WEB-INTEGRATING NETWORK-CONSCIOUS IMAGE TRANSMISSION

Armando L. Caro Jr.
Paul D. Amer

Computer and Information Science Department,
University of Delaware, Newark, DE 19716 USA
Email: {acaro,amer}@cis.udel.edu

Sami Iren

GTE Laboratories Incorporated
Waltham, MA 02451-1128 USA

Email: sami.iren@gte.com

Phillip T. Conrad

Computer and Information Science Department,
Temple University, Philadelphia, PA 19122 USA
Email: conrad@joda.cis.temple.edu

ABSTRACT

This paper describes the development of a new
Network-Conscious Image Compression and Trans-
mission System (NETCICATS) architecture that
may be incorporated into existing web browsers, e.g.,
Netscape®. NETCICATS introduces an approach
to compression that does not simply optimize com-
pression, but which optimizes overall performance of
transmitting compressed images over a lossy, packet-
switched battlefield network. The new architecture
includes the development of a Java Application Pro-
gramming Interface for the Universal Transport Li-
brary, a Network-Conscious (NC) image server, a
generalized Java applet for displaying all NC images,
and an array of Netscape plugins for decoding each
type of NC image. Integrating NETCICATS into
the web browser framework enhances research col-
laboration and presents more possibilities for future
ezperiments. °

“Netscape and Netscape Navigator are registered trade-
marks of Netscape Communications Corporation in the
United States and other countries.

*Prepared through collaborative participation in the Ad-
vanced Telecommunications & Information Distribution Re-
search Program (ATIRP) Consortium sponsored by the U.S.
Army Research Laboratory under the Federated Laboratory
Program, Cooperative Agreement DAAL(01-96-2-0002. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes not withstanding any copy-
right notation thereon. The views and conclusions contained

1 INTRODUCTION

Traditionally, research in image compression focused
solely on one goal: minimizing the image file size.
Current technological advancements in storage me-
dia has made saving disk space almost a non-issue in
comparison to transmitting images and other multi-
media over stressed networks, such as lossy, packet-
switched battlefield networks. In our research, we
emphagsize that optimal image compression algo-
rithms should also account for the network condi-
tions and the Quality of Service (QoS) provided dur-
ing transmission. To achieve the best performance,
algorithms should be optimized to exploit the dif-
ferent QoS that the underlying transport protocols
offer.

Network-Conscious (NC) image compression intro-
duces a new concept which takes image transmis-
sion into consideration when designing image com-
pression algorithms. Using an Application Level
Framing [6] philosophy, an image is compressed into
MTU-size® Application Data Units (ADUs) at the

in this document are those of the authors and should not
be interpreted as representing the official policies, either ex-
pressed or implied of the Army Research Laboratory or the
U.S. Government.

‘MTU (Maximum Transmission Unit) is the maximum
packet size that a link layer can carry. An MTU-size packet
can be transmitted end-to-end over a network without the
need for fragmentation and reassembly.



application layer. Each ADU “carries its seman-
tics”; that is, each ADU is a self-contained unit
possessing all information necessary for decoding
and displaying the information within that packet.
Each piece of independent information can be de-
livered to the receiving application out-of-order,
thereby enabling faster progressive display of im-
ages [5, 10, 12, 13].

Classical transport protocols that operate over un-
reliable battlefield networks provide an “all-or-
nothing” choice for transport QoS; either total or-
der and reliability (e.g., TCP) or no guarantees at
all (e.g., UDP). In a battlefield scenario, using UDP
alone without some form of supplemental reliability
is unacceptable since its use could result in the loss
of some important information. By process of elim-
ination, TCP becomes the protocol used by many
applications. However, a total order and reliability
protocol restricts the performance of an NC image.
NC images can outperform traditionally compressed
images only when they can take advantage of out-
of-order data.

