication between two processes that most often are running on
different hosts. This section introduces some basic transport layer concepts and ter-
minology through an example: a simple document retrieval over the World Wide

The Transport Layer: Tutorial and Survey . 3
Web (herein Web) utilizing the TCP transport protocol.

2.1 Introduction to TCP

Although we provide a broad survey of the transport layer, the service and protocol
features of TCP are used throughout this paper as a point of reference.

Over the last two decades the Internet protocol suite (also called the TCP/IP
protocol suite) has come to be the most ubiquitous form of computer networking.
Hence, the most widely used transport protocols today are TCP and its companion
transport protocol, the User Datagram Protocol (UDP). A few other protocols are
widely used, mainly because of their connection to the proprietary protocol suites of
particular vendors. Examples include the transport protocols from IBM’s SNA, and
Digital’s DECnet. However, the success of the Internet has led nearly all vendors
in the direction of TCP/IP as the future of networking.

The Internet’s marked success would not alone be sufficient justification for or-
ganizing a survey around a single protocol. Also important is that TCP provides
examples of many significant issues that arise in transport protocol design. The
design choices made in TCP have been the subject of extensive review, experi-
mentation, and large-scale experience, involving some of the best researchers and
practitioners in the field. In some sense, TCP represents the culmination of many
years of thought about transport protocol design.

A final reason that TCP provides a good starting point for study, is that the
history of research and development on TCP can be traced in publicly available
documents. Ongoing research and development of transport protocols, particularly
TCP, is the focus of two working groups of the Internet Society. The endZend
working group of the Internet Research Task Force (IRTF, www.irtf.org) discusses
ongoing long-term research on transport protocols in general (including TCP), while
the tep-impl group of the Internet Engineering Task Force (IETF, wuw.ietf.org)
focuses on short-term TCP implementation issues. Both groups maintain active
mailing lists where ideas are discussed and debated openly. The work of these
groups can be found in journal articles, conference proceedings, and documents
known as Internet Drafts and Requests for Comments (RFCs). RFCs contain not
only all the Internet Standards, but also other information of historical and technical
interest. It is much more difficult for researchers to obtain similar information
concerning proprietary protocols.

2.2 General Role of the Transport Layer

To illustrate the role that the transport layer plays in a familiar application, the
remainder of Section 2 examines the role of TCP in a simple interaction over the
Web.

The Web is an example of a client/server application. A human interacts with
a Web browser (client) running on a “local” machine. The Web browser com-
municates with a server on some “remote” machine. The Web uses an applica-
tion layer protocol called the Hypertext Transfer Protocol (HTTP) [Berners-Lee
et al. 1996]. HTTP is a simple request/response protocol. Suppose, for exam-
ple, that you have a personal computer with Internet access, and you wish to
retrieve the page “http://www.eecis.udel.edu/research.html” from the Uni-

4 . S. Iren, P. Amer, and P. Conrad

versity of Delaware Web site. In the simplest case!, the client sends a request
containing the filename of the desired Web page (“GET /research.html”) to a
server (“www.eecis.udel.edu”), and the server sends back a response consisting
of the contents of that file.

This communication takes place over a complex internetwork of computers that
is constantly changing in terms of both technology and topology. A connection
between two particular hosts may involve such diverse technologies as Ethernet,
Token Ring, X.25, ATM, PPP, SONET, just to name a few. However, a programmer
writing a Web client or server does not want to be concerned with the details
of how communication takes place between client and server. The programmer
simply wants to send and receive messages in a way that does not change as the
underlying network changes. This is the function of the transport layer: to provide
an abstraction of interprocess communication that is independent of the underlying
network.

HTTP uses TCP as the transport layer. The programmer writing code for an
HTTP client or server would access TCP’s service through function calls that com-
prise that transport layer’s Application Program Interface (API). At a minimum, a
transport layer API provides functions to send and receive messages; for example,
the Berkeley Sockets API provides functions called write() and read() (for more
details, see [Stevens 1998]).

Because TCP is connection-oriented, the Berkeley Sockets API also provides
a connect () function for setting up a connection between the local and remote
processes. It also provides a close() function for closing a connection. Note that
while TCP is connection-oriented, not all transport services establish a connection
before data is sent. Connection-oriented and connectionless services and protocols
are discussed in Sections 3.1, 3.2.5 and 4.1.

2.3 Terminology: SDUs, PDUs, and the like

One difficulty in summarizing any topic is the wide range of terms used for similar
concepts. Throughout this paper, we use a simplified communication model (Fig-
ure 1) that employs some OSI terminology. At the top layer, a user sender (e.g.,
a Web client) has some messages to communicate to the user receiver (e.g., a Web
server). These so-called application entities use the service of the transport layer.
Communication between peer entities consists of an exchange of Protocol Data Units
(PDUs). Application peers communicate using Application PDUs (APDUs), while
transport peers communicate using Transport PDUs (TPDUs), etc. In our Web
example, the first APDU is the request “GET /research.html” sent from the client
(application entity) to the server (its peer application entity). The Web server will
respond with an APDU containing the entire text of the file “research.html”.
Many transport and application protocols are bidirectional; that is both sides can
send and receive data simultaneously. However, it is frequently useful to focus on
one direction while remaining aware that the other direction is also operational.

I To simplify the discussion, we will assume HT'TP version 0.9 and a document containing only
hypertext: no inline images, applets, etc. This avoids discussion of HT'TP 1.0 headers, persistent
connections as in HTTP 1.1, (which complicate the issue of how and when the connection is
closed,) and the necessity for multiple connections where inline images are involved.

The Transport Layer: Tutorial and Survey . 5

As Figure 1 shows, each application entity can assume both the role of sender
and receiver; for the APDU “GET /research.html”, the client is the user sender
and the server is the user receiver (as shown by more prominent labels). When the
APDU containing the contents of the file “research.html” is sent, user sender and
user receiver reverse roles (as indicated by the dotted line boxes, and the lighter
italicized labels).

Host A Host B
APDUs
Apolicati User Sender >][J----[— User Receiver
ppiication (Receiver) T3 DT e (senden
Entities Application (e.g. web client) Application (e.g. web server)
TSAP
\ Subni t Del i ver
User/Transpart, o m wm m e - -
Interface
TPDUs
Transport Transpor Sender |—»[][]---.[__]—»| Transport Receiver
Entities (Receiver) IS B P N y Pu— (Sender)
NSAP.
\ Transm t/ Send Arrive/ Recei ve
Tra”SPO"’Ne.‘WEVK.---.l.-----------------.l.----
Interface
Network

Fig. 1. Transport Service

The term t¢ransport entity refers to the hardware and/or software within a given
host that implements a particular transport service and protocol. Again, even
when the protocol is bidirectional, we focus on one direction for purposes of clarity.
In this model, the user sender submits a chunk of user data (i.e., a Transport
Service Data Unit (TSDU), or informally, a message) to the transport sender. The
transport sender transmits or sends this data to the transport receiver over a network
which may provide different levels of reliability. The transport receiver receives
the data that arrives from the network and delivers it to the user receiver. Note
that even when one transport entity assumes the role of sender and the other
assumes the role of receiver, we use solid lines to show TPDUs flowing in both
directions. This illustrates that TPDUs may flow in both directions even when
user data flows only from sender to receiver. TPDUs from receiver to sender are
examples of control TPDUs, which are exchanged between transport entities for
connection management. When the flow of user data is bidirectional, control and
data information can be piggybacked as discussed in Section 4.4.3. Control TPDUs
may flow in both directions between sender and receiver, even in the absence of
user data.

Figure 2 shows the terminology we use to describe what happens to the request
APDU “GET /research.html” as it passes through the various layers on its way
from the Web client to the Web server. When the user sender submits the request
APDU to the transport sender, that APDU becomes a TSDU. The transport sender
adds its own header information to the TSDU, to construct a TPDU that it can

6 . S. Iren, P. Amer, and P. Conrad

send to the transport receiver. TPDUs exchanged by the transport entities are
encapsulated (i.e., contained) in NPDUs which are exchanged between the network
entities, as illustrated in Figure 2. The network layer routes NPDUs between the
local and remote network entities over intermediate links. When an NPDU arrives,
the network layer entity processes the NPDU header and passes the payload of the
NPDU to a transport layer entity. The transport entity either passes the payload
of the TPDU to the transport user if it is user data, or processes the payload itself
if it is a control TPDU.

In the previous paragraph we describe a single APDU becoming a single TSDU,
being encapsulated in a single TPDU, which in turn becomes a single NSDU en-
capsulated in a single NPDU. This is the simplest case, and one that is likely to
occur for a small APDU such as the HTTP request in our example. However, there
are many other possibilities for the relationships between APDUs, TSDUs, TPDUs,
NSDUs, and NPDUs, as described in Step 5 of Section 2.4, and in Sections 3.1, 4.8,
4.9, and 4.10.

Application
(or Session) | | APDU (e.g., "GET /research.html")
Layer
H EN EN BN BN BN BN BN BN BN BN BN BN BN BN BN A B = = = |
\
[| Tsbu
Transport TPDU
Layer header l;' v
|_ : | TPDU (e.g., TCP segment)
H EN EN BN BN BN BN BN BN BN BN BN BN BN BN BN A B = = = |
\ 4
[| Nsbu
Network Epzu
Layer eacer v
H | NPDU (e.g., IP Datagram)

---...---..---..*---..

Fig. 2. Relationship between Service Data Units (SDUs) and Protocol Data Units (PDUs).

Figure 2 also shows some of the terminology commonly used in the Internet pro-
tocol suite to identify PDUs at various layers. TCP’s PDUs are called segments,
while IP’s NPDUs are called datagrams. However, the Internet community’s ter-
minology can be confusing. For example, the term packet is often used informally
to refer to both IP Datagrams (NPDUs) and TCP segments (TPDUs). The term
datagram can refer either to IP’s NPDUs, or to the TPDUs of the User Datagram
Protocol. To avoid such confusion, we make use of some OSI terms throughout
the paper. Although some may criticize OSI terminology as being cumbersome, it
often has the advantage of being more precise.

2.4 Example TCP Connection, Step-by-Step

Now let us consider the Web document retrieval example, one step at a time. This
discussion omits many details; the purpose here is to provide a general understand-
ing of the transport layer in the context of a well-known application.

(1)

The Transport Layer: Tutorial and Survey . 7

You select “http://www.eecis.udel.edu/research.html” with your Web cli-
ent.

—http indicates the application layer protocol to be used; more importantly
from a transport layer perspective, it also implicitly indicates the TCP port
number that will be used for the connection (80, in this case). Port numbers
differentiate between multiple connection points on the same machine; for
example, between servers for Web, File Transfer Protocol (FTP) and telnet
(remote terminal) requests.

—“www.eecis.udel.edu” indicates the host name to which a TCP connec-
tion is established. This is converted to the IP address 128.175.2.17 by the
Domain Name System (which is outside the scope of this discussion). The
combination of IP address and TCP port number (128.175.2.17, 80) rep-
resents what OSI calls a TSAP address. A TSAP (Transport Service Access
Point) address identifies one endpoint of a communication channel between
a process on a local machine, and a process on a remote machine.

—“/research.html” is the file you are requesting; the Web client uses this to
form the HTTP request (APDU) “GET /research.html” that must be sent
to the Web server via TCP.

The Web client starts by making a connection request to the transport entity at
(128.175.2.17, 80) by calling the connect () function. This causes the local-
client TCP entity (or simply, the “local TCP?”) to initiate a $-way-handshake
with the remote-server TCP entity (or simply, the “remote TCP”). TPDUs are
exchanged between the TCP entities to ensure reliable connection establish-
ment, and to establish initial sequence numbers to be used by the transport
layer (see Figure 3, and Section 4.3.3). If the 3-way-handshake fails, TCP no-
tifies the application by returning an error code as the result of the connect ()
function; otherwise a success code is returned. In this way, TCP provides what
OSI calls confirmation of the connect request.

Once the connect request is confirmed, the Web client submits a request to
send data (in this case the APDU “GET /research.html”). The local TCP
then sends this data—most likely, in a single TPDU. This TPDU (i.e., TCP
segment) contains the service user’s data (the TSDU), plus a transport layer
header, containing (among other things) the negotiated initial sequence number
for the data. The purpose of this sequence number is discussed in Step 6.

When the remote TCP receives the TPDU, the data “GET /research.html”
is buffered. It is delivered when the Web server does a read(). In OSI termi-
nology, this delivery is known as a data indication. The remote TCP also sends
back an acknowledgment (ACK) control TPDU to the local TCP. Acknowledg-
ments inform the transport sender about TPDU arrivals (see Section 4.4).

The Web server then responds with the contents of “research.html”. This
file may be too large to be efficiently submitted to TCP in one write() call,
i.e., one TSDU. If so, the Web server divides this APDU into multiple write()
calls, i.e., multiple TSDUs. The remote TCP then sends these TSDUs to the
local TCP in multiple TPDUs, utilizing the service of the underlying network
layer.

S. Iren, P. Amer, and P. Conrad

One interesting aspect of TCP is that the sizes of the TSDUs submitted by
the transport entities may bear little or no relationship to the sizes of the
TPDUs actually exchanged by TCP. TCP treats the flow of data from sender
to receiver as a byte-streamn and segments it in whatever manner seems to
make best use of the underlying network service, without regard to TSDU
boundaries. It delivers data in the same fashion; thus for TCP, the boundaries
between APDUs, submitted TSDUs, TPDUs, and delivered TSDUs may all
be different. Other transport services/protocols have a message orientation,
meaning that they preserve the boundaries of TSDUs (see Section 3.1.)

Because the network layer (IP in this case) can lose or reorder NSDUs, TCP
must detect and recover from network errors. As the remote TCP sends the
TPDUs containing the successive portions of the file “research.html”, it in-
cludes a sequence number in each TPDU corresponding to the sequence number
of the first byte in that TPDU relative to the entire flow of data from remote
TCP to local TCP. The remote TCP also places a copy of the data in each
TPDU sent into a buffer, and sets a timer. If this timer expires before the
remote TCP receives a matching ACK TPDU from the local TCP, the data in
the TPDU will be retransmitted in a new TPDU. In TCP, the data are tracked
by individual byte-stream sequence numbers, and TPDUs retransmitted may
or may not correspond exactly to the original TPDUs. The remote TCP also
places a checksum in the TPDU header to detect bit errors introduced by noise
or software errors in the network, data link and physical layers. Such error
control is a major function of the transport layer as discussed in Section 4.4.

As TPDUs are received by the local TCP, any TPDUs with checksum errors
are discarded. The sequence numbers of the incoming TPDUs are checked
to ensure that no pieces of the byte-stream are missing or have arrived out-
of-order. Any out-of-order pieces will be buffered and re-ordered. As TPDUs
arrive, the local TCP responds to the remote TCP with ACK TPDUs. If ACKs
are lost, the remote TCP may send a TPDU which duplicates data sent in an
earlier TPDU. The local TCP also discards any duplicate data that arrives.
By detecting and recovering from loss, reordering, duplication and noise, the
local and remote TCP entities cooperate to ensure reliable delivery of data. As
pieces of the byte-stream arrive correctly, these will be buffered until the Web
client requests them by doing read () calls. Each read () results in delivery of
a TSDU to the Web client.

In general, a TCP connection is bidirectional, and either side may initiate the
closing of the connection. However, in first-generation Web systems, the server
initiates the close by calling the close() function after it sends the last piece
of the file requested. In OSI terminology, this is called a disconnect request.

