
SCTP Congestion Window Overgrowth During Changeover
�

Janardhan R. Iyengar, Armando L. Caro, Jr., Paul D. Amer, Gerard J. Heinz
Computer and Information Sciences

University of Delaware�
iyengar, acaro, amer, heinz � @cis.udel.edu

Randall R. Stewart
Cisco Systems Inc.

rrs@cisco.com

Abstract

Unlike TCP, the Stream Control Transmission Pro-
tocol (SCTP) supports IP multihoming at the trans-
port layer. SCTP allows an association to span multi-
ple local and peer IP addresses, and allows the ap-
plication to dynamically change the primary desti-
nation during an active association. We present a
problem in the current SCTP (RFC2960) specifica-
tion that results in unnecessary retransmissions and
”TCP-unfriendly” growth of the sender’s congestion
window during certain changeover conditions. The
problem is presented in a specific case, and an algo-
rithm we name the Rhein algorithm is proposed and
analyzed as a possible solution.

Keywords: SCTP, Changeover, Congestion Control

�
Prepared through collaborative participation in the Com-

munications and Networks Consortium sponsored by the U. S.
Army Research Laboratory under the Collaborative Technology
Alliance Program, Cooperative Agreement DAAD19-01-2-0011.
The U. S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation thereon.

1 Introduction

To provide for fault tolerance, the Stream Control
Transmission Protocol (SCTP) supports multihoming
at the transport layer. A host is multihomed if it can
be addressed by multiple IP addresses [1], as would
be the case when the host has multiple network inter-
faces. Network layer redundancy allows access to a
host at a time when its primary IP address becomes
unreachable; packets are rerouted dynamically to one
of the host’s alternate IP addresses. But since IP is
connectionless, end-to-end session persistence under
failure conditions becomes the responsibility of the
transport layer and above. SCTP sessions, or associ-
ations, can dynamically span over multiple local and
peer IP addresses so that an association remains alive
as long as one of each endpoint’s addresses remains
reachable.

In an SCTP association, the sender transmits data to
its peer’s primary destination address. SCTP pro-
vides for application-initiated changeovers so that the
sending application can move the outgoing traffic to
another path by changing the the sender’s primary
destination address. In this paper, we uncover a prob-
lem in the current SCTP (RFC2960) specification [3]
that results in unnecessary retransmissions and ”TCP-
unfriendly” growth of the sender’s congestion win-
dow under certain changeover conditions. We present
the problem here in a specific case. We isolate inad-
equacies of SCTP which cause the congestion win-
dow overgrowth problem. We then present a solu-
tion, which we name the Rhein algorithm, and ana-
lyze its advantages and disadvantages. In the future,
we plan to investigate other possible solutions, and

plan to make recommendations for modifications to
SCTP.

2 Congestion Window Overgrowth:
An Example

2.1 Preliminaries

NetworkHost A

Path1

Path2

A1

A2

Host B
B1

B2

Figure 1: Architecture used in example

We present a specific example which illustrates a
problem with SCTP’s currently specified handling of
changeover. The example uses the architecture shown
in figure 1. Endpoints

�
and � have an SCTP associ-

ation between them. Both endpoints are multihomed,�
with network interfaces

���
and

���
, and � with in-

terfaces � � and � � 1. All four addresses are bound to
the SCTP association.

For one of several possible reasons (e.g., path diver-
sity, policy based routing, load balancing), we assume
in this example that the data traffic from

�
to � �

is routed through
���

, and from
�

to � � is routed
through

���
. The bottleneck bandwidth of path 1 is

10Mbps, and that of path 2 is 100Mbps. The prop-
agation delay of both paths is 200ms, and the path
MTU for both paths is 1250 bytes.

Figure 2 shows a timeline of events for the described
example. The vertical lines represent interfaces � � ,���

,
���

and � � . The numbers along the lines rep-
resent times in milliseconds. Each arrow depicts the
departure of a packet from one interface and its ar-
rival at the destination. The labels on the arrows
are either SCTP Transmission Sequence Numbers
(TSN) or labels 	�

����
�������
������ . Assuming one
chunk per packet, every packet in the example cor-
responds to one TSN. A number represents the TSN

1More precisely, ��� , ��� , ��� and ��� are IP addresses associ-
ated with link layer interfaces. Here we assume exactly one ad-
dress per interface, so address and interface are used interchange-
ably.

of the chunk in the packet being transmitted. A la-
bel 	�
 ����
 ���!�"
������ represents a packet carrying a
SACK chunk with cumulative ack

� , and gap ack
for TSNs
 ��� through
 ��� . # � is the cwnd at

�
for

destination � � , and # � is the cwnd at
�

for destina-
tion � � . # � and # � are denoted in terms of MTUs,
not bytes.