NETCICATS wuses a Univeral Transport Li-
brary (UTL) developed within the University of
Delaware’s Protocol Engineering Laboratory to pro-
vide the QoS needs of NC images. UTL is a library
of innovative transport protocols that gives appli-
cation programmers the ability to write to a sin-
gle API, then experiment with a variety of different
transport protocols available. The protocols provide

services that can range anywhere between the two
extremes of UDP and TCP [4, 8, 9].

Our research demonstrates that with a combination
of innovative transport protocols and only a small
penalty in compression ratio, today’s standard com-
pression algorithms can be modified to provide sig-
nificantly better overall display of images [5, 12, 13].
Hence, performance in a lossy packet-switched bat-
tlefield network can be enhanced. The new NETCI-
CATS architecture will allow others to witness these
results on the web.

Section 2 further explains the motivation behind
integrating existing web functionality and NETCI-
CATS. Section 3 presents the layout explaining the
details of the web-integrated NETCICATS architec-
ture.

2 MOTIVATION

The goal of the new NETCICATS architecture is
to have a more portable system which will allow us
to more easily demonstrate our ideas and share our
work with other researchers. Collaboration will be
more effective by giving others not only the oppor-
tunity to read our publications, but to also down-
load the software and demo our work. Research be-
comes more progressive and successful when ideas
are exchanged and discussed with others; hence, giv-
ing hands-on experimentation to collaborators will
clearly enhance the progress of research even more.

Performing a greater variety of experiments is an-
other motivation for having portable systems. In
turn, a deeper understanding of our research may
be obtained. The new system will provide the addi-
tional ability to easily experiment over existing net-
work infrastructures which are not self-contained or
simulated, such as the Internet.

Client portability, however, is more important than
server portability. The idea is that having a portable
server is more of a luxury than a necessity. This
concept is not unfamiliar to the web’s client/server
model; once a server is running on a given plat-
form, clients should be able to communicate with
the server from multiple platforms. Therefore our
work focuses on making the client as portable as
possible, with less concern given to server portabil-
ity.
3 ARCHITECTURE

Figure 1 illustrates the entire web-integrated NET-
CICATS architecture. The new NETCICATS ar-
chitecture attempts to create a seamless integra-
tion of NC images, HTML, and other web elements.
The figure shows specifically the details of how NC-
GIF [5, 12, 13] (or NCG) images are handled simply
because it is the first image format that Netscape
will be extended to handle. However, the system
will be nearly identical for all NC images; all the
same components will be used, except there will be
a different Netscape plugin for each image format.
The plugin is the heart of the NETCICATS func-
tionality in that it is in charge of decoding and per-
forming any other image specific tasks.

The entire system operates as follows. When



“Decoded Ia;aae\,

NCG Plugin

UTLI

<html>
<embed
plugin>
<applet
code=NC...

Internet

</applet>
</html>

]

Figure 1: Web-Integrated NETCICATS Architecture

Netscape starts, it checks for plugin modules that
have been installed, enumerates them, determines
their MIME types, and registers each according to
their MIME types. Now the web browser is ready
to handle all registered MIME types.

The interaction between the web browser and server
remain unchanged; the user specifies the URL of a
web page, and the browser retrieves the data over
a TCP connection. When the user opens a page
that embeds an NC image, Netscape responds with
the following sequence of actions (typical for all
Netscape plugins) [2]:

e check if the plugin for this NC image type has
been installed (i.e., check for a plugin with a
matching MIME type)

load the plugin code into memory
initialize the plugin

create a new instance of the plugin

Notice that Figure 1 shows that NC images are not
stored on an ordinary web server as traditional im-
ages would be, but are instead stored on a UTL-
aware NC image server. Because of the specialized
location of NC images, a web page must be authored
to explicitly specify the entire URL of the NC im-
age location (see the ncgurl option in Figure 2). This
URL is passed to the plugin during its instantiation
phase.