TCP handles disconnect requests with a 4-way-handshake procedure (shown in
Figure 4) to ensure graceful termination without loss of data. The remote TCP
responds to the server’s disconnect request by sending a disconnect TPDU and
waiting for an ACK TPDU. The local TCP signals the server’s disconnect re-
quest to the client by returning “end-of-file” as the result of a client read () re-
quest. The client then responds with its own close() request; this causes
another exchange of a disconnect TPDU and ACK. This and other methods of

The Transport Layer: Tutorial and Survey . 9

connection termination are discussed in Section 4.3.4.

2.5 What this example shows... and does not show

From this example, we see that TCP provides a connection-oriented (CO) byte-
stream, no-loss, no-duplicates, ordered transport service, and that its protocol is
designed to operate on top of a lossy network service, such as IP datagram ser-
vice [Postel 1981].

This example also shows a few aspects of communication between the user layer
and the transport layer, and between peer entities. It illustrates one example
of connection establishment, reliable data exchange, and connection termination.
However, many aspects of this example were not discussed, such as flow control
and congestion avoidance, piggybacking of ACKs, and round-trip-time estimation,
to name just a few.

Also, consider that in the case of a Web browser using TCP, the transport service
is reliable, which means (among other things) that the transport service may not
lose any TSDUs. This guarantee comes at the expense of potentially increased
delay, since reliable delivery may require more TPDUs to be exchanged. Other
transport services (for example, those used for audio or video transmission) do not
provide reliability, since for some applications lower delay is more important than
receiving every TSDU.

Many variations exist both in the type of service provided by the transport layer,
and in the design of transport protocols. These variations are what make the
transport layer so interesting! Sections 3 and 4 provide an overview of the most
important of these variations.

3. TRANSPORT SERVICE

This section classifies the typical service provided by the transport layer (see Ta-
ble 1). A transport service abstracts a set of functions that is provided to a higher
layer. A protocol, on the other hand, refers to the details of how a transport sender
and a transport receiver cooperate to provide that service. In defining a service, we
treat the transport layer as a black box. In Section 4, we look at internal details of
that black box.

Table 1. Transport Service Features
CO-message vs. CO-byte vs. CL
No-loss vs. Uncontrolled-loss vs. Controlled-loss
No-duplicates vs. Maybe-duplicates
Ordered vs. Unordered vs. Partially-ordered
Data-integrity vs. No-data-integrity vs. Partial-data-integrity
Blocking vs. Non-blocking
Multicast vs. Unicast
Priority vs. No-priority
Security vs. No-security
Status-reporting vs. No-status-reporting
Quality-of-service vs. No-quality-of-service

10 . S. Iren, P. Amer, and P. Conrad

One of the valuable contributions of the OSI Reference Model is its emphasis
in distinguishing between service and protocol. This distinction is not well differ-
entiated in the TCP/IP protocol suite where RFCs intermix service and protocol
concepts, frequently in a confusing manner. As will be seen in Section 4, there are
often several different protocol mechanisms that can provide a given service.

3.1 CO-message vs. CO-byte vs. CL

Transport services can be divided into two types: connection-oriented and con-
nectionless. A connection-oriented (CO) service provides for the establishment,
maintenance, and termination of a logical connection between transport users. The
transport user generally performs three distinct phases of operation: connection es-
tablishment, data transfer, and connection termination. When a user sender wants
to transmit some data to a remote user receiver by using a connection-oriented ser-
vice, the user sender first explicitly asks the transport sender to open a connection
to the remote transport receiver (T-Connect). Once a connection is established,
the user sender provides the transport sender with the data to be transmitted (T-
Data). At the end of the data transfer, the user sender explicitly asks the transport
sender to terminate the connection (T-Disconnect).

CO service itself has two variations: message-oriented and byte-stream. In the
former, the user sender’s messages (or what OSI calls service data units (SDUs))
have a specified maximum size, and message boundaries are preserved. When two
1K messages are submitted by a user sender, they are delivered to the user receiver
as the same two distinct 1K messages, never for example as one 2K message or
four .5K messages. TP4 is an example that provides message-oriented service. In
byte-stream service as provided by TCP, the flow of data from user sender to user
receiver is viewed as an unstructured sequence of bytes that flow in a FIFO manner.
There is no concept of message (or message boundary or maximum message size)
for the user sender. Data submitted by a user sender is appended to the end of the
byte-stream, and the user receiver reads from the head of the byte-stream.

An advantage of byte-stream service is that it gives the transport sender flexibility
to divide TSDUs in ways that make better use of the underlying network service.
However byte-stream service has been criticized because it does not deliver data to
an application in meaningful units. A message-oriented service better preserves the
semantics of each APDU down through the lower layers for so-called Application
Level Framing [Clark and Tennenhouse 1990] (see Section 6). One research team
notes that adaptive applications are much easier to develop if the unit of processing
(i.e., APDU) is strongly tied to the unit of control (i.e., TPDU) [Dabbous and Diot
1995].

A connectionless (CL) service provides only one phase of operation: data transfer.
There are no T-Connect and T-Disconnect primitives exchanged (either explicitly
or implicitly) between a user sender and the transport sender. When the user
sender has some data, it simply submits the data to the transport sender. As with
CO-message service, in a CL service the user sender submits messages, and message
boundaries are maintained. Messages submitted to a CL service as in UDP often
are referred to as datagrams.

The Transport Layer: Tutorial and Survey . 11

3.2 Reliability

Unfortunately the terms reliable and unreliable mean different things to different
people. To avoid ambiguity in our definition, unless otherwise stated, a service
is reliable if and only if it is all of the following (as defined below): no-loss, no-
duplicates, ordered, and data-integrity. If even one feature is lacking, the service is
unreliable.

3.2.1 No-loss vs. Uncontrolled-loss vs. Controlled-loss. There are three levels of
delivery guarantee. A no-loss (or at-least-once delivery) service guarantees that for
all data submitted to the transport sender by the user sender, one of two results
will occur. Either (1) the data is delivered? to the user receiver, or (2) the user
sender is notified that some data may not have been delivered. It never occurs that
a user sender believes some data was delivered to the user receiver when in fact
it was not. For example, TCP provides a no-loss service using disconnection as a
means of notifying a user sender that data may not have been delivered.?

An uncontrolled-loss (or best-effort) service does not provide the above assurance
for any of the data. For example, UDP provides an uncontrolled-loss service. Any
data submitted to UDP by a user sender may fail to be delivered to the user
receiver without the user sender being notified. Analogously, the default service of
the United States Postal Service is an uncontrolled-loss service. A user sender may
not be notified if a letter is not delivered to the user receiver.

A controlled-loss service lies in between no-loss and uncontrolled-loss. Loss may
occur, but there is control over the degree of loss. Several variations of a controlled-
loss service are possible. For example, a user sender might request different loss
levels for different messages. The &XP protocol [Amer et al. 1997; Marasli et al.
1996] supports three controlled-loss service classes:

e reliable messages will be retransmitted (if needed) until successfully delivered

to the user receiver;

e partially reliable messages will be retransmitted (if needed) at most & times

and then dropped if unsuccessful, where k is a user sender parameter; and

e unreliable messages will be transmitted only once.

In the TRUMP protocol [Golden 1997], a user sender assigns a time limit to each
message. The transport layer does its best to deliver the message before the time
limit; if unsuccessful, the message is discarded.

3.2.2 No-duplicates vs. Maybe-duplicates. A no-duplicates (or at-most-once deliv-
ery) service (e.g., TCP) guarantees that all data submitted to the transport sender
will be delivered to the user receiver at most once.

A maybe-duplicates service (e.g., UDP) does not provide the above guarantee.
Efforts by the protocol may or may not be made to avoid delivering duplicates, but
delivery of duplicates may occur nevertheless.

2Depending on the data-integrity service defined in Section 3.2.4, delivered data may or may not
contain bit errors.

3Strictly speaking, for the most common TCP API, namely the Berkeley Sockets API, this is only
true if the application specifies the SO_LINGE R socket option; by default, it is possible for a TCP
connection to lose data without notifying the application during connection teardown [Stevens
1998, p.187].

12 . S. Iren, P. Amer, and P. Conrad

3.2.3 Ordered vs. Unordered vs. Partially-ordered. An ordered service (e.g., TCP)
preserves the user sender’s submission order of data when delivering it to the user
receiver. It never occurs that a user sender submits two pieces of data, first A, then
B, and A is delivered after B is delivered.

An unordered service (e.g., UDP) does not provide the guarantee above. While
the service may try to preserve the order of data when delivering it to the user
receiver, no guarantee of preservation-of-order is made.

A partially-ordered service guarantees to deliver pieces of data in one of a set
of permitted orders as predefined by a partial order relation agreed upon by the
user sender and user receiver. Partially-ordered service is useful for applications
such as multimedia communication or distributed databases where delivery of some
objects is constrained by others having been delivered, yet independent of certain
other objects arriving [Connolly et al. 1994]. POC is an example protocol providing
partially-ordered service [Conrad et al. 1996].

3.2.4 Data-integrity vs. No-data-integrity vs. Partial-data-integrity. A data-in-
tegrity service ensures with high probability that all data bits delivered to a user
receiver are identical to those originally submitted. The actual probability achieved
in practice depends on the strength of the error detection method. Good discussions
of error detection methods can be found in [Lin and Costello 1982; McNamara
1998]. TCP uses a 16-bit checksum for data-integrity; its goodness is evaluated in
[Partridge et al. 1995].

A no-data-integrity service does not provide any guarantees regarding bit errors.
Any number of bit errors may occur in the delivered data. UDP may or may not be
configured to use a checksum; in the latter case, UDP provides a no-data-integrity
service.

A partial-data-integrity service allows a controlled amount of bit errors in deliv-
ered data. This service may be acceptable as a means of achieving higher through-
put. A real-time multimedia application might request the transport receiver to
tolerate certain levels of bit errors when errored data could be useful to the user
receiver [Han and Messerschmitt 1996]. For example, a Web browser retrieving an
image might prefer to progressively display a partially damaged image while waiting
for the retransmission and delivery of the correct data (assuming the decompression
algorithm can process damaged image data.)

3.2.5 Remarks on Reliability and CO vs. CL. Note that all four aspects of re-
liability — loss, duplicates, order, and data-integrity — are orthogonal; they are
independent functions. For example, ordered service does not imply no-loss ser-
vice; some portion of the data might get lost while the data that is delivered is
guaranteed to be in order.

A wide range of understanding (i.e., confusion) exists in the relationship between
a service being CO or CL and whether or not it is reliable. These two services are
orthogonal, yet so many people presume a CO service is reliable. Why? In the past
when the number of available services and protocols was smaller, and applications
were fewer and less diverse in their service needs, reasoning about connections and
reliability was simple:

The Transport Layer: Tutorial and Survey . 13

Whereas: TCP service is CO and TCP service is reliable,
Whereas: TP4 service is CO and TP4 service is reliable,

Whereas: X.25 service is CO and X.25 service is reliable,
Therefore: CO service = reliable service.

Whereas: UDP service is CL and UDP service is unreliable,
Therefore: CL service = unreliable service.

We emphasize that these equivalences do not hold! It is quite reasonable
to design a transport layer providing CO service that is not reliable (e.g., provides
controlled-loss rather than no-loss service, or unordered rather than ordered ser-
vice), say to support best-effort compressed-image transmission [Iren et al. 1998;
Iren]. Similarly a transport layer can provide a CL service that is reliable if an
underlying network layer is reliable.

3.3 Blocking vs. Non-Blocking

A blocking service ensures that the transport layer is not overwhelmed with incoming
data. In this case, a user sender submits data to the transport sender and then
waits for the transport sender to signal that the user sender can resume processing.
A blocking service provides flow control between user sender and transport sender.

A non-blocking service allows the user sender to submit data and continue pro-
cessing without awaiting the transport sender’s ok. A non-blocking service does
not take into account the transport layer’s buffering capabilities, or the rate at
which the user receiver consumes data. The user sender submits data at any rate
it chooses, possibly resulting in either data loss or notification to the user sender
that data cannot be submitted right now.

Of the many transport protocols surveyed, all could potentially provide blocking
or non-blocking service depending on their API; one can therefore argue that this
service feature is an implementation decision, not an inherent feature of a given
transport layer. (Note that the term “blocking” as used here has no relationship
to its use in Section 4.9.)

3.4 Multicast vs. Unicast

A multicast service enables a user sender to submit data, a copy of which will be de-
livered to one or more user receiver(s). Applications such as real-time news and in-
formation broadcasting, teleconferencing, and remote collaboration can take advan-
tage of a multicast service to reach multiple destinations. Depending on the reliabil-
ity of the service, delivery to each user receiver may be no-loss vs. uncontrolled-loss
vs. controlled-loss, no-duplicates vs. maybe-duplicates, etc. The use of a multicast
service influences many of the protocol features to be discussed in Section 4.

A wunicast service limits the data submitted by a user sender to be delivered to
exactly one user receiver.

(As stated earlier, although the tables in the appendix indicate which protocols
surveyed offer multicast service, this paper does not survey or discuss multicast
protocols.)

14 . S. Iren, P. Amer, and P. Conrad

3.5 Priority vs. No-priority

A priority service enables a user sender to indicate the relative importance of various
messages. A user of priority service may expect higher priority data to be delivered
sooner, if possible, than lower priority data, even at the expense of slowing down
data submitted earlier. When combined with uncontrolled-loss or controlled-loss
service, a priority service may drop lower priority data when necessary, thereby
allowing the delivery of higher priority data with smaller delay and/or higher prob-
ability. Priority also may be passed down to a network service if it has a notion of
priority, such as IP’s type of service field.

In OSI, priority service is provided in the form of ezpedited data and the priority
QoS parameter (see Section 3.8). Expedited data is an entirely separate data flow
that is not subject to normal data flow control.

A no-priority service does not allow a user sender to differentiate the importance
of classes of data.

Despite common misconceptions to the contrary, TCP’s urgent data service is
neither a priority service nor an expedited data service. The Berkeley Sockets API
provides access to this service via what it calls out-of-band data. However, this
is misleading, since data sent in urgent mode is not expedited, sent out-of-band,
or sent with higher priority. Rather, TCP urgent mode is a service by which the
user sender (i.e., an application) marks some portion of the byte-stream as needing
special treatment by the user receiver. Thus, signaling the presence of urgent data
and marking its position in the data stream are the only aspects that distinguish
the delivery of urgent data from the delivery of all other TCP data; for all other
purposes, urgent data is treated identically to the rest of the TCP byte-stream. The
user receiver must read every byte of data exactly in the order it was submitted
regardless of whether or not urgent mode is used.

3.6 Security vs. No-security

A security service (e.g., TP4) provides one or more security functions such as: au-
thentication, access control, confidentiality, and integrity [ISO 1989]. Authentica-
tion is the verification of user sender’s and user receiver’s identities. Access control
checks a user’s permission status before allowing the use of different resources.
Confidentiality guarantees that only the intended user receiver(s) can decode and
understand the user sender’s data; no other user receiver can understand the data’s
content. Finally, integrity* detects (and sometimes recovers from) any modifica-
tion, insertion, deletion, or replay of transport sender’s data. Secure routing also
has been noted as a security service [Stallings 1997, p.591]. This service guaran-
tees that while going from user sender to user receiver, data will only pass through
secure links and secure intermediate routers.

A no-security service does not provide any of the above security functions. TCP
currently provides no-security-service, although some discussion is underway to
include security features in a future generation.