2.2 Example Timeline Description

The sender (host
�

) initially sends to the receiver
(host �) using primary destination address � � . This
setting causes packets to leave through

���
. Assume

these packets leave the transport/network layers, and
get buffered at

�
’s link layer

���
, whereupon they

get transmitted according to the channel’s availabil-
ity. This initial condition is depicted in figure 2 at
time $&%(' , when in this example

�
has 50 packets

buffered on interface
� �

.

At $)% * , as TSNs 1 - 50 are being transmitted
through

���
, the sender’s application changes the pri-

mary destination to � � , that is, any new data from
the sender is sent to � � . In the example, we assume
� = 2 at the moment of changeover and TSN 51 is
transmitted to the new primary at $+%,* . We refer
to this event as the changeover time. This new pri-
mary destination causes new TSNs to leave the sender
through

���
. Concurrently, the packets buffered ear-

lier at
���

are still being transmitted. Previous packets
sent through

���
, and the packets sent through

�-�
, can

arrive at the receiver � in an interleaved fashion on
interfaces � � and � � respectively. In figure 2, TSNs
1, 51, 52 and 2 arrive at times 21, 21.1, 21.2, 22, re-
spectively. This reordering is introduced as a result of
changeover.

The receiver starts reporting gaps as soon as it no-
tices reordering. If the receiver communicates four
missing reports to the sender before all of the orig-
inal transmissions (TSNs 1 - 50) have been acked,
the sender will start retransmitting the unacked TSNs.
SCTP’s Fast Retransmit algorithm [3] is based on
TCP’s Fast Retransmit algorithm [2], with the ad-
ditional use of selective acks and a modification to
handle some cases of reordering2 . Accordingly, the

2 [4] is an Internet Draft which goes hand-in-hand with
RFC2960. The Implementor’s guide maintains all changes and
additions to be included in RFC2960’s next version. All imple-

55(C2=2) 81.3

S2(51-52)

21
1

S1
21.1
21.2

(C2=2) 41.2

51

S41(51-53)

S41(51-54)

S1(51-51)

S1(51-52)

61.2
61.3

S3(51-52)

3
2

22

23

43, 44 (rtx)

(C2=3) 82

(C2=4) 83
45, 46 (rtx)

81

61
S41(51-52)

62
63

64 82
83
84

S42(51-54)S43(51-54)S44(51-54)

41

42

43

44

69

89

S49 (51-54)

49

70

90
S54

50

52

53
54

47, 48 (rtx)

B1
A1 A2 B2Sender

A
Receiver

B
Receiver

B

(C2=2) 2

41

42 (rtx)

* TSNs 1-50 have been buffered at the sender’s link
layer corresponding to A1 and are being sent.

101.3
101.4

102.1

104.1
49, 50 (rtx)56, 57

65

85

S45(51-54)

45

66

86

S46(51-54)

46

62, 63

103.1

1-50*

105.1

106.1

42
43

(C2=2) 41.1

(C2=2) 81.2

(C2=2) 1

(C2=5) 84

(C2=6) 85

(C2=7) 86

(C2=10) 89

(C2=11) 90

0

64, 65

Figure 2: Timeline for the example

SACKs resulting from the receipt of TSNs 51-54 will
be the only ones generating missing reports. The
SACKs received by

�
on

� �
at $ % � *�� * and $ % � *����

will be considered as the first and second missing re-
ports for TSNs 2 - 50. Since these SACKs do not
carry new cumulative acks, they do not cause growth
of # � . Between $�% � � and $�%�� * , the cumulative
ack in the SACKs received by

�
on

� �
increases as

a consequence of the original transmissions to desti-
nation � � reaching � . In this period,

�
receives 40

SACKs which incrementally carry cumulative acks of
2 - 41.