Additionally, the web page must include the general
purpose NCImage applet (see Figure 2). The NCIm-
age class is a thin applet that has only one pur-
pose: to provide and maintain the drawing window
in which the image will be displayed. Netscape pro-
vides a technology called LiveConnect which allows
Java applets to communicate with Java-enabled plu-
gins via JavaScript [1]. Our system takes advantage
of this technology by using JavaScript to pass down
an instance of the NCImage applet to the plugin so
that it may draw the image into the applet’s drawing



<EMBED type="image/x-ncg-plugin"
name="NcgPlugin"

ncgurl="pmtp://sauterne.cis.udel.edu:2000:X2/img/air.ncg"

HIDDEN>

<applet code=NCImage.class name="NCImage"
MAYSCRIPT height=260 width=260>

</applet>

<form>

<input type=button value="Get NCG Image"
onclick=’document.NcgPlugin.begin(document.NCImage.thisApplet)’>

</form>

Figure 2: Example HTML Code

window (see Figure 2). Once the plugin receives the
instance of the applet, it knows that everything has
been setup to begin drawing the image. The plugin
may now make a UTL connection to the NC image
server and begin retrieving the image data. As the
encoded data arrives, the plugin may immediately
begin decoding and drawing the image on the screen
(unlike the case for unordered arrival over TCP).

If a user leaves the instance’s page or closes its win-
dow, the plugin instance associated with that page
is deleted. When the last instance of a plugin is
deleted, the plugin code is unloaded from memory.
Other than disk space, plugins consume no resources
when not loaded [2].

3.1 AN NC IMAGE PLUGIN

An NC image plugin consists of two parts (refer to
Figure 1): the Native Interface and the Java De-
coder. The Native Interface is a dynamic load li-
brary written in C which is a thin module that
is solely responsible for interacting with Netscape
during plugin registration, loading, initialization, in-
stantiation, and shutdown.

Netscape’s LiveConnect technology allows a plugin
to have a Java counterpart which can interact with
the native C code [1, 11]. In our plugin, the Java
counterpart makes up the core functionality. The
Java Decoder is responsible for making a UTL con-
nection to the NC image server, retrieving the en-
coded image data, decoding it, and passing the raw
pixel data to the applet to be displayed. Since the
applet, and not the plugin, is responsible for display-

ing the image, the HIDDEN option should always be
used as shown in Figure 2. Implementing most of
the plugin in Java gives us more portability for our
NETCICATS clients; as explained in Section 2, this
is our goal.

3.2 UTL JAVA API

UTL is a C library that provides a variety of trans-
port protocols through a single API [4, 8, 9, 7].
However, since the NC image plugins were primarily
written in Java, the ability to use UTL in Java appli-
cations became a necessity. There were two possibil-
ities: (1) completely rewrite UTL in Java, or (2) cre-
ate a Java API that would call UTL functions using
the Java Runtime Interface (JRI)? [11]. Rewrit-
ing UTL in Java is a big task and would further
delay the completion of the web-integrated NETCI-
CATS. To obtain a working system more quickly,
the Java API solution was used. In the future, a
Java implementation of UTL may be developed to
make NETCICATS clients more portable.

4 CONCLUSIONS AND FUTURE
WORK

The new web-integrated NETCICATS architecture
has been described. Most of the components can
be generically used for all NC images; only the plu-

4JRI is a technology developed by Netscape which is very
similar to Sun Microsystem’s Java Native Interface (JNI)
technology. It allows interaction between C and Java code.
However, JRI may only be used with Netscape’s Java Virtual
Machine.



gin is image specific. Currently, the plugin for NC-
GIF images is being completed. In the future, the
NC-SPIHT [5, 12, 13] plugin will also be imple-
mented. However, to compare their performance
against their classical compression counterparts in
a fair manner, the counterparts must also have a
plugin that uses the same transmission system. For
example, we must implement a standard Gif® [3] plu-
gin that retrieves the image data from a NC image
server over a UTL connection. In this way, any ad-
ditional delays and artifact introduced by NETCI-
CATS will be equally accounted for on both sides of
the comparison.