4See Section 3.2.4 for a slightly different usage of integrity.

The Transport Layer: Tutorial and Survey . 15

3.7 Status-reporting vs. No-status-reporting

A status-reporting service allows a user sender to obtain specific information about
the transport entity or its connections. This information may allow the user sender
to make better use of the available service. Some information that a status report-
ing service might provide are: performance characteristics of a connection (e.g.,
throughput, mean delay), addresses (network, transport), current timer values, or
the state of the protocol machine supporting a connection.

A no-status-reporting service does not provide any information about the trans-
port entity and its connections.

A distinction can be made between status-reporting and QoS monitoring as,
for example, in applications based on the Real-time Transport Protocol (RTP).
Although QoS monitoring provides some of the information listed in the above
definition (delay, throughput), it provides no information on the protocol’s inter-
nal structure such as state information, timer values, etc. Status-reporting service
provides explicit interactions between a user and its transport entity. In QoS mon-
itoring, there are no such explicit interactions.

Of the protocols surveyed, only TCP provides something resembling status-
reporting service. When TCP’s Socket Debug Option is enabled, the kernel main-
tains for future analysis a trace record of what happens on a connection [Stevens
1994, p.496]. Status-reporting is a valuable service that designers should consider
incorporating into their protocol implementations.

3.8 Quality-of-service vs. No-quality-of-service

A transport layer that provides Quality of Service (QoS) allows a user sender to
specify the quality of transmission service desired. The protocol then presumably
optimizes network resources to provide the requested QoS. Since the underlying
network places limits on the service that can be provided by the transport protocol,
a user sender should recognize two facts: (1) depending on the underlying network’s
capabilities, a transport protocol will have varying degrees of success in providing
the requested QoS, and (2) there is a trade-off among QoS parameters such as
reliability, delay, throughput, and cost of service [Marasli et al. 1996].

Transport QoS is a broad and complicated issue. No universally accepted list
of parameters exists, and how the transport layer should behave for a desired QoS
under different circumstances is unclear. The ISO Transport Service [ITU-T 1995c]
defines a number of possible performance QoS parameters that are negotiated dur-
ing connection establishment. User senders can specify (sustained) target, accept-
able, and minimum values for various service parameters. The transport protocol
examines these parameters, and determines whether it can provide the required
service; this depends in part on the available network service. ISO specifies eleven
QoS parameters:

e Connection FEstablishment Delay is the maximum acceptable time between a
transport connection being requested and its confirmation being received by
the user sender.

e Connection Establishment Failure Probability is the probability a connection
cannot be established within the maximum connection establishment delay time
due to network or internal problems.

16 . S. Iren, P. Amer, and P. Conrad

e Throughput is the number of bytes of user sender data transferred per unit time
over some time interval.

e Transit Delay is the elapsed time between a message being submitted by a user
sender and being delivered to the user receiver.

e Residual Error Rate is the ratio of incorrect, lost, and duplicate TSDUs to the
total number of TSDUs that were sent.

e Transfer Failure Probability is the ratio of total transfer failures to total transfer
samples observed during a performance measurement.

e Connection Release Delay is the maximum acceptable time between a trans-
port user initiating release of a connection and the actual release at the peer
transport service user.

e Connection Release Failure Probability is the fraction of connection release at-
tempts that did not complete within the agreed upon connection release delay
interval.

e Protection is used by the user sender to specify interest in having the trans-
port protocol provide protection against unauthorized third parties reading or
modifying the transmitted data.

e Priority allows a user sender to specify the relative importance of transport
connections. In case of congestion or the need to recover resources, lower-
priority connections are degraded or terminated before the higher-priority ones.

e Resilience is the probability that the transport protocol itself will spontaneously
terminate a connection due to internal or network problems.

A transport layer that provides No-Quality-of-Service (No-QoS) does not allow

a user sender to specify desired quality of transmission service.

The original definitions of TP0O and TP4 support QoS service, however, only
recently have the lower layers of networks matured sufficiently for the community
to consider transport layer QoS handling. The ATM environment supports only
two QoS parameters: (sustained) target, acceptable, and minimum throughput and
transit delay [ITU-T 1995a]. Within the Internet IETF community, much work is
ongoing to create an integrated services (INTSERV) QoS control framework so
that the TCP/IP suite can provide more than its current no-QoS service. While
not itself a transport protocol, RSVP [Braden et al. 1997] sits on top of IP. RSVP
allows a host to request specific qualities of service from the network. A request
may refer to a single path in the case of unicast or multiple paths in the case of
multicast. General QoS parameters supported by the INTSERV framework are
defined in [Shenker and Wroclawski 1997]. Requests result in reserved resources by
individual network elements (i.e., subnets, IP routers) along the path. Thus far use
of RSVP has been defined to provide two kinds of Internet QoS: controlled load
[Wroclawski 1997] and guaranteed [Shenker et al. 1997].

4. TRANSPORT PROTOCOL FEATURES

The previous section describes general features of transport layer service. This
section focuses on internal transport layer mechanisms that provide this service.
It is important to understand that almost every service can be accomplished by
several different protocols.

The Transport Layer: Tutorial and Survey . 17

4.1 Connection-oriented vs. Connectionless

Not only can a service be classified CO or CL, so too can a protocol that provides
either service. The distinction depends on the establishment and maintenance of
state information, a record of characteristics and events related to the communi-
cation between the transport sender and receiver. Perhaps the most important
piece of state information is the sequence number that identifies a TPDU. Consis-
tent viewpoints of the sequence numbers used by transport sender and transport
receiver are required for reliable data transfer. Choosing an initial value for the
sequence number can be hazardous, particularly when two transport entities close
and immediately reopen a connection (see Section 4.4.7).

A transport protocol is CO (e.g., TCP) if state information is maintained be-
tween transport entities. Typically, a CO protocol has three phases: connection
establishment, data transfer, and connection termination. In the connection es-
tablishment phase, state information is initialized either explicitly by exchanging
control TPDUs, or implicitly with the arrival of first data TPDU. During a con-
nection’s lifetime (i.e., data transfer phase), state information is updated to reflect
the reception of data and control PDUs (e.g., ACKs). When both transport en-
tities agree to terminate the connection, they discard the state information. Note
the distinction between a CO service and a CO protocol. A CO service entails a
three phase operation to establish a logical connection between transport users. A
CO protocol entails a three phase operation to maintain state information between
transport entities.

If no state information is maintained at the transport sender and receiver, the
protocol is CL. A CL protocol is based on individually self-contained units of com-
munication often called datagrams that are exchanged independently without ref-
erence to each other or to any shared state information. Each datagram contains
all of the information that the receiving transport entity needs to interpret it.

4.2 Transaction-oriented

Transaction-oriented protocols attempt to optimize the case where a user sender
wishes to communicate a single APDU (called a request) to a user receiver, who then
normally responds with a single APDU (called a response). Such a request/response
pair is called a transaction.

A transaction-oriented transport protocol attempts to provide reliable service for
transactions with as few TPDUs as possible, ideally only one for the request and
one for the response. This is done by trying to minimize overhead for connection
establishment. Transactions share the following characteristics [Braden 1992a]: an
asymmetrical model (i.e., client and server), simplex data transfer, short duration,
low delay, few data TPDUs, message orientation, and the need for no-duplicates
service. Examples of transaction-oriented protocols include VMTP and T/TCP, a
backwards compatible TCP extension.

4.3 CO Protocol Features

The following subsections refer only to CO protocols.

18 . S. Iren, P. Amer, and P. Conrad

4.3.1 Signaling. Signaling is the exchange of control (i.e., state) information be-
tween transport entities for managing a connection.” Signaling is used to establish
and terminate a connection and to exchange communication system parameters.
Signaling can be accomplished in-band, where control information and user data
are multiplexed on the same connection, or out-of-band, where separate connections
are used. In-band signaling (e.g., TCP) is generally more suitable for applications
that require short-lived connections (e.g., transaction-oriented communications).
The extra overhead incurred for managing two bands is avoided and small amounts
of user data can be transmitted during the signaling operation.

Out-of-band signaling (e.g., TP++) is desirable for high-speed communication
systems. It avoids the overhead of separating signaling information from user data
by doing so below the transport layer. Out-of-band signaling can support transport-
ing more than one kind of data over a connection thereby facilitating operations
involving third parties, for example, a server validating security information or
billing.

4.3.2 Unidirectional vs. Bidirectional. In a unidirectional connection (e.g., NET-
BLT, VMTP) data flows only in one direction at a time (half duplex). That is,
while one transport entity is sending data, the other may not send data in the
reverse direction. Each transport entity can assume the role of transport sender or
transport receiver, but not both simultaneously.

In a bidirectional connection (e.g., TCP), both transport entities simultaneously
assume the roles of transport sender and transport receiver thereby allowing full
duplex data flow.

4.3.3 Connection FEstablishment. Three modes of connection establishment are
shown in Figure 3. The cost associated with connection establishment can be
amortized over a connection’s lifetime. For short-lived connections which result
from transaction-oriented applications, this cost can be significant. Therefore, pro-
tocols for short-lived connections have been designed using a timer-based connec-
tion establishment and termination mechanism. For longer connections and when
avoiding false connections is important, 2-way or 3-way handshake mechanisms are
needed. A handshake involves the explicit exchange of control TPDUs.

In implicit connect, the connection is open as soon as the first TPDU is sent or re-
ceived. The transport sender starts transmitting data without any explicit connec-
tion verification by the transport receiver. Further data TPDUs can be sent without
receiving an ACK from the transport receiver. Implicit connections can provide re-
liable service only if the protocol definition guarantees that delayed TPDUs from
any previously closed connection cannot cause a false open. T/TCP [Braden 1994]
achieves this via connection-unique identifiers and timer-based connection termina-
tion.

In 2-way-handshake connect (e.g., APPN, SSCOP/AALS5), a CR-TPDU (Con-
nection Request) and a CC-TPDU (Connection Confirm) are exchanged to establish
the connection. The transport sender may transmit data in the CR-TPDU, but
sending additional data is prohibited until the CC-TPDU is received. During this

5While in some cases data may be exchanged, signaling generally refers to exchanging control
info.

The Transport Layer: Tutorial and Survey . 19

Host A Host B Host A Host B Host A Host B

o o

ACK-CC-TPDU (@

/

Implicit 2-way-handshake 3-way-handshake

) Point in time at which connection is
said to be established for that host.

Fig. 3. Three modes of connection establishment

handshake, QoS parameters such as buffer size, burst size, burst rate, etc., can be
negotiated. When the underlying network service provides a small degree of loss,
a 2-way-handshake mechanism may be good enough to establish new connections
without significant risk of false connections.

In 8-way-handshake connect (e.g., TCP), the transport sender sends a CR-TPDU
to the transport receiver which responds with a CC-TPDU. The procedure is com-
pleted with an ACK-CC-TPDU (ACK for Connection Confirm). Normally no user
data is carried on these connection establishment TPDUs.® If the underlying net-
work service provides an unacceptable degree of loss, a 3-way-handshake is needed
to prevent false connections that might result from delayed TPDUs. Because TCP
was designed specifically for use over an unreliable network service, TCP uses a
3-way handshake.

4.3.4 Connection Termination. Four modes of connection termination are shown
in Figure 4.

With #mplicit disconnect (e.g., VMTP), when a transport entity does not hear
from its peer for a certain time period, the entity terminates the connection. Typ-
ically, implicit disconnection is used with implicit connection establishment.

In abortive disconnect, when a transport entity must close the connection abnor-
mally due to an error condition, it simply sends an abort-TPDU and terminates
the connection. The entity does not wait for a response. Thus TPDUs in transit
in either direction may be lost.

In 2-way-handshake disconnect (e.g., NETBLT), a transport entity sends a DR-
TPDU (Disconnect Request) to its peer and receives a DC-TPDU (Disconnect
Confirm) in return. If a connection is unidirectional (see Section 4.3.2), the trans-
port sender usually initiates connection termination and before discarding its state
information verifies the reception of all TPDUs by the transport receiver. In a
bidirectional connection, a 2-way-handshake can only verify reception of TPDUs in

6TCP allows user data to be sent on a CR-TPDU. However, that data cannot be delivered to
the user until the 3-way-handshake is completed. Furthermore, outside of T/TCP compliant
implementations, TCP implementations typically do not take advantage of this feature [Stevens
1996].

20 . S. Iren, P. Amer, and P. Conrad

Host A Host B Host A Host B Host A Host B Host A Host B

DR-TPDU
Abort-TPDU DR-TPDU

DC-TPDU
No data (] DC-TPDU Y DR-TPDU
flow \
DC-TPDU °

Implicit Abortive 2-way-handshake 4(3)-way-handshake

Point in time at which connection is
said to be terminated for that host.

Fig. 4. Four modes of connection termination

one direction. TPDUs in transit in the reverse direction may be lost.

Finally, in 4(8)-way-handshake disconnect (e.g., TCP), two 2-way-handshakes
are used, one for each direction of data flow. The transport entity that closes its
sending flow sends a DR-TPDU to its peer entity (in TCP the FIN flag is set in
its last TPDU). This disconnect request is then acknowledged by the transport
receiver as soon as all preceding TPDUs have been received. The connection is
terminated when data flows in both directions are closed. The number of control
TPDUs exchanged can be reduced to three if the first DC-TPDU also functions as
a DR-TPDU for the reverse direction.

Connections may be terminated either gracefully or ungracefully. In an ungraceful
termination as in TP0 or TP47, some data in transit may be lost. In a graceful close,
no data in transit is lost since a connection is closed only after all data have arrived
at their destination. For bidirectional connections, only a 4(3)-way-handshake can
guarantee graceful close.

4.4 Error Control: Sequence Numbers, Acks, and Retransmissions

Error controlis a combination of techniques to guard against loss or damage of user
data and control information. CL network protocols such as IP perform no error
control on user data. Even CO networks are being designed with lightweight virtual
circuits that provide no error control [McAuley 1990; Parulkar and Turner 1989).
Recent studies have shown that for realistic high-speed networks with low error
rates, transport layer error control is more efficient than link layer error control [Bae
et al. 1991; Bhargava et al. 1988]. There are two phases in transport layer error
control: error detection and error reporting and recovery.

4.4.1 Error Detection. Error detection identifies lost, misordered, duplicated,
and corrupted TPDUs. Sequence numbers help uncover the first three problems.
Corrupted data is discovered by means of (1) length fields that allow a transport
receiver to detect missing or extra data, and (2) redundant information in the
form of error detecting codes (EDC). Cyclic redundancy checks and other forms

"The OSI Session Layer provides the graceful close.

The Transport Layer: Tutorial and Survey . 21

of checksums are the most common examples of EDCs. An EDC can verify the
header /trailer, the data, or both. TCP and AAL5 contain a single checksum on
both. XTP performs one checksum on the header and allows for an optional second
checksum on the data.

Separate EDCs for header and data are recommended for multimedia applica-
tions [La Porta and Schwartz 1991]. In voice applications, where corrupted data is
tolerable but retransmissions are less advantageous due to delay constraints, only a
header EDC needs to be used. In image transfer using both EDCs, corrupted data
may be used temporarily until a corrected version is obtained via retransmission.

4.4.2 Error Reporting and Recovery. Error reporting is a mechanism where the
transport receiver explicitly informs the transport sender about errors that have
been detected. Error recovery is a mechanism used by both transport sender and
receiver to recover from errors whether or not they are explicitly reported.