The SACKs received by
�

on
���

at $ %�� *���� and
$ %�� *���	 carry a cumulative ack of 41, and are con-
sidered as the third and the fourth missing reports for
TSNs 42 - 50. On the fourth missing report,

�
re-

transmits only TSN 42, since # � permits only one
more packet to be outstanding. At $ %
��� , the SACK
for the original transmission of TSN 42 reaches

�
on

���
. Since the sender cannot distinguish between

SACKs generated by transmissions from SACKs gen-
erated by retransmissions, this SACK incorrectly acks

mentations are expected to carry the specifications and modifica-
tions in this guide.

the retransmission of TSN 42, thereby increasing # �
by one, reducing the amount of data outstanding on
destination � � , and triggering the retransmission of
TSNs 43 and 44. At $ %���	 , the SACK for the orig-
inal transmission of TSN 43 arrives at

�
on

���
. As

before, this SACK acks the retransmission (of TSN
43), further incorrectly increasing # � , and triggering
retransmission of TSNs 45 and 46. This behaviour
of SACKs for original transmissions incorrectly ack-
ing retransmissions continues until the SACKs of all
the original transmissions to � � (up to TSN 50) are
received by A. Thus, the SACKs from the original
transmissions cause # � to grow (possibly drastically)
from wrong interpretation of the feedback.

2.3 Discussion

The values chosen in our example illustrate but a sin-
gle case of the congestion window overgrowth prob-
lem. Our preliminary investigation shows that the
problem occurs for a range of
 propagation delay,
bandwidth, MTU � settings. For example, with both
paths having RTTs of 200ms (bandwidth = 100Kbps,
propagation delay = 40ms) and MTU = 1500 bytes,
the incorrect retransmission starts much earlier (at

TSN 3), and the cwnd overgrowth is even more dra-
matic.

The congestion window overgrowth problem exists
even if the buffering occurs not at the sender’s link
layer, but in a router along the path (in figure 1, path
1). In essence, the transport layers at the endpoints
can be thought of as the sending and receiving enti-
ties, and the buffering could potentially be distributed
anywhere along the end-to-end path.

3 Congestion Window Overgrowth:
A Proposed Solution

The TCP-unfriendly cwnd growth and unnecessary
retransmissions during changeover can be seen to oc-
cur due to inadequacies of SCTP - either (i) the sender
is unable to distinguish between SACKs for transmis-
sions and SACKs for retransmissions, or (ii) the con-
gestion control algorithm at the sender is unaware of
the occurrence of a changeover, and hence is unable
to identify reordering introduced due to changeover.
Addressing either of these inadequacies will solve
the more important problem of TCP-unfriendly cwnd
growth. We propose the Rhein algorithm that will
prevent the incorrect cwnd growth by enabling the
sender to distinguish between SACKs for transmis-
sions and SACKs for retransmissions.

3.1 The Rhein Algorithm

The Eifel algorithm [5] uses meta information in the
TCP header to disambiguate acks for transmissions
from acks for retransmissions, thereby improving the
throughput of a TCP connection. Based on the extra
header information, in [5], the TCP sender can make
a more accurate RTT estimate and curb unnecessary
cwnd reduction due to spurious retransmits. We pro-
pose the Rhein algorithm which, like the Eifel algo-
rithm, adds meta information to the SCTP packet to
disambiguate the acks. The Rhein algorithm uses the
meta information in the SCTP packet to curb unnec-
essary cwnd growth due to spurious retransmits.

As in the Eifel algorithm, we initially considered
adding one bit per SCTP packet to distinguish be-
tween an original transmission and later retransmis-

sions. This bit would be echoed by the receiver in the
corresponding SACK, allowing the sender to distin-
guish between a SACK for an original transmission
vs. a SACK for a retransmission. But since SCTP
concatenates TSNs in packets, and rebundling on re-
transmissions may result in a different combination of
TSNs in packets, a single bit per packet is insufficient.

Therefore we propose the addition of two new chunks
called the Retransmission Identifier (RTID) Chunk
and the Retransmission Identifier (RTID) Echo. The
RTID chunk is added to every outgoing data packet at
the sender, and carries one bit per TSN in the packet.
The bit is 0 if its respective TSN is a first transmis-
sion, and is 1 if the TSN is a retransmission. The re-
ceiver echoes back these bits in the RTID echo chunk
in the SACK. In the case of delayed SACKs, the re-
ceiver stores this chunk from the packet for which the
SACK is delayed. When the delayed SACK is sent,
the RTID chunks from the packets being SACKed are
merged and echoed as one RTID echo.

When sending a packet, the sender (i) locally main-
tains the latest RTID information for each TSN in the
packet, and (ii) maintains the number of retransmis-
sions of each TSN. On the receipt of a SACK, the
sender compares the corresponding bit for each TSN
in the RTID echo with the corresponding local RTID
bit. If the bits match, the corresponding destination’s
cwnd is increased accordingly. Otherwise, none of
the cwnds are increased.