Currently, the NC image server is a simple piece
of software. It listens on a port for requests and re-
sponds by transmitting the requested image data. It
does not support multiple, concurrent connections.
In the future when the system is complete, there will
be a need for such support. We will want to allow
users to have the ability to retrieve multiple images
from our servers simultaneously. With this ability,
web pages can be authored to do side-by-side com-
parisons of various image compression and transport
protocol combinations.

Section 3.2 explains that a UTL Java API has
been developed to allow NETCICATS to be web-
integrated quickly. To increase portability of the
client, a Java implementation of UTL should be
written. In fact, without one, the client is not very
portable due to its dependence on UTL. Implement-
ing nearly all of the plugin functionality in Java
makes the plugin itself portable, but it will be use-
less on any platform which UTL has not been ported
to.

Java is notorious for having slow performance.
Hence, it will be additionally interesting to see the
performance of transport protocols written in Java.

5 DISCLAIMER

The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes not
withstanding any copyright notation thereon. The
views and conclusions contained in this document
are those of the authors and should not be inter-
preted as representing the official policies, either ex-

°GIF is a Service Mark of Compuserve, Inc., Columbus,
OH.

pressed or implied of the Army Research Laboratory
or the U.S. Government.

6 REFERENCES

[1] LiveConnecting (Netscape) Plug-ins with Java.

home .netscape.com/eng/mozilla/3.0/handbook/plugins/

pjava.htm.

[2] (Netscape) Plug-in Guide.
developer.netscape.com/docs/manuals/communicator/
plugin/index.htm.

[3] Graphics interchange format, version 89a. Technical re-
port, Compuserve Incorporated, Columbus, Ohio, July
1989.

[4] P. Amer, C. Chassot, T. Connolly, M. Diaz, and P. Con-
rad. Partial order transport service for multimedia and
other applications. IEEE/ACM Trans on Networking,
2(5):440-456, October 1994.

[6] P. Amer, S. Iren, G. Sezen, P. Conrad, M. Taube, and
A. Caro. Network-conscious GIF image transmission
over the Internet. Computer Networks, 31(7):693-708,
April 1999.

[6] D. Clark and D. Tennenhouse. Architectural considera-
tions for a new generation of protocols. In ACM SIG-
COMM ’90, pages 200-208, Philadelphia, PA, September
1990.

[7] P. Conrad. Order, reliability, and synchronization in
transport layer protocols for multimedia document re-
trieval. PhD Dissertation, CIS Dept. University of
Delaware, (in progress).

[8] P. Conrad, P. Amer, E. Golden, S. Iren, R. Marasli,
and A. Caro. Transport gos over unreliable networks:
No guarantees, no free lunch! In IFIP Fifth Interna-
tional Workshop on Quality of Service (IWQOS ’97),
New York, NY, May 1997.

[9] P. Conrad, P. Amer, M. Taube, G. Sezen, S. Iren,
and A. Caro. Testing environment for innovative
transport protocols. In Advanced Telecommunica-

tions/Information Distribution Research Program, Col-
lege Park, MD, February 1998.

C. Diot and F. Gagnon. Impact of out-of-sequence pro-
cessing on data transmission performance. Computer
Networks, 31(5):475-492, March 1999.

Warren Harris. The Java Runtime Interface.
home .netscape.com/eng/jri/index.html.

[11]

[12] S. Iren. Network-conscious image compression, 1999.

PhD Dissertation, CIS Dept., University of Delaware.

S. Iren, P. Amer, A. Caro, P. Conrad, G. Sezen,
and M. Taube. Network-conscious compressed image
transmission over battlefield networks. In Advanced
Telecommunications/Information Distribution Research
Program, College Park, MD, February 1998.

[13]