Error reporting and recovery are traditionally accomplished using timers, se-
quence numbers and acknowledgments. Sequence numbers are assigned to TPDUs
(or associated with the byte-stream). The transport receiver informs the transport
sender via ACKs about TPDU arrivals so that the sender can retransmit those that
are missing.

A positive ACK or PACK contains sequence number information about those
TPDUs that have been received. A negative ACK or NACK, often known as a
selective reject, explicitly identifies TPDUs that have not been received.® Protocols
that use ACKs are known as Positive Ack with Retransmission (PAR) or Automatic
Repeat reQuest (ARQ) schemes. Upon receipt of an ACK, the transport sender
updates its state information, discards buffered TPDUs that are acknowledged,
and retransmits any TPDUs that are not acknowledged. A protocol that only use
PACKSs has no error reporting mechanism.

If a transport sender does not receive an ACK within a reasonable timeout pe-
riod, it may assume something has gone wrong and retransmits unacknowledged
TPDU(s). With delays within most underlying networks being variable and dy-
namic, accurate calculation of a reasonable timeout value within the transport
layer is a most difficult problem. However, accurate round-trip time (RTT) esti-
mation is essential [Zhang 1986]. The basic idea is to keep an RTT estimate by
measuring the time between sending a TPDU and receiving its ACK. Karn and
Partridge showed the importance of not updating this estimate for retransmitted
TPDUs, since it is impossible to determine whether the received ACK is for the
original TPDU transmission or a subsequent retransmission [Karn and Partridge
1987]. Jacobson refined TCP’s retransmission timeout calculation, by using a low-
pass filter to estimate the mean, and mean deviation of the RTT [Jacobson 1988].
RTT estimation has been a key area of research in TCP; a informative summary
appears in [Stevens 1994, p.299ff].

4.4.3 Piggybacking. When a TPDU arrives at a transport receiver, instead of
immediately returning an ACK as a separate control TPDU, some protocols (in-
cluding TCP) artificially delay returning an ACK hoping the user receiver will soon

8For clarity in this paper, PACK refers only to a positive ACK, and ACK refers to either a PACK
or NACK.

22 . S. Iren, P. Amer, and P. Conrad

submit its next message to be sent as part of the reverse direction data flow. When
this occurs, the ACK is piggyback-ed as header information on the reverse direction
data TPDU. This is an example of transport layer concatenation (see Section 4.8).

4.4.4 Cumulative vs. Selective Acknowledgment. A common type of PACK is the
cumulative PACK. Each cumulative PACK carries a sequence number indicating
that all TPDUs with lower® sequence numbers have been received. With cumulative
PACKs, even if PACK; is lost, the arrival of a later PACKj; such that j > i,
positively acknowledges all TPDUs up to TPDU;. The later cumulative PACK
incorporates the information of the previously lost one.'®

A disadvantage of cumulative PACKs occurs when T'PDU; is lost and TPDU; 41,
TPDU,4,, ..., arrive intact and are buffered. Each PACK following the loss can
acknowledge only TPDUs up to and including TPDU;_;. Thus, the transport
sender may not receive timely feedback on the success of TPDUs sent after T PDU;,
and retransmit them unnecessarily.

The second PACK type in its most basic form is the selective PACK which ac-
knowledges exactly one TPDU. With selective PACKSs, a transport receiver informs
the transport sender about each TPDU that arrives successfully, so the transport
sender can more likely retransmit only those TPDUs that have actually been lost.
Selective PACKs are used by NETBLT and VMTP.

A block PACK is a variation of selective PACK where blocks of individual TPDUs
are selectively acknowledged [Brown et al. 1989]. For example, an XTP ACK is
actually a series of block PACKs. If TPDUs {1, 2, 4, 5, 6, 9, 10} arrive and {3, 7,
8} are missing, then the block PACK would look like 1-2;4-6;9-10.

In part due to the influence of innovative acknowledgment schemes in protocols
such as XTP, NETBLT, and VMTP, TCP with selective acknowledgment (called
SACK) recently has been proposed. SACK combines selective (block) and cumu-
lative PACKs within TCP [Braden and Jacobson 1988; Floyd 1996; Mathis et al.
1996]. One simulation study shows the strength of TCP implementations with
vs. without selective PACKs [Fall and Floyd 1996].

4.4.5 Retransmission Strategies. When a transport sender transmits 7P DU; and
determines later that it may not have arrived at the transport receiver, two retrans-
mission strategies are possible. (This determination can result when the transport
sender does not receive a PACK within a predetermined timeout period, or when
it receives back-to-back cumulative PACKs that are identical.) A conservative ap-
proach has the transport sender retransmit selectively only T'PDU; and wait for a
PACK with sequence number larger than previous PACKs. This selective repeat
approach is used in SNR [Doshi et al. 1993] and avoids retransmitting correctly
received TPDUs [Feldmeier and Biersack 1990].

A more aggressive transport sender retransmits T7PDU; and all TPDUs already
sent after TPDU;. This Go-Back-N approach is fairly simple but decreases chan-
nel utilization by potentially retransmitting correctly-received TPDUs. These un-
necessary retransmissions then add to network congestion. The protocol SMART

9This is TCP’s definition; some protocols use “lower or equal”
10Most implementations allow sequence number wrap-around. For simplicity, we assume that
j >4 implies that TPDUj is later in the data flow than TPDU;.

The Transport Layer: Tutorial and Survey . 23

combines good features of selective repeat and Go-Back-N by having the transport
receiver return both a cumulative PACK, and a selective PACK for the TPDU that
most recently arrived [Keshav and Morgan 1997]. This combined ACK informa-
tion helps the transport sender avoid unnecessary retransmissions. Further work
on innovative retransmission strategies for use over wireless networks can be found
in [Balakrishnan et al. 1996] (see Section 6.2). Both selective repeat and Go-Back-
N also apply to data link layer communication, and are thoroughly analyzed in
[Stallings 1997; Tanenbaum 1996; Walrand 1991].

4.4.6 Sender-dependent vs. Sender-independent Acknowledgment. In some proto-
cols, transport receiver ACKs are generated in response to explicit or implicit events
initiated by the transport sender. These ACKs are called sender-dependent [Do-
eringer et al. 1990; Thai et al. 1994]. In XTP, no ACKs are generated until the
transport sender explicitly instructs the transport receiver to generate one. Some
transaction-oriented protocols such as VMTP try to minimize the number of control
TPDUs exchanged by using the response as an implicit PACK for a transmitted
request, and a new request as an implicit PACK for the previous response.

Sender-independent ACKs are those generated by a transport receiver indepen-
dent of actions by the transport sender. SNR/ESNR [Doshi et al. 1993; Netravali
et al. 1990] uses an error reporting and recovery scheme called Periodic State
Exchange where complete state information is exchanged periodically between a
transport sender and a transport receiver based on timers, not the arrival or loss
of TPDUs. If a control TPDU containing state information is lost, no immediate
steps are taken. Eventually after another period, the complete state information
containing information in the lost control TPDU will be exchanged. This approach
simplifies the error recovery mechanism and reduces the number of error recovery
timers. With parallel processors, one processor at the receiver can be dedicated to
processing state information and inserting control TPDUs while a second focuses
on processing TPDUs.

4.4.7 Duplicate Detection. Sequence numbers are also the basic mechanism for
duplicate detection. If an ACK is lost and as a result one or more TPDUs are
retransmitted, duplicate TPDUs can arrive at the transport receiver. In most CO
protocols, the transport receiver maintains state information about previously re-
ceived TPDUs. (A less common approach to duplicate detection uses synchronized
clocks instead of state information [Liskov et al. 1990]). When a duplicate TPDU is
received, the state information allows it to be detected. In CL protocols, where no
state information is maintained, duplicate detection is not possible and the typical
offered service is maybe-loss, maybe-duplicates. In CL protocols that use ACKs and
retransmissions, the offered service is limited to no-loss, maybe-duplicates service.

When a duplicate is received after a connection close and subsequent reconnec-
tion between the same two transport entities, duplicate detection becomes a delicate
problem. In this case, the duplicate may accidentally be considered original data
for the second connection. Several solutions exist for this delayed duplicate prob-
lem. First, each transport entity can remember the last sequence number used
for each terminated connection (i.e., maintain state even after disconnection). If a
connection is re-established, the next sequence number is used. A design problem
involves deciding how long each transport entity must maintain the state informa-

24 . S. Iren, P. Amer, and P. Conrad

tion. A second approach uses a unique connection identifier for each connection.
Both approaches work fine unless the system loses the sequence number or connec-
tion identifier information, say due to a system crash. A third approach requires a
minimum amount of time before a connection between the same two transport enti-
ties can be re-established, and enforces a maximum lifetime of any TPDU to be less
than that minimum. This so-called TIME-WAIT approach is used in TCP; it has
the disadvantage of introducing artificial delays between consecutive connections.

4.4.8 Forward Error Correction. Because each retransmission requires at least
one round-trip time, PAR and ARQ schemes may operate poorly for applications
that have tight latency constraints. As an alternative, Forward Error Correction
(FEC) can be used for low latency error control, with or without PAR/ARQ. In
TP++, a transport sender can transmit each TSDU as k data TPDUs and an
additional h redundant parity TPDUs. Unless the network loses more than A of
the h+k TPDUs sent, the transport receiver can reconstruct the original & data
TPDUs.

4.5 Flow/Congestion Control

The terms flow control and congestion control create confusion, since different au-
thors approach these subjects from different perspectives. In this section, we try to
make a useful distinction between the terms while recognizing that overlap exists.

First, we define transport layer flow control as any scheme by which the trans-
port sender limits the rate at which data is sent over the network. The goals of
flow control may include one or both of the following: (1) preventing a transport
sender from sending data for which there is no available buffer space at the trans-
port receiver, or (2) preventing too much traffic in the underlying network. Flow
control for (2) also is called congestion control or congestion avoidance. Congestion
is essentially a network layer problem, and dozens of schemes are discussed and
classified in [Yang and Reddy 1995]. However, congestion often is addressed by
transport layer flow control (also known as end-point flow control).

Techniques used to implement both goals are often tightly integrated, as is the
case in TCP. Regardless of which goal is being pursued, the flow of data is being
controlled. Therefore, some authors use “flow control” to refer to protocol features
that address both goals, thus blurring the distinction between flow and congestion
control [Stevens 1994, p. 310]. Bertsekas [Bertsekas and Gallager 1992] states that
flow and congestion control overlap so much that it is better to treat them as a
single problem; however, he discusses flow control as a major network layer function.
Other authors [Stallings 1997; Tanenbaum 1996; Walrand 1991] clearly separate
congestion control from flow control. Feldmeier states that congestion control can
be viewed as a generalized n-dimensional version of flow control, and suggests that
flow control for all layers should be performed at the lowest layer that requires flow
control [Feldmeier 1993a]. In this paper, we use flow control as the overall term for
such techniques, but emphasize that (1) flow control is only one example of many
possible congestion control techniques, and (2) congestion control is only one of the
two motivations for flow control.

We now present a discussion of general flow control techniques, and a discussion
of how these techniques combat network congestion.

The Transport Layer: Tutorial and Survey . 25

4.5.1 General Flow Control Techniques. Transport layer flow control is more
complex than network or data-link layer flow control. This is because storage and
forwarding at intermediate routers causes highly variable delays that are generally
longer than actual transmission time [Stallings 1997, p.593]. Transport layer flow
control usually is provided in tandem with error control, by using sequence numbers
and windowing techniques. Some authors, however, claim that error control and
flow control have different goals and should be separated in high-speed network
protocol design [Feldmeier 1990; La Porta and Schwartz 1991; Lundy and Tipici
1994].

Two techniques may be used, either alone or together, to avoid network conges-
tion and overflowing receiver buffers. These are: (1) window flow control and (2)
rate control.

In window (or sliding-window) flow control, the transport sender continues send-
ing new data as long as there remains space in the sending window. In general, this
window may be fixed or variable in size. In fixed size window control, ACKs from
the transport receiver are used to advance the transport sender’s window.

In variable size window control, also called a credit scheme, ACKs are decoupled
from flow control. A TPDU may be acknowledged without granting the transport
sender additional credit to send new TPDUs, and additional credit can be given
without acknowledging a TPDU. The transport receiver adopts a policy concerning
the amount of data it permits the transport sender to transmit, and advertises the
size of this window in TPDUs that flow from receiver to sender.

Early experience with TCP showed a problem, known as the Silly Window Syn-
drome, that can afflict protocols using the credit scheme. The silly window syn-
drome can start either because the transport receiver advertises a very small win-
dow, or the transport sender sends a very small TPDU. Clark [Clark 1982] describes
how this can degenerate into a vicious cycle where the average TPDU size ends up
being much smaller than the optimal case, and throughput suffers as a result. TCP
includes mechanisms in both the transport sender and transport receiver to avoid
the conditions that lead to this problem.

Credit schemes may be described as conservative or aggressive (optimistic). The
conservative approach, as used in TCP, only allows new TPDUs up to the transport
receiver’s available buffer space. This approach has the disadvantage that it may
limit a transport connection’s throughput in long delay or large bandwidth-product
situations. The aggressive approach attempts to increase throughput by allowing a
transport receiver to optimistically grant credit for space it does not have [Stallings
1997, p.598]. A disadvantage of the aggressive approach is its potential for buffer
overflow at the transport receiver (hence, wasted bandwidth) unless the credit-
granting mechanism is carefully timed [Clark 1982].

Rate control uses timers at the transport sender to limit data transmission [Cheri-
ton 1988; Clark et al. 1987; Weaver 1994]. Either a transport sender can be assigned
(1) a burst size and interval (or burst rate), or (2) an interpacket delay time. In (1),
a transport sender transmits a burst of TPDUs at its maximum rate, then waits for
the specified burst interval before transmitting the next burst (e.g., NETBLT and
XTP). This is often modeled as a token-bucket scheme. In (2), a transport sender
transmits data as long as it has credit available, but artificially pauses between each
TPDU according to the interpacket delay (e.g., VMTP [Cheriton and Williamson

26 . S. Iren, P. Amer, and P. Conrad

1989]). This is often modeled as a leaky-bucket scheme. Case (2) improves per-
formance because spreading TPDU transmissions helps avoid network congestion
and receiver overflow. However, interpacket delay algorithms are more difficult to
implement because of the timers needed.

Rate control schemes involve low network overhead since they do not exchange
control TPDUs except to occasionally adjust the rate in response to a significant
change in the network or the transport receiver. They also do not affect the way
data ACKs are managed [Doeringer et al. 1990]. Some authors argue that imple-
menting window control and rate control together as in XTP and NETBLT will
achieve better performance than implementing only one of them [Clark et al. 1987;
Doeringer et al. 1990; La Porta and Schwartz 1991; Sanders and Weaver 1990].

One innovative approach implemented in TP++ involves backpressure, where the
application, transport, and network layers all interact. If a user receiver reads from
the transport receiver at a rate slower than the transport sender is sending, the
transport receiver’s buffers eventually will fill up. The transport receiver explicitly
triggers congestion control procedures within the network. The network sender in
turn refuses additional TPDUs from the transport sender. The transport sender
may then exercise backpressure on the sending application by refusing to accept
any more new APDUs, until notice arrives that the transport receiver’s buffers
have started to empty [Stevens 1994, p.398]. This method will not work if multiple
transport connections are multiplexed on a single network connection [Stallings
1997, p.596].

4.5.2 Flow Control Techniques for Addressing Congestion. Congestion control
schemes have two primary objectives: fairness, and optimality.