With one bit per TSN, the protocol can distinguish
between the transmission and the first retransmission
of a TSN. If the retransmission count increases be-
yond one, to avoid TCP-unfriendly cwnd growth due
to ambiguity in the SACKs again, we apply Karn’s
algorithm to cwnd growth. In other words, a TSN
which has be retransmitted more than once will not
cause any cwnd growth.

3.2 Discussion

Though it does not solve the problem of unneces-
sary retransmissions, the Rhein algorithm solves the
problem of TCP-unfriendly cwnd growth. The RTID
chunk and the RTID echo can also be used to im-
plement the Eifel algorithm to improve SCTP perfor-
mance in the face of spurious retransmits. Using the

Eifel algorithm would help SCTP improve throughput
in situations where timeouts are likely to occur.

The Rhein algorithm is backwards compatible in that
a receiver not recognizing the RTID chunk will not
hinder RFC2960 behaviour. If the receiver does
not recognize the RTID chunk, it will respond with
an OPERATIONAL ERROR chunk (Unrecognized
Chunk Type error) [3]. The sender can attempt to in-
fer information about the SACK when such an OP-
ERATIONAL ERROR is received. If the receiver
responds with the OPERATIONAL ERROR chunk
when it receives an RTID chunk, the sender can con-
servatively fall back on applying Karn’s algorithm to
cwnd growth from the first retransmission itself.

There are disadvantages to using the Rhein algorithm.
Every packet has to carry an additional RTID chunk,
and every SACK has to carry an RTID echo. Addi-
tional complexity is also introduced at the sender and
receiver for processing these new chunks.

4 Discussion and Conclusion

The general consensus at the IETF has been to dis-
suade the usage of SCTP’s multihoming feature for
simultaneous data transfer to the multiple destination
addresses, largely due to insufficient research in the
area. Though there is some amount of simultane-
ous data transfer in the described scenarios, this phe-
nomenon is an effect of changing the primary destina-
tion. Among other reasons, this changeover could be
initiated by an application searching for a better path
to the peer host for a long session, or attempting to
perform a more efficient failover.

We have proposed a solution to curb the TCP un-
friendly cwnd growth observed during changeover.
The Rhein algorithm recognizes that this growth oc-
curs due to the sender’s inadequacy in distinguishing
between the SACKs for original transmissions and the
SACKs for retransmissions. This algorithm has the
drawbacks though, that it does not solve the problem
of unnecessary fast retransmissions on a changeover,
and adds the overhead of an extra chunk for every
SCTP packet.

We are currently investigating the possibility of in-

troducing changeover awareness at the SCTP sender,
to prevent the unnecessary fast retransmissions. Af-
ter exhaustively analyzing the possible solutions, we
plan to make recommendations for modifications to
SCTP. We also plan to investigate the performance of
the solutions through simulations using the SCTP ns-
2 module developed at the University of Delaware [6].

5 Disclaimer

The views and conclusions contained in this docu-
ment are those of the authors and should not be in-
terpreted as representing the official policies, either
expressed or implied, of the Army Research Labora-
tory or the U. S. Government.

6 Acknowledgments

Many thanks to Ivan Arias-Rodriguez and Phillip
Conrad for their comments and inputs. Ivan helped
in the development of the described example.

7 References

[1] R. Braden. Requirements for internet hosts–
communication layers. RFC1122, Internet En-
gineering Task Force (IETF), October 1989.

[2] M. Allman et al. TCP Congestion Con-
trol. RFC2581, Internet Engineering Task Force
(IETF), April 1999.

[3] R. Stewart et al. Stream Control Transmission
Protocol. Proposed standard, RFC2960, Internet
Engineering Task Force (IETF), October 2000.

[4] R. Stewart et al. SCTP Implementors Guide.
Internet Draft: draft-ietf-tsvwg-sctpimpguide-
04.txt, Internet Engineering Task Force (IETF),
March 2002. (work in progress).

[5] R. Ludwig and R. H. Katz. The Eifel Algorithm:
Making TCP Robust against Spurious Retrans-
missions. ACM Computer Communication Re-
view, Vol. 30(1), January 2000.

[6] Protocol Engineering Lab, University
of Delaware. SCTP Module for ns-2.
http://pel.cis.udel.edu.