Fairness involves sharing resources among users (individual data flows) fairly.
Since transport entities lack knowledge about general network resources, the bot-
tleneck(s) itself is at a better position to enforce fairness. The transport layer’s role
is limited to ensuring that all transport senders cooperate. For example, TCP’s
congestion control technique assumes that all TCP entities will “back-off” in a
similar manner in the presence of congestion. Unfortunately, it only works in a
cooperative environment. Today’s Internet is experiencing congestion difficulties
because of some non-TCP-conformant transport entities acting selfishly. Modifica-
tions to Random Early Dropping (RED) algorithms have been proposed to counter
these selfish TCP implementations [Floyd and Jacobson 1993].

Optimality involves ensuring that all routers operate at optimal levels. Transport
entities have a role to play by limiting the traffic sent over any router that becomes
a bottleneck. A router can monitor itself and send explicit access control feedback
to the traffic sources [Prue and Postel 1987; Ramakrishnan and Jain 1988]. Al-
ternatively, transport entities can use implicit access control and detect potential
bottlenecks from timeouts and delays derived from the ACKs received [Ahn et al.
1995; Jain 1989]. A third method is to use packet-pair flow control which also has
the advantage of ensuring that well-behaved users are protected from ill-behaved
users because of the use of round-robin schedulers [Keshav ; Keshav 1991].

Explicit access control has been implemented in XTP and TP++4. XTP imple-
ments both end-to-end flow control and explicit access congestion control. Initially,
default parameters control the transport sender’s transmission rate. However, dur-

The Transport Layer: Tutorial and Survey . 27

ing the exchange of control information, the network can modify the flow control
parameters to control congestion. Furthermore, network routers can explicitly send
control PDUs to transport entities to control the congestion. TP++ uses the pre-
viously mentioned backpressure both to avoid overwhelming a slow receiver and to
control congestion.

When the network layer provides no support for explicit access control, the trans-
port protocol may operate on the assumption that any TPDU loss indicates net-
work congestion — a reasonable assumption when the underlying network links are
highly reliable. TCP’s approach to congestion avoidance incorporates two impor-
tant design principles. The first principle is slow-start, where new connections do
not initially send at the full available bandwidth, but rather first send one TPDU
per RTT, then two, then four, etc., (exponential increase per RTT) until the full
bandwidth is reached, or a loss is detected. The second principle is that when
loss is encountered, indicating potential congestion, the transport sender reduces
its sending rate significantly, and then uses an additive increase per RTT in an
attempt to find an optimal sending rate. A goal of TCP is that network bandwidth
is shared fairly when all TCP connections abide by both principles. Details of these
principles have been refined over various implementations of TCP, which go by the
names Tahoe, Reno, and Vegas [Ahn et al. 1995; Fall and Floyd 1996; Jacobson
1988].

Using a control-theoretic approach, congestion control schemes can be viewed
as a control policy to achieve prescribed goals (e.g., minimize round-trip delay).
These schemes are divided into open loop (e.g., rate control and implicit access
control schemes), where control decisions by the transport sender do not depend
on feedback from the congested sites, and closed loop (e.g., explicit access control
schemes), where control decisions do depend on such feedback. With networks
having higher speeds and higher bandwidth-delay products, open loop schemes have
been proposed as being more effective. Many current admission control schemes,
which can be called regulation schemes, are open loop.

4.6 Multiplexing/Demultiplexing

Multiplexing, as shown in Figure 5a, supports several transport layer connections
using a single network layer association. Multiplexing maps several user/transport
interface points (what ISO calls TSAPs) onto a single transport/network interface
point (NSAP). An association is a virtual circuit in the case of a CO network. In
the case of a CL network, an association is a pair of network addresses (source
and destination). When the underlying network is CL (as is the case for TCP),
multiplexing/demultiplexing as provided by TCP’s port numbers is necessary to
serve multiple transport users.

Multiplexing uses network layer resources more efficiently by reducing the net-
work layer’s context-state information. Additionally it can provide primitive stream
synchronization [Feldmeier 1990]. For example, video and audio streams of a movie
can be multiplexed to maintain “lip sync” in which case the multiplexed streams
are handled as a single stream in a single, uniform manner. This method works
only if all streams require the same network layer QoS. Multiplexing’s advantages
come at the expense of having to demultiplex TPDUs at the transport receiver and
to ensure fair sharing of resources among the multiplexed connections. Demulti-

28 . S. Iren, P. Amer, and P. Conrad

plexing requires a look-up operation to identify the intended receiver and possibly
extra process switching and data copying.

TSAPs NSAP TSAP NSAPs

HostA/ Host B Host A Host B
Application
(Session)
Transport Ei ';
Network ‘ : : ’
Flow of NPDUs Flows of NPDUs
@) (b)
Fig. 5. (a) Multiplexing/Demultiplexing (b) Splitting/Recombining

4.7 Splitting/Recombining

Splitting (or downward-multiplexing [Walrand 1991]) as shown in Figure 5b is the
opposite of multiplexing. In this case several network layer associations support a
single transport layer connection. Splitting provides additional resilience against
a network failure and potentially increases throughput by letting a fast processor
output data over several slower network connections [Strayer and Weaver 1988].

4.8 Concatenation/Separation

Concatenation as shown in Figure 6 combines several TPDUs into one network
service data unit (NSDU), thus reducing the number of NSDUs submitted to the
network layer. The transport receiver has to separate the concatenated TPDUs.
This mechanism saves network bandwidth at the expense of extra processing time
at the transport sender and receiver. Considering that the transport receiver is
often the bottleneck in protocol processing and that available bandwidth is increas-
ing, some authors argue that concatenation/separation and splitting/recombining
mechanisms are becoming less important [Thai et al. 1994].

Sender Receiver
Transport | TPDU | | TPDU | | TPDU | | TPDU |
Ly . P 2N e N S
Network

Fig. 6. Concatenation and Separation

The Transport Layer: Tutorial and Survey . 29

4.9 Blocking/Unblocking

Blocking combines several TSDUs into a single TPDU (see Figure 7a) thereby
reducing the number of transport layer encapsulations and the number of NSDUs
submitted to the network layer. The receiving transport entity has to unblock or
deblock the blocked TSDUs before delivering them to transport service user.

Sender Receiver Sender Receiver
[sou |...[7sou] [Tsou |...[Tsou |
‘[:;r:port [vpou |...[rou | [7pPou |...[TPDU]
(a) (b)
Fig. 7. (a) Blocking/Unblocking (b) Segmentation/Reassembly

Blocking/unblocking is intended to save network bandwidth. The effect on pro-
cessing time varies with the particular implementation. A protocol that has to
do both blocking and unblocking, say to preserve TSDU boundaries, might add
processing time. However, TCP’s form of blocking, described by the Nagle Algo-
rithm [Nagle 1984], actually may reduce processing time at the transport receiver,
since it reduces the number of TCP headers which must be processed. TCP’s trans-
port receiver unblocks, but does not preserve TSDU boundaries. This is consistent
with TCP’s CO-byte service.

Although blocking and concatenation are similar (both permit grouping of PDUs),
they may serve different purposes. As one subtle difference, concatenation permits
the transport layer to group control (e.g., ACK) TPDUs with data TPDUs that
were derived from TSDUs. Piggybacking ACKs and data is an example of concate-
nation. Blocking only combines TSDUs (i.e., transport layer data). Segmentation
and concatenation may occur, but blocking, as defined within the ISO Reference
Model, in CL protocols is not permitted [ITU-T 1994b].

4.10 Segmentation/Reassembly

Often the network service imposes a maximum permitted NSDU size. In such cases,
a larger TSDU is segmented into smaller TPDUs by the transport sender as shown
in Figure 7b. The transport receiver reassembles the TSDU before delivering it to
the user receiver.

TCP segmentation is based on negotiating a maximum segment size during con-
nection establishment, or in more recent implementations, on a Path Maximum
Transmission Unit (MTU) discovery mechanism. To avoid the overhead associ-
ated with network layer fragmentation, many TCP implementations determine the
largest size [P datagram that can be transmitted end-to-end without IP fragmen-
tation [Kent and Mogul 1987]. These implementations then use transport layer
segmentation (and/or blocking) with this MTU in mind, thereby reducing!! the

"Duye to dynamic route changes, the MTU can change with TCP; thus IP fragmentation can be
avoided but not prevented.

30 . S. Iren, P. Amer, and P. Conrad
risk for network layer segmentation [Stevens 1994, p.340].

5. TRANSPORT PROTOCOL EXAMPLES

This section now summarizes eleven widely implemented or particularly influential
transport protocols other than TCP. Each one’s features are described in terms of
the service and protocol features discussed in general in Sections 3 and 4, respec-
tively. The protocol descriptions are summarized from the indicated references and
from direct correspondence with those people most responsible for each protocol’s
design and development. Together these protocols are summarized in Tables 2—4.

The last part of the section provides a brief statement about eight experimental
transport protocols that appear in the literature.

5.1 UDP

User Datagram Protocol (UDP) (see Table 2) provides CL, uncontrolled-loss, maybe-
duplicates, unordered service [Postel 1980]. UDP is basically an interface to IP,
adding little more than TSAP demultiplexing (port numbers) and optional data in-
tegrity service. By not providing reliability service, UDP’s overhead is significantly
less than that of TCP. Although UDP includes an optional checksum, there is no
provision for error reporting; incoming TPDUs with checksum errors are discarded,
valid ones are passed to the user receiver.

5.2 TP4

The ISO Transport Protocol Class 4 (or TP4) (see Table 2) was designed for the
same reasons as TCP. It provides a similar CO, reliable service over a CL unreliable
network. TP4 relies on the same mechanisms as TCP with the following differ-
ences. First, TP4 provides a CO-message service rather than CO-byte. Therefore,
sequence numbers enumerate TPDUs rather than bytes. Next, sequence numbers
are not initiated from a clock counter as in TCP [Stevens 1994], but rather start
from 0. A destination reference number is used to distinguish between connections.
This number is similar to the destination port number in TCP, but here the refer-
ence number maps onto the port number and can be chosen randomly or sequen-
tially [Bertsekas and Gallager 1992]. Another important difference is that (at least
in theory) a set of QoS parameters (see Section 3.8) can be negotiated for a TP4
connection. Other differences between TCP and TP4 are discussed in [Piscitello
and Chapin 1993].

5.3 TPO

The ISO Transport Protocol Class 0 (or TP0) (see Table 2) was designed as a
minimum transport protocol providing only those functions necessary to establish a
connection, transfer data, and report protocol errors. TP0 was designed to operate
on top of a CO reliable network service that also provides end-to-end flow control.
TPO does not even provide its own disconnection procedures; when the underlying
network connection closes, TPO closes with it. One interesting use of TPO is that it
can be employed to create an OSI transport service on TCP’s reliable byte-stream

service, enabling OSI applications to run over TCP/IP networks [Rose and Cass
1987].

The Transport Layer: Tutorial and Survey . 31

5.4 NETBLT

Network Block Transfer (NETBLT) (see Table 3) was developed at MIT for high
throughput bulk data transfer [Clark et al. 1987]. It is optimized to operate effi-
ciently over long-delay links. NETBLT was designed originally to operate on top
of IP, but can operate on top of any network protocol that provides a similar CL
unreliable network service. Data exchange is realized via unidirectional connec-
tions. The unit of transmission is a buffer, several of which can be concurrently
active to keep data flowing at a constant rate. Connection is established via a
2-way-handshake during which buffer, TPDU and burst sizes are negotiated. Flow
control is accomplished using buffers (transport-user-level control) and rate control
(transport-protocol-level control). Either transport user of a connection can limit
the flow of data by not providing a buffer. Additionally, NETBLT uses burst size
and burst rate parameters to accomplish rate control. NETBLT uses selective re-
transmission for error recovery. After a transport sender has transmitted a whole
buffer, it waits for a control TPDU from the transport receiver. This TPDU can be
a RESEND, indicating lost TPDUs, or an OK, acknowledging the whole buffer. A
GO allows the transmission of another buffer. Instead of waiting after each buffer,
a multiple buffering mechanism can be used [Dupuy et al. 1992].

5.5 VMTP

The Versatile Message Transaction Protocol (VMTP) (see Table 3) was designed
at Stanford University to provide high performance communication service for dis-
tributed operating systems, including file access, remote procedure calls (RPC),
real-time datagrams and multicast [Cheriton and Williamson 1989]. VMTP is a
request-response protocol that uses timer-based connection management to provide
communication between network-visible entities. Each entity has a 64-bit identi-
fier that is unique, stable, and independent of host-address. The latter property
allows entities to be migrated and handled independent of network layer address-
ing, facilitating process migration and mobile and multi-homed hosts [Cheriton and
Williamson 1989]. Each request (and response) is identified by a transaction iden-
tifier. In the common case, a client increments its transaction identifier and sends
a request to a single server; the server sends back a response with the same (Client,
Transaction) identifier. A response implicitly acknowledges the request and each
new request implicitly acknowledges the last response sent to this client by the
server. Multicast is realized by sending to a group of servers. Datagram support
is provided by indicating in the request that no response is expected. Addition-
ally, VMTP provides a streaming mode in which an entity can issue a stream of
requests, receiving the responses back asynchronously [Williamson and Cheriton
1989]. Flow control is achieved by a rate control scheme borrowed from NETBLT
with negotiated interpacket delay time.

56 T/TCP

Transaction TCP (T/TCP) (see Table 3) is a backwards-compatible extension of
TCP that provides efficient transaction-oriented service in addition to CO ser-
vice [Braden 1992a; Braden 1994]. The goal of T/TCP is to allow each transaction
to be efficiently performed as a single incarnation of a TCP connection. It in-
troduces two major improvements over TCP. First, after an initial transaction is

32 . S. Iren, P. Amer, and P. Conrad

handled using a 3-way-handshake connection, subsequent transactions streamline
connection establishment through the use of a 32-bit incarnation number, called a
“connection count” (CC) carried in each TPDU. T/TCP uses the monotonically
increasing CC values in initial CR-TPDUs to bypass the 3-way-handshake, using a
mechanism called TCP Accelerated Open. With this mechanism, a transport entity
needs to cache a small amount of state for each remote peer entity. The second im-
provement is that T/TCP shortens the delay in the TIME-WAIT!? state. T/TCP
defines three new TCP options, each of which carries one 32-bit CC value. These
options accelerate connection setup for transactions. T/TCP includes all normal
TCP semantics, and operates exactly as TCP for all features other than connection
establishment and termination.

5.7 RTP

Real-time Transport Protocol (RTP) (see Table 3) was designed for real-time multi-
participant multimedia applications [Schulzrinne 1996; Schulzrinne et al. 1996].
Even though RTP is called a transport protocol by its designers, this sometimes
creates confusion, because RTP by itself does not provide a complete transport
service. RTP TPDUs must be encapsulated within the TPDUs of another trans-
port protocol that provides framing, checksums, and end-to-end delivery, such as
UDP. The main transport layer functions performed by RTP are to provide times-
tamps and sequence numbers for TSDUs. These timestamps and sequence numbers
may be used by an application written on top of RTP to provide error detection,
resequencing of out-of-order data, and/or error recovery. However it should be
emphasized that RTP itself does not provide any form of error detection or error
control. Furthermore, in addition to transport layer functions, RTP also incorpo-
rates presentation layer functions; through the use of so-called RTP profiles, RTP
provides a means for the application to identify the format of data (i.e., whether
the data is audio or video, what compression method is used, etc.).

RTP has no notion of a connection; it may operate over either CO or CL service.
Framing and segmentation must be done by the underlying transport layer. RTP
is typically implemented as part of the application and not in the operating system
kernel; it is a good example of Application Level Framing and Integrated Layer Pro-
cessing [Clark and Tennenhouse 1990]. It consists of two parts: data and control.
Continuous media data such as audio and video is carried in RTP data TPDUs.
Control information is carried in RTCP (RTP Control Protocol) TPDUs. Control
TPDUs are multicast periodically to the same multicast group as data TPDUs.
The functions of RTCP can be summarized as QoS monitoring, inter-media syn-
chronization, identification, and session size estimation/scaling. The control traffic
load is scaled with the data traffic load so that it makes up a certain percentage of
the data rate (5%).

RTP and RTCP were designed under the auspices of the Internet Engineering

12When a TCP entity performs an active close and sends the final ACK, that entity must remain
in the TIME-WAIT state for twice the Mazimum Segment Lifetime (MSL), the maximum time
any TPDU can exist in the network before being discarded. This allows time for the other TCP
entity to send and resend its final ACK in case the first copy is lost. This closing scheme prevents
TPDUs of a closed connection from appearing in a subsequent connection between the same pair
of TCP entities [Braden 1992b].

The Transport Layer: Tutorial and Survey . 33

Task Force (IETF).

5.8 APPN (SNA)

The first version of IBM’s proprietary Systems Network Architecture (SNA) was
implemented in 1974 in a hierarchical, host-centric manner: the intelligence and
control resided at the host, which was connected to dumb terminals. The growing
popularity of LAN-based systems led to SNA version 2, a dynamic peer-to-peer
architecture called Advanced Peer-to-Peer Networking (APPN) [Chiong 1996; Dor-
ling et al. 1997]. Version 3, called High Performance Routing (HPR), is a small but
powerful extension to APPN [Dorling et al. 1997; Freeman 1995]. HPR includes
APPN-based high-performance routing, which addresses emerging high-speed dig-
ital transmissions. Although SNA is a proprietary architecture, its structure has
moved closer to TCP/IP with each revision. Today, SNA exists mostly for legacy
reasons. SNA and TCP/IP are the most widely used protocols in the enterprise
networking arena [Chiong 1996, p.31].

APPN does not map nicely onto ISO’s modular layering since it does not define
an explicit transport protocol per se. However, end-to-end transport layer func-
tions such as end-to-end connection management are performed as part of APPN.
Its CO service is built on top of a reliable network service. Therefore, many func-
tions related to error control that are commonly handled at the transport layer
are not required in APPN’s transport layer. Unlike applications using TCP, SNA
applications do not directly interface to the transport layer. Instead applications
are based on a “Logical Unit” concept which contains the services of all three layers
above network layer. An interesting feature of APPN is its Class of Service(COS)-
based route selection where the route can be chosen based on the associated cost
factor. The overall cost for each route depends on various factors such as the speed
of the link, cost per connection, cost per transaction, propagation delay, and other
user-configurable items such as security. For service and protocol details of APPN,
see Table 4.

HPR, an extension to APPN, enhances data routing performance by decreasing
intermediate router processing. The main components of HPR, are Automatic Net-
work Routing (ANR) and Rapid Transport Protocol (RTP) [Chiong 1996; Dorling
et al. 1997]. Unlike APPN, RTP is an explicit transport protocol which provides a
CO-message, reliable service. Some of the key features of RTP include bidirectional
data transfer, end-to-end connections without intermediate session switching, end-
to-end flow and congestion control based on adaptive rate-based (ARB) control,
and automatic switching of sessions without service disruption.

5.9 NSP (DECnet)

DEChnet is a proprietary protocol suite from Digital Equipment Corporation. Early
versions (1974-1982) were limited in functions, providing only point-to-point links,
or networks of < 255 processors. The first version capable of building networks of
thousands of nodes was DECnet Phase IV in 1982 (two years earlier than the OSI
Reference Model was standardized). Its layer corresponding most closely to the
OSI Transport layer was called the “End Communication Layer”; it consisted of a
proprietary protocol called the Network Services Protocol (NSP).

NSP provides CO-message and reliable service. It supports segmentation and

34 . S. Iren, P. Amer, and P. Conrad

reassembly, and has provisions for flow control and congestion control [Robertson
1996, p.50ff]. Two data channels are provided: a “Normal-Data” channel and an
“Other-Data” channel which carries expedited data and messages related to flow
control. DEC engineers claim that OSI’s TP4 “is essentially an enhancement and
refinement of Digital’s proprietary NSP protocol” [Martin and Leben 1992]. Indeed,
there are many similarities between TP4 and NSP, such as their mechanisms for
handling expedited data.

In the early 1990s, DECnet Phase V was introduced to integrate OSI proto-
cols with the earlier proprietary protocols. Phase V supports a variant of TP4,
plus TPO and TP2 and NSP for backwards compatibility. A session level service
known as “tower matching” resolves which protocol(s) are available for a particular
connection, and selects a specific protocol at connection establishment.

DECnet was widely used throughout the 1980’s, and remains an important legacy
protocol for many organizations. DECnet was one of the two target protocol suites
for the original implementation of the popular X11 windowing system (the other
being TCP/IP).

5.10 XTP

The Xpress Transport Protocol’s design (XTP Version 4.0'%) (see Table 4) was co-
ordinated within the XTP Forum to support a variety of applications such as multi-
media distribution and distributed applications over WANs as well as LANs [Strayer
et al. 1992]. Originally XTP was designed to be implemented in VLSI; hence it has
a 64-bit alignment, a fixed-size header, and fields likely to control a TPDU’s ini-
tial processing located early in the header. However, no hardware implementations
were ever built. XTP combines classic functions of TCP, UDP, and TP4, and adds
new services such as transport multicast, multicast group management, priorities,
rate and burst control, and selectable error and flow control mechanisms. XTP can
operate on top of network protocols such as IP or ISO CLNP, data link protocols
such as 802.2, or directly on top of the AAL of ATM. XTP simply requires framing
and end-to-end delivery from the underlying service. One of XTP’s most important
features is the orthogonality it provides between communication paradigm, error
control and flow control. An XTP user can choose any communication paradigm
(CO, CL, or transaction-oriented) and whether or not to enable error control and/or
flow control. XTP uses both window-based and rate-based flow control.

5.11 SSCOP/AAL5 (ATM)

In the ATM environment, several transport protocols have been and are being
developed; they are referred to as ATM Adaptation Layers (AALs).'* These AALs
have been specified over time to handle different traffic classes [Stallings 1998,
Section 4.4] - CO constant bit rate (CBR) requiring synchronization, CO variable

I3XTP version 3.6 (the Xpress Transfer Protocol) was a transport and network layer protocol
combined. XTP 4.0 performs only transport layer functions.

143ome authors note that since none of the AALSs provide reliable service, then “It is not really clear
whether or not ATM has a transport layer.” [Tanenbaum 1996, p.545]. We argue that reliability
or the lack thereof is not the issue; since ATM virtual circuits/paths are a concatenation of links
between store-and-forward NPDU (cell) switches, then by definition, the AAL protocols above
ATM provide end-to-end transport service.

The Transport Layer: Tutorial and Survey . 35

bit rate (VBR) requiring synchronization, CO-VBR not needing synchronization,
CL-VBR not requiring synchronization, and most recently available bit rate (ABR)
where bandwidth and timing requirements are defined by the user in an environment
where an ATM backbone provides the same quality of service as found in a LAN
[Black 1995].

Although 5 transport protocols (AAL1-5) have been proposed for these traffic
classes, AALS5 which supports virtually all data applications has greatest potential
for marketplace success. None of the AALs including AALS5 provide reliable service
(although with minor changes AAL5 could).!® Another protocol that does provide
end-to-end reliability is the Service Specific Connection-Oriented Protocol (SSCOP)
[ITU-T 1994a] which can run on top of AAL5.

SSCOP was initially standardized to provide for reliable communication of con-
trol signals [ITU-T 1995b], not data transfer. It has since been approved for reli-
able data transfer with 1.365.3 [ITU-T 1995a] specifying it as the basis for provid-
ing ISO’s connection-oriented transport service [ITU-T 1995c]. Some authors cite
SSCOP as potentially applicable as a general purpose end-to-end reliable transport
protocol in the ATM environment [Henderson 1995]. For these reasons, we select
SSCOP/AALS as the ATM transport protocol to survey in Table 4.

SSCOP incorporates a number of important design principles of other high-speed
transport protocols (e.g., SNR [Lundy and Tipici 1994]) including the use of com-
plete state exchange between transport sender and receiver to reduce reliance on
timers. SSCOP’s main drawback for general usage is that it is designed to run
over an underlying ATM service that provides in-order PDU delivery. The SSCOP
receiver assumes that every out-of-order PDU indicates a loss (as opposed to pos-
sible misordering) and immediately returns a NACK (called a USTAT) which acts
as a selective reject (see Section 4.4.2). Over an unordered service, SSCOP would
still correctly provide its advertised reliable service; it is simply unclear whether
SSCOP would be efficient in an environment where the underlying service misorders
PDUs. One author indicates that SSCOP could be modified to be a more general
robust transport protocol capable of running above an unreliable, connectionless
service [Henderson 1995].

5.12 Miscellaneous Transport Protocols

The following are brief descriptions of eight experimental transport protocols that
influenced transport protocol development. While many of the ideas contained in
these protocols are innovative and useful, for one reason or another, they have
not themselves been successful in the marketplace. This may be the result of:
(1) the marketing problem of introducing new transport protocols into an existing
infrastructure, (2) the primarily university nature of the protocol without added
industrial support, or (3) the failure of an infrastructure for which the protocol has
been specifically designed.

Although these protocols were surveyed as were TCP and the previous eleven,

15Because of AAL’s lack of reliable service and the popularity of TCP/IP, there exists a protocol
stack with TCP over IP over AAL over ATM. This stack essentially puts a transport layer over
a network layer over a transport layer over a network layer to provide reliable data transfer in a
mixed TCP/IP - ATM environment [Cole et al. 1996].

36 . S. Iren, P. Amer, and P. Conrad

space limitations prevent presenting them in detail. The tables that summarize
these protocols are available at: www.cis.udel.edu/~amer/PEL/survey/.

Delta-t was designed in the late 1970s for reliable stream and transaction-oriented
communications on top of a best effort network such as IP or ISO CLNP [Watson
1989]. Its main contribution is in connection management: it achieves hazard-free
connection management without exchanging explicit control TPDUs.

SNR was designed in the late 1980s for a high speed data communications net-
work [Doshi et al. 1993; Lundy and Tipici 1994]. Its key ideas are periodic exchange
of state information between the transport sender and the transport receiver, re-
duction of protocol overhead by making decisions about blocks of TPDUs instead
of individual ones (packet blocking), and parallel implementation of the protocol on
a dedicated front-end communications processor. SNR uses three modes of opera-
tion: one for virtual networks, one for real-time applications over reliable networks,
and one for large file transfers.

The MultiStream Protocol (MSP), a feature-rich, highly flexible CO transport
protocol designed in the early 1990s, supports applications that require different
types of service for different portions of their traffic (e.g., multimedia). Transport
users can dynamically change modes of operation during the life of a connection
without loss of data [Porta and Schwartz 1993a; Porta and Schwartz 1993b]. MSP
defines seven traffic streams, each of which is defined by a set of common protocol
functions. These functions specify the order in which TPDUs will be accepted and
passed to the user receiver.

TP++ was developed in the early 1990s. It is intended for a heterogeneous
internetwork with a large bandwidth-delay product [Biersack et al. 1992; Feldmeier
1993b]. It uses backpressure for flow and congestion control, and is designed to
carry three major application classes: constrained latency service, transactions,
and bulk data transfer.

DTP, aslightly modified version of TCP, was developed in the early 1990s [Sanghi
and Agrawala 1993]. Some key features that distinguish DTP from TCP are its
use of a send-time control scheme for flow control, selective as well as cumulative
PACKs, and TPDU-based sequence numbers.

Partial Order Connection (POC) was recently designed to offer a middle ground
between the ordered/no-loss service provided by TCP, and the unordered/uncon-
trolled-loss service provided by UDP [Amer et al. 1994]. The main innovation
of POC is the introduction of partially-ordered/controlled-loss service [Conrad ;
Conrad et al. 1996; Marasli 1997; Marasli et al. 1997].

Two recent transport protocols, the k- Transmit Protocol (k-XP) and the Timed-
Reliable Unordered Message Protocol (TRUMP), provide CO-message, unordered,
controlled-loss service. k-XP was implemented as an application software library
that provides several major enhancements to the basic service provided by UDP,
such as connection management and controlled-loss delivery [Amer et al. 1997].
TRUMP is a variation of k-XP that allows applications to specify an expiration
time for each TSDU [Golden 1997].

6. FUTURE DIRECTIONS AND CONCLUSION

In this section, we first summarize how several recent trends and technological
developments have impacted transport layer design. We then cover a particular

The Transport Layer: Tutorial and Survey . 37

trend in more detail; namely, the impact of wireless networking on the transport
layer. Next, we enumerate some of the debates concerning transport layer design.
We conclude with a few final observations.

6.1 Impacts of Trends and New Technologies

Several trends have influenced the design of transport protocols over the last two
decades.

Faster satellite links and gigabit networks have resulted in networks with larger
end-to-end bandwidth-delay products. These so-called “Long Fat Networks” allow
increased amounts of data in transit at any given moment. This required extensions
to TCP, for example, to prevent wrapping of sequence numbers [Borman et al. 1992].

Fiber optics has improved the quality of communication links, thus shifting the
major source of network errors—at least for wired networks—from line bit errors
to NPDU losses due to congestion. This fact is exploited by TCP’s Congestion
Avoidance and Fast Retransmit and Recovery algorithms which were made neces-
sary because of the exponential growth in the use of the Internet—even before the
Web made the Internet a household word. Congestion avoidance continues to be an
active research area for the TCP community [Brakmo et al. 1994; Jacobson 1988;
Stevens 1997].

Higher speed links and fiber optics have caused some designers of so-called light-
weight transport protocols to shift their design goals from minimizing transmission
costs (at the expense of processing power) to minimizing processing requirements
(at the expense of transmission bandwidth) [Doeringer et al. 1990]. On the other
hand, the proliferation of relatively low speed point-to-point (PPP) and wireless
links has resulted in a varying and complex interconnection of low, medium, and
high speed links with varying degrees of loss. This has introduced a new complica-
tion into the design of flow control and error control algorithms.

New applications such as transaction processing, audio/video transmission, and
the Web have resulted in new and widely varying network service demands.

Over the years, TCP has been optimized for a particular mix of applications: that
is, bulk transfer (e.g., File Transfer Protocol (FTP) and Simple Mail Transfer Proto-
col (SMTP)) and remote terminal traffic (e.g., telnet and rlogin). The introduction
of the Web has created new performance challenges, as the request/response na-
ture of Web interactions is a poor match for TCP’s byte-stream [Heidemann 1997].
Even before the introduction of the Web, interest in request/response (transaction)
protocols was reflected in the development of VMTP and T/TCP.

The delay and jitter sensitivity of audio and video based applications required
transport protocols providing something other than reliable service. This has led
to increased usage of UDP, which lacks congestion control features, resulting in
increased Internet congestion. This has created a need for protocols that incor-
porate TCP-compatible congestion control, yet provide services appropriate for
audio/video transmission (e.g., maybe-loss or controlled-loss). Audio/video trans-
mission also required synchronization as enabled by RTP timestamps.

Finally, distributed applications involving one-to-many, many-to-one, and many-
to-many communication have required a new multicast paradigm of communication.
Unicast protocols such as XTP, VMTP, TP++, and UDP have been extended to
support multicast.

38 . S. Iren, P. Amer, and P. Conrad

6.2 Wireless Networks

Regarding the future of the transport layer, we note the influence of the rapid
growth of wireless networks. Although transport protocols are supposed to be
independent of the underlying networking technology, in practice, TCP is tailored to
perform in networks where links are tethered. As more wireless links are deployed, it
becomes more likely that the path between transport sender and transport receiver
will not be fully wired. Designing a transport protocol that performs well over
a heterogeneous network is difficult because wireless networks have two inherent
differences that require, if not their own specific transport protocols, at least specific
variations of existing ones.

The first difference is the major cause for TPDU gaps at the transport receiver. In
wired networks missing TPDUs are primarily due to network congestion as routers
discard NPDUs. In wireless networks, gaps are most likely due to bit errors and
hand-off problems. On detecting a gap, TCP’s transport receiver responds by
invoking congestion control and avoidance algorithms to slow the transport sender
and thereby reduce the network load. For wireless networks, a better response is
to retransmit lost TPDUs as soon as possible [Balakrishnan et al. 1996].

Recent studies have concentrated on alleviating the effects of non-congestion-
related losses on TCP performance over wireless and other high-loss networks [Bakre
and Badrinath 1997; Balakrishnan et al. 1995; Yavatkar and Bhagwat 1994]. These
studies follow two fundamentally different approaches. One approach hides any
non-congestion-related loss from the transport sender by making the lossy link ap-
pear as a higher quality link with reduced effective bandwidth. As a result, the
losses that are seen by the transport sender are mostly due to congestion. Some ex-
amples include: (1) reliable link layer protocols (AIRMAIL [Ayanoglu et al. 1995]),
(2) splitting a transport connection into two connections (I-TCP [Bakre and Badri-
nath 1997]), and (3) TCP-aware link layer schemes (snoop [Balakrishnan et al.
1995]). The second approach makes the transport sender aware that wireless hops
exist and does not invoke congestion control for TPDU losses. Selective ACK pro-
posals such as TCP SACK [Mathis et al. 1996] and SMART [Keshav and Morgan
1997] can be considered examples of this approach. One study shows that a reliable
link layer protocol with some knowledge of TCP provides 10-30% higher through-
put than a link layer protocol without that knowledge [Balakrishnan et al. 1996].
Furthermore, selective ACKs and explicit loss notifications result in significant per-
formance improvements.

The second inherent difference is that wireless devices are constrained in both
their computing and communication power due to limited power supply. There-
fore, the transport protocols used on these devices should be less complex to allow
efficient battery usage. This approach is taken in Mobile-TCP [Haas and Agrawal
1997]. It uses the same splitting approach used in I-TCP, however, instead of
identical transport entities on both ends of the wireless link, Mobile-TCP employs
an asymmetrically-based protocol design which reduces the computation and com-
munication overhead on the mobile host’s transport entity. Because the wireless
segment is known to be a single-hop connection, several transport functions can be
either simplified or eliminated.

The Transport Layer: Tutorial and Survey . 39

6.3 Debates

In reviewing the last two decades of transport protocol research, several things can
be noted. We first note there seem to have been two schools of thought on the
direction of transport protocol design: (1) the “hardware-oriented” school, and (2)
the “application-oriented” school.

The hardware-oriented school feels that transport protocols should be separated
from the operating system as much as possible, and implementations should be
moved into VLSI, parallel, or special purpose processors [Feldmeier 1993c; Haas
1990; La Porta and Schwartz 1991; Strayer and Weaver 1988]. This school claims
that the heavy usage of timers, interrupts, and memory read/writes degrades the
performance of a transport protocol, and thus special purpose architectures are
necessary. They would also point out that as network rates reach the Gigabit/sec
range, it will be more difficult to process TPDUs in real time. Therefore TPDU
formats should be carefully chosen to allow parallel processing and to avoid TPDU
field limitations for sequence numbering, window size, etc. This school of thought
is reflected in the design of protocols such as MSP and XTP.

By contrast, the application-oriented school prefers moving some transport layer
functions out of the operating system into the user application, thereby integrating
the upper layer end-to-end processing, and achieving a faster application processing
pipeline. This school would claim that the bottleneck is actually in operations such
as checksums and presentation layer conversion, all of which can be done more
efficiently if they are integrated with the copying of data into application user space.
This school of thought is reflected in the concepts of Application Level Framing
(ALF) and Integrated Layer Processing (ILP) [Clark and Tennenhouse 1990]. ALF
states that “the application should break the data into suitable aggregates, and
the lower layers should preserve these frame boundaries as they process the data”.
ILP is an implementation concept which “permits the implementor the option of
performing all (data) manipulation steps in one or two integrated processing loops”.
Ongoing research shows that performance gains can be obtained by using ALF and
ILP [Ahlgren et al. 1996; Braun 1995; Braun and Diot 1995; Braun and Diot 1996;
Diot and Gagnon ; Diot et al. 1995]. ALF concepts are reflected in the design of
protocols such as RTP, POC, and TRUMP.

A second debate, orthogonal to the debate about where transport services should
be implemented, is the debate about functionality. Older transport services tend to
focus on a single type of service. Some recent protocol designers advocate high de-
grees of flexibility, orthogonality, and user-configurability to meet the requirements
of various applications. These designers feel that: (1) a single transport protocol
offer different communication paradigms, and different levels of reliability and flow
control, and the transport user should be able to choose among them, and (2) pro-
tocol design should include multiple functions to support multicast, real-time data,
synchronization, security, user-defined QoS, etc., that will meet the requirements
of today’s more complex user applications. This is reflected in the designs of XTP,
MSP and POC, for example.

A third debate concerns protocol optimization. The light-weight protocol school
of thought argues that since high-speed networks offer extremely low error rates,
protocols should be “success-oriented” and optimized for maximum throughput [Do-

40 . S. Iren, P. Amer, and P. Conrad

eringer et al. 1990; Haas 1990; La Porta and Schwartz 1991]. Others emphasize the
increased deployment of wireless networks, which are more prone to bit errors; they
argue that protocols should be designed to operate in both environments efficiently.
The SMART retransmission strategy [Keshav and Morgan 1997] is a good example
of the latter approach.

6.4 Final Observations

Several of the experimental protocols surveyed in this paper present beneficial ideas
for the overall improvement of transport protocols. However, most of these schemes
are not widely used. This may have more to do with the difficulty of introducing
new transport protocols than with the merits of the ideas themselves.

In the 1980’s, the primary battle was between TCP and ISO TP0/4—or, more
broadly, between the Internet (TCP/IP) suite and OSI suite in general. Never-
ending hallway discussions debated which would win. Today the victor is TCP/IP,
due to, as Tanenbaum describes, a combination of “timing”, “technology”, “imple-
mentations,” and “politics” [Tanenbaum 1996]. Sometimes the usefulness of trans-
port protocol research is questioned—even research to improve TCP—because the
market base of the current TCP version is so large that inertia prevents new good
ideas from propagating into the user community. However, the successful incor-
poration of SACK [Mathis et al. 1996], TCP over high-speed networks [Borman
et al. 1992], and T/TCP [Braden 1994] into implementations clearly shows that
transport research is useful. What should be clear is that for any new idea to have
influence in practice in the short term, it must be interoperable with elements of
the existing TCP/IP protocol suite.

ACKNOWLEDGMENTS

The authors wish to thank several individuals: R. Marasli and E. Golden who
contributed to an early draft of this paper; a number of protocol experts who
reviewed individual service/protocol summaries and their respective table entries
including A. Agrawala, A. Bhargava, R. Case, L. Chapin, B. Dempsey, D. Feldmeier,
T. La Porta, D. Piscitello, K. Sabnani, H. Schulzrinne, D. Sanghi, T. Strayer,
E. Tremblay, R. Watson, A. Weaver, C. Williamson; M. Taube and the anonymous
reviewers who made valuable suggestions.

REFERENCES

AHLGREN, B., BJORKMAN, M., AND GUNNINGBERG, P. 1996. Integrated layer processing
can be hazardous to your performance. In W. DABBOUS AND C. DioT Eds., Protocols for
High-Speed Networks, V (France, Oct. 1996), pp. 167-181. IFIP: Chapman & Hall.

AnN, J., DaNzZIG, P., Liu, Z., AND YAN, L. 1995. Evaluation of TCP Vegas: Emulation
and experiment. In ACM SIGCOMM ’95 (Cambridge, MA, Aug. 1995).

AMER, P., CHassor, C., CoNNoLLY, T., Diaz, M., AND CONRAD, P. 1994. Partial order
transport service for multimedia and other applications. IEEE/ACM Trans on Network-
ing 2, 5 (Oct.), 440-456.

AMER, P., CoNrAD, P., GOLDEN, E., IREN, S., AND CARO, A. 1997. Partially ordered,
partially reliable transport service for multimedia applications. In Advanced Telecommu-
nications/Information Distribution Research Program (College Park, MD, Jan. 1997).
www.cis.udel.edu/"amer/PEL/poc/postscript/atirp97.ps.

ARMSTRONG, S., FREIER, A., AND MARZULLO, K. 1992. Multicast transport protocol. RFC
1301 (Feb.).

The Transport Layer: Tutorial and Survey . 41

AvaNoGLu, E., PAUL, S., LAPORTA, T., SABNANI, K., AND GITLIN, R. 1995. AIRMAIL: a
link-layer protocol for wireless networks. ACM Wireless Networks 1, 47-60.

BAE, J., SubpA, T., AND WATANABE, N. 1991. Evaluation of the effects of protocol processing
overhead in error recovery schemes for a high-speed packet switched network: link-by-link
versus edge-to-edge schemes. IEEE Journal of Selected Areas in Communications 9, 9
(Dec.), 1496-1509.

BAKRE, A. AND BADRINATH, B. 1997. Implementation and performance evaluation of Indi-
rect TCP. IEEE Trans. on Computers 46, 3 (March).

BALAKRISHNAN, H., PADMANABHAN, V., SESHAN, S., AND KATz, R. 1996. A comparison of
mechanisms for improving TCP performance over wireless links. In ACM SIGCOMM ’96
(Stanford, CA, Aug. 1996).

BALAKRISHNAN, H., SESHAN, S., AND KaTz, R. 1995. Improving reliable transport and
handoff performance in cellular wireless networks. ACM Wireless Networks 1, 4 (Dec.),
469-481.

BERNERS-LEE, T., FIELDING, R., AND FRrRYSTYK, H. 1996. Hypertext transfer protocol —
HTTP/1.0. RFC 1945 (May).

BERTSEKAS, D. AND GALLAGER, R. 1992. Data Networks (2nd ed.). Prentice-Hall, Upper
Saddle River, NJ.

BHARGAVA, A, KUROSE, J., TOWSLEY, D., AND VAN LAMPORT, G. 1988. Performance com-
parison of error control schemes in high speed computer communication networks. In IEEE
INFOCOM (New Orleans, April 1988).

BIERSACK, E., CoTTON, C., FELDMEIER, D., MCAULEY, A., AND SINCOSKIE, W. 1992. Gi-
gabit networking research at bellcore. IEEE Network 6, 2 (March), 42—48.

Brack, U. 1995. ATM: Foundation for Broadband Networks. Prentice-Hall, New Jersey.

BorMAN, D., BRADEN, B., AND JACOBSON, V. 1992. TCP extensions for high performance.
RFC 1323 (May).

BorMANN, C., OtrT, J., GEHRCKE, H., KERSCHAT, T., AND SEIFERT, N. 1994. MTP-2: to-
wards achieving the s.e.r.o. properties for multicast transport. In International Conference
on Computer Communications Networks (San Francisco, CA, Sept. 1994).

BRADEN, R. 1992a. Extending TCP for transactions — concepts. RFC 1379 (Nov.).

BRADEN, R. 1992b. TIME-WAIT assassination hazards in TCP. RFC 1337 (May).

BRrADEN, R. 1994. T/TCP - TCP extensions for transactions functional specification. RFC
1644 (July).

BRADEN, R. AND JACOBSON, V. 1988. TCP extensions for long-delay paths. RFC 1072
(Oct.).

BRADEN, R., ZHANG, L., BERSON, S., HERZOG, S., AND JAMIN, S. 1997. Resource reserva-
tion protocol (RSVP) — version 1 functional specification. RFC 2205 (Sept.).

BrakMO, L., O’MALLEY, S., AND PETERSON, L. 1994. TCP Vegas: New techniques for
congestion detection and avoidance. In ACM SIGCOMM 94 (May 1994), pp. 24-35.
ftp://ftp.cs.arizona.edu/xkernel/Papers/vegas.ps.

BRAUDES, R. AND ZABELE, S. 1993. Requirements for multicast protocols. RFC 1458 (May).

Braun, T. 1995. Limitations and implementation experiences of integrated layer processing.
In GISI 95 (Springer-Verlag, 1995), pp. 149-156.

BrAuN, T. AND DioT, C. 1995. Protocol implementation using integrated layer processing.
In SIGCOMM ’95 (Cambridge, MA, Sept. 1995). ACM.

BraUN, T. AND DioT, C. 1996. Automated code generation for integrated layer processing.
In W. DaBBous AND C. DioT Eds., Protocols for High-Speed Networks, V (France, Oct.
1996), pp. 182-197. IFIP: Chapman & Hall.

BrowN, G., GoubpA, M., AND MILLER, R. 1989. Block acknowledgement: redesigning the
window protocol. In ACM SIGCOMM ’89 (Austin, TX, Sept. 1989), pp. 128-135.

CHERITON, D. 1988. VMTP: versatile message transaction protocol: Protocol specification.
RFC 1045 (Feb.).

CHERITON, D. AND WILLIAMSON, C. 1989. VMTP as the transport layer for high perfor-
mance distributed systems. IEEE Communications Magazine 27, 6 (June), 37-44.

42

. S. Iren, P. Amer, and P. Conrad

CHIONG, J. 1996. SNA Interconnections. McGraw-Hill.

CLARK, D. 1982. Window and acknowlegement strategy in TCP. 813 (July).

CLARK, D., LAMBERT, M., AND ZHANG, L. 1987. NETBLT: a bulk data transfer protocol.
RFC 998 (March).

CLARK, D. AND TENNENHOUSE, D. 1990. Architectural considerations for a new generation
of protocols. In ACM SIGCOMM 90 (Philadelphia, PA, Sept. 1990), pp. 200-208.

CoLE, R., SHUR, D., AND VILLAMIZAR, C. 1996. IP over ATM: A framework document.
RFC 1932 (April).

ConnNoLLy, T., AMER, P., AND CONRAD, P. 1994. An extension to TCP: Partial order
service. RFC 1693 (Nov.).

CONRAD, P. Order, reliability, and synchronization in transport layer protocols for multimedia
document retrieval. PhD Dissertation, CIS Dept. University of Delaware, (in progress).
CONRAD, P., GOLDEN, E., AMER, P., AND MARAsSLI, R. 1996. A multimedia document
retrieval system using partially-ordered/partially-reliable transport service. In Multimedia

Computing and Networking 1996 (San Jose, CA, Jan. 1996).

DaBBous, W. AND DioT, C. 1995. High performance protocol architecture. In IFIP Per-
formance of Computer Networks Conference (PCN ’95) (Istanbul, Turkey, Oct. 1995).

DEERING, S. 1989. Host extensions for IP multicasting. RFC 1112 (Aug.).

Dior, C. AND GAGNON, F. Impact of out-of-sequence pro-
cessing on data transmission performance. Computer Networks and ISDN Systems. (To
appear) ftp://www.inria.fr/rodeo/diot/rr-oos.ps.gz.

Diot, C., HuiTEMA, C., AND TURLETTI, T. 1995. Multimedia applications should be adap-
tive. In HPCS Workshop (Mystic (CN), Aug. 1995). IFIP.

DOERINGER, W., DYKEMAN, D., KAISERWERTH, M., MEISTER, B., RUDIN, H., AND WILLIAMSON,
R. 1990. A survey of lightweight transport protocols for high speed networks. IEEE
Transactions on Communications 38, 11 (Nov.), 2025-2039.

DorLING, B., LENHARD, P., LENNON, P., AND Uskokovic, V. 1997. Inside APPN and
HPR: The Essential Guide to the New SNA. Prentice Hall.

DosHi, B., JoHRI, P., NETRAVALI, A., AND SABNANI, K. 1993. Error and flow control per-
formance of a high speed protocol. IEEE Transactions on Communications 41, 5 (May),
10 pages.

Dupuy, S., TawBi, W., AND HoOrrAIT, E. 1992. Protocols for high-speed multimedia com-
munications networks. Computer Communications 15, 6 (July/August), 349-358.

FaLL, K. AND FrLovD, S. 1996. Simulation-based comparisons of tahoe, reno, and SACK
TCP. Computer Communication Review 26, 3 (July), 5-21.

FELDMEIER, D. 1990. Multiplexing issues in communication system design. In ACM SIG-
COMM ’90 (Philadelphia, PA, September 1990), pp. 209-219.

FELDMEIER, D. 1993a. A framework of architectural concepts for high-speed communica-
tions systems. IEEE Journal of Selected Areas in Communications 11, 4 (May), 480-488.

FELDMEIER, D. 1993b. An overview of the TP++4 transport protocol project. In
A. TaNTAWY Ed., High Performance Networks—Frontiers and Ezperience, Chapter 8, pp.
157-176. Boston, MA: Kluwer Academic Publishers.

FELDMEIER, D. 1993c. A survey of high performance protocol implementation techniques.
In A. TaNnTAWY Ed., High Performance Networks— Technology and Protocols, Chapter 2,
pp- 29-50. Boston, MA: Kluwer Academic Publishers.

FELDMEIER, D. AND BIERSACK, E. 1990. Comparison of error control protocols for high
bandwidth-delay product networks. In M. JOHNSON Ed., Protocols for High-Speed Net-
works, I (Palo Alto, CA, Nov. 1990), pp. 271-295. North-Holland Publ., Amsterdam, The
Netherlands.

Froyp, S. 1996. Issues of TCP with SACK. Technical report (Jan.), Information
and Computing Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA.
ftp://ftp.ee.lbl.gov/papers/issues_sa.ps.Z.

FLovD, S. AND JACOBSON, V. 1993. Random early detection gateways for congestion avoid-
ance. IEEE/ACM Transactions on Networking 1, 4 (Aug.), 397-413.

The Transport Layer: Tutorial and Survey . 43

Frovp, S., JAcoBsoN, V., Liu, C., MCCANNE, S., AND ZHANG, L. 1995. Reliable multicast
framework for light-weight sessions and application level framing. In ACM SIGCOMM ’95
(Cambridge, MA, Sept. 1995). ftp://ftp.ee.1lbl.gov/papers/srm.sigcomm.ps.Z.

FREEMAN, R. 1995. Practical Data Communications. Wiley.

GOLDEN, E. 1997. TRUMP: Timed-reliability unordered message protocol. MS Thesis, CIS
Dept., University of Delaware.

HAAs, Z. 1990. A communication architecture for high-speed networking. In IEEE INFO-
COM (San Francisco, CA, June 1990), pp. 433—441.

HAAS, Z. AND AGRAWAL, P. 1997. Mobile-TCP: an asymmetric transport protocol design
for mobile systems. In International Conference on Communications (Montreal, Quebec,
Canada, June 1997). IEEE.

HAN, R. AND MESSERSCHMITT, D. 1996. Asymptotically reliable transport of multime-
dia/graphics over wireless channels. In Multimedia Computing and Networking 1996, Vol-
ume 2667 (San Jose, CA, Jan. 1996), pp. 99-110.

HEIDEMANN, J. 1997. Performance interactions between P-HTTP and TCP implementa-
tions. Computer Communication Review 27, 2 (April).

HENDERSON, T. 1995. Design principles and performance analysis of SSCOP: A new ATM
adaptation layer protocol. Computer Communication Review 25, 2 (April).

IREN, S. Network-conscious image compression. PhD Dissertation, CIS Dept., University of
Delaware, (in progress).

IREN, S., AMER, P., AND CoNRAD, P. 1998. Network-conscious compressed images over
wireless networks. In 5th International Workshop on Interactive Distributed Multimedia
Systems and Telecommunication Services (IDMS’98), Oslo, Norway, Volume 1483 of Lec-
ture Notes in Computer Science, pp. pp 149-158. Springer Verlag.

ISO. 1989. International standard 7498-2 — information processing systems, open systems
interconnection, basic reference model, part 2: Security architecture. .

ITU-T. 1994a. Recommendation Q.2110 — B-ISDN ATM adaptation layer - service specific
connection oriented protocol (SSCOP). (July).

ITU-T. 1994b. Recommendation X.200 — information technology, open systems intercon-
nection - basic reference model. (July).

ITU-T. 1995a. Recommendation 1.365.3 — B-ISDN ATM adaptation layer sublayers: service
specific coordination function to provide the connection-oriented transport service (SSCF-
COTS). (Nov.).

ITU-T. 1995b. Recommendation Q.2144 — B-ISDN signalling ATM adaptation layer
(SAAL) - layer management for the SAAL at the network node interface (NNT). (Oct.).

ITU-T. 1995c. Recommendation X.214 — information technology, open systems intercon-
nection, transport service definition. (Nov.).

JacoBsoN, V. 1988. Congestion avoidance and control. In ACM SIGCOMM ’88 (Stanford,
CA, Aug. 1988). ftp://ftp.ee.1lbl.gov/papers/congavoid.ps.Z.

JAIN, R. 1989. A delay-based approach for congestion avoidance in interconnected het-
erogeneous computer networks. Computer Communication Review 19, 5 (Oct.), 56-71.
www.cis.ohio-state.edu/"jain/papers/delay.ps.

KARN, P. AND PARTRIDGE, C. 1987. Improving round-trip time estimates in reliable trans-
port protocols. In ACM SIGCOMM 87 (Stowe, VT, Aug. 1987).

KENT, C. AND MoGUL, J. 1987. Fragmentation considered harmful. Computer Communi-
cation Review 17,5, 390-401.

KEsHAv, S. Packet-pair flow control. To appear in IEEE/ACM Trans. on Networking.

KEsHAV, S. 1991. A control-theoretic approach to flow control. In ACM SIGCOMM ’91
(Zurich, Switzerland, Sept. 1991), pp. 3-15.

KEsHAV, S. AND MORGAN, S. 1997. SMART retransmission: Performance with overload
and random losses. In IEEE INFOCOM (Kobe City, Japan, April 1997).

LA PoORTA, T. AND SCHWARTZ, M. 1991. Architectures, features, and implementation of
high-speed transport protocols. IEEE Network Magazine, 14-22.

LiN, S. AND CoOSTELLO, D. 1982. Error Control Coding. Prentice Hall.

44

. S. Iren, P. Amer, and P. Conrad

Liskov, B., SHRIRA, L., AND WROCLAWSKI, J. 1990. Efficient at-most-once messages based
on synchronized clocks. In ACM SIGCOMM 90 (Philadelphia, PA, Sept. 1990), pp. 41-49.

Lunpy, G. AND Tipict, H. 1994. Specification and analysis of the SNR high-speed transport
protocol. IEEE Trans. on Networking 2, 5 (October), 483-496.

MaRrasLI, R. 1997. Partially ordered and partially reliable transport protocols: Performance
analysis. PhD Dissertation, CIS Dept., University of Delaware.

MARAsLI, R., AMER, P., AND CONRAD, P. 1996. Retransmission-based partially reliable
services: An analytic model. In IEEE INFOCOM (San Fransisco, CA, March 1996).
www.cis.udel.edu/"amer/PEL/poc/postscript/infocom96.ps.

MARASLI, R., AMER, P., AND CONRAD, P. 1997. An analytic model of partially ordered
transport service. Computer Networks and ISDN Systems 29, 6 (May), 675-699.

MARTIN, J. AND LEBEN, J. 1992. DECnet Phase V: An OSI Implementation. Digital
Press.

MATHIS, M., MAHDAVI, J., FLOYD, S., AND RomMANOW, A. 1996. TCP selective
acknowledgment options. RFC 2018 (Oct.).

McAULEY, D. 1990. Protocol design for high speed networks. PhD Dissertation,
University of Cambridge, Tech. Report No. 186.

McCANNE, S., JACOBSON, V., AND VETTERLI, M. 1996. Receiver-driven layered multicast.
In ACM SIGCOMM ’96 (Palo Alto, CA, Aug. 1996).

MCONAMARA, J. 1998. Technical Aspects of Data Communication (3rd ed.). Digital Press.

NAGLE, J. 1984. Congestion control in IP/TCP internetworks. RFC 896 (Jan.).

NETRAVALI, A., ROOME, W., AND SABNANI, K. 1990. Design and implementation of a high
speed transport protocol. IEEE Transactions on Communications 38, 11, 2010-2024.

PARTRIDGE, C., HUGHES, J., AND STONE, J. 1995. Performance of checksums and crcs over
real data. In ACM SIGCOMM ’95 (Cambridge, MA, Sept. 1995).

PARULKAR, G. AND TURNER, J. 1989. Towards a framework for high speed communication
in a heterogeneous networking environment. In JEEE INFOCOM (Ottawa, Canada, April
1989), pp. 655-667.

PI1scITELLO, D. AND CHAPIN, A. 1993. Open Systems Networking, TCP/IP and OSI (1st
ed.). Addison-Wesley.

Porra, T. L. AND SCHWARTZ, M. 1993a. The multistream protocol: A highly flexible
high-speed transport protocol. IEEE Journal of Selected Areas in Communications 11, 4
(May), 519-530.

Porra, T. L. AND SCHWARTZ, M. 1993b. Performance analysis of MSP: A feature-rich
high-speed transport protocol. IEEE Trans. on Networking 1, 6 (Dec.), 483-496.

PosTEL, J. 1980. User datagram protocol. RFC 768 (Aug.).

PosTEL, J. 1981. Transmission control protocol. RFC 793 (Sept.).

PRUE, W. AND POSTEL, J. 1987. Something a host could do with source quench: The
source quench introduced delay (SQuID). RFC 1016 (July).

RAMAKRISHNAN, K. AND JAIN, R. 1988. A binary feedback scheme for congestion
avoidance in computer networks with a connectionless network layer. In ACM SIGCOMM
’88 (Stanford, CA, Aug. 1988), pp. 303-313.

ROBERTSON, D. 1996. Accessing Transport Networks: MPTN and AnyNet Solutions.
McGraw-Hill.

RoOSE, M. AND CAss, D. 1987. ISO transport service on top of the TCP, version:3. RFC
1006 (May).

SANDERS, R. AND WEAVER, A. 1990. The Xpress transfer protocol (XTP) — a tutorial.
Computer Communication Review 20, 5 (Oct.), 67-80.

SANGHI, D. AND AGRAWALA, A. 1993. DTP: An efficient transport protocol. In
S. RAGHAVAN, G. BOCHMANN, AND G. PUJOLLE Eds., Computer Networks, Architecture
and Applications, pp. 171-180. North Holland, Amsterdam.

SCHULZRINNE, H. 1996. RTP profile for audio and video conferences with minimal control.
RFC 1890 (Jan.).

The Transport Layer: Tutorial and Survey . 45

SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND JACOBSON, V. 1996. RTP: a
transport protocol for real-time applications. RFC 1889 (Jan.).

SHENKER, S., PARTRIDGE, C., AND GUERIN, R. 1997. Specification of guaranteed quality of
service. RFC 2212 (Sept.).

SHENKER, S. AND WROCLAWSKI, J. 1997. General characterization parameters for
integrated service network elements. RFC 2215 (Sept.).

SmiTH, W. AND KOIFMAN, A. 1996. A distributed interactive simulation intranet using
RAMP, a reliable adaptive multicast protocol. In Fourteenth Workshop on Standards for
the Interoperability of Distributed Simulations (Orlando, FL, March 1996).
www.tasc.com/simweb/papers/disramp/index.html.

STALLINGS, W. 1997. Data and Computer Communications (5th ed.). Prentice Hall.

STALLINGS, W. 1998. High-Speed Networks: TCP/IP and ATM Design Principles.
Prentice Hall.

STEVENS, W. 1994. TCP/IP Illustrated: The Protocols, Volume 1. Addison-Wesley,
Reading, MA.

STEVENS, W. 1996. TCP/IP Illustrated, Volume 3. Addison-Wesley, Reading, MA.

STEVENS, W. 1997. TCP slow start, congestion avoidance, fast retransmit, and fast
recovery algorithms. RFC 2001 (Jan.).

STEVENS, W. 1998. UNIX Network Programming: Networking APIs, Sockets, and XTI
(2nd ed.). Prentice-Hall.

STRAYER, T., DEMPSEY, B., AND WEAVER, A. 1992. XTP - The Xpress Transfer
Protocol. Addison-Wesley Publishing Company.

STRAYER, T. AND WEAVER, A. 1988. Evaluation of transport protocols for real-time
communications. Technical Report TR-88-18 (June), CS Depart. Univ. of Virginia,
Charlottesville, VA. ftp://uvacs.cs.virginia.edu/pub/techreports/CS-.ps.Z.

TANENBAUM, A. 1996. Computer Networks (3rd ed.). Prentice-Hall.

Tual K., CHASSOT, C., FDIDA, S., AND Di1az, M. 1994. Transport layer for cooperative
multimedia applications. Technical Report 94196 (May), Centre National de la Recherche
Scientifique (CNRS), France.

WALRAND, J. 1991. Communication Networks: A First Course. Aksen Associates.

WatsoN, R. 1989. The Delta-T transport protocol: Features and experience. In 1/th
Conference on Local Computer Networks (Minneapolis, Minnesota, Oct. 1989). IEEE.

WEAVER, A. 1994. The Xpress transfer protocol. Computer Communications 17, 1 (Jan.),
46-52.

WILLIAMSON, C. AND CHERITON, D. 1989. An overview of the VMTP transport protocol.
In 14th Conference on Local Computer Networks (Oct. 1989). IEEE.

WROCLAWSKI, J. 1997. Specification of the controlled-load network element service. RFC
2211 (Sept.).

YANG, C. AND REDDY, A. 1995. A taxonomy for congestion control algorithms in packet
switching networks. IEFE Network, 42—-48.

YAVATKAR, R. AND BHAGWAT, N. 1994. Improving end-to-end performance of TCP over
mobile internetworks. In Mobile’9} Workshop on Mobile Computing Systems and
Applications (Dec. 1994).

ZHANG, L. 1986. Why TCP timers don’t work well. In ACM SIGCOMM ’86 (Stowe,
Vermont, Aug. 1986), pp. 397-405.

