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Abstract 
 
We identify overheads associated with FTP, attributed to separate 
TCP connections for data and control, non-persistence of the data 
connections, and the sequential nature of command exchanges. 
We argue that solutions to avoid these overheads using TCP 
place an undue burden on the application. Instead we propose 
modifying FTP to use SCTP and its multistreaming service. FTP 
over SCTP avoids the identified overheads in the current FTP 
protocol without introducing complexity at the application, while 
still remaining “TCP-friendly”. We implemented FTP over SCTP 
in three ways: (1) simply replacing TCP calls with SCTP calls, 
thus using one SCTP association for control and one SCTP 
association for each data transfer, (2) using a single 
multistreamed SCTP association for control and all data 
transfers, and (3) enhancing (2) with the addition of command 
pipelining. Our experiments compared these 3 variations with the 
classic FTP over TCP. Results indicate significant improvements 
in throughput for multiple file transfers with all three of our 
variations. The largest benefit occurs for (3) FTP over a single, 
pipelined, multistreamed SCTP association. More generally, this 
paper encourages the use of SCTP’s innovative services to 
benefit existing and future application performance and presents 
the case for multistreaming. 
 
 

1. Introduction 
 
The past decade has witnessed an exponential growth of traffic in 
the Internet, with a proportionate increase in Hyper Text Transfer 
Protocol (HTTP) [BFF96] and decline in File Transfer Protocol 
(FTP) [PR85], both in terms of use and the amount of traffic. The 
decline in FTP traffic is chiefly attributed to the inflexible nature 
of its interface and inefficiency in its end-to-end delay 
performance. Over the years several FTP extensions have been 
proposed (e.g., [AOM98], [EH02], [HL97]), but few aim at 
reducing file transfer latency [Kin00, AO97]. FTP uses TCP to 
provide end-to-end reliability. In this paper, we identify reasons 
why modifying FTP to reduce latency overheads has been 
difficult, mainly due to TCP’s semantics which constrain the FTP 
application. One result of these constraints has been that several 
FTP implementations aiming to enhance performance use 
parallel TCP connections to achieve better throughput. However, 
opening parallel TCP connections (whether for FTP or HTTP) is 
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regarded as “TCP-unfriendly” [FF99] as this allows an 
application to gain an unfair share of bandwidth at the expense of 
other network flows, potentially sacrificing network stability. 
Moreover multiple parallel TCP connections consume more 
system resources than are necessary. This paper focuses on 
improving end-to-end FTP latency and throughput in a TCP-
friendly manner. 
    Although FTP traffic has proportionately declined in the past 
decade, FTP still remains one of the most popular protocols for 
bulk data transfer on the Internet [MC00]. For example, 
Wuarchive [WUARCHIVE] serves as a file archive for a variety 
of files including mirrors of open source projects. Wuarchive 
statistics for the period of April 2002 to March 2003 indicate 
FTP accounting for 5207 Gigabytes of traffic, and HTTP 
accounting for 7285 Gigabytes of traffic. FTP is exclusively used 
in many of the mirroring software on the Internet, for various 
source repositories, for system backups and for file sharing. All 
these applications require transferring multiple files from one 
host to another.  
    In this paper we identify the overheads associated with the 
current FTP design. We present modifications to FTP to run over 
Stream Control Transmission Protocol (SCTP) [SXY+03] instead 
of TCP. SCTP is an IETF standards track transport layer 
protocol. Like TCP, SCTP provides an application with a full 
duplex, reliable transmission service. Unlike TCP, SCTP 
provides additional transport services. This paper focuses on the 
use of one such service: multistreaming. SCTP multistreaming 
logically divides an association into streams with each stream 
having its own delivery mechanism. All streams within a single 
association share the same congestion and flow control 
parameters. Multistreaming decouples data delivery and 
transmission, and in doing so prevents Head-of-Line (HOL) 
blocking.  
    This paper shows how SCTP multistreaming benefits FTP in 
reducing overhead, especially for multiple file transfers. We 
recommend two modifications to FTP which make more efficient 
use of the available bandwidth and system resources. We 
implemented these modifications in a FreeBSD environment, and 
carried out experiments to compare the current FTP over TCP 
design vs. our FTP over SCTP designs. Our results indicate 
dramatic improvements in transfer time and throughput for 
multiple file transfers under certain network conditions. 
Moreover, our modifications to FTP solve concerns that current 
FTP protocol faces with Network Address Translators (NAT) and 
firewalls in transferring IP addresses and port numbers in the 
payload data ([AOM98], [Tou02], [Bel94]).  
    The remainder of this paper is organized as follows. Section 2 
summarizes FTP, focusing on features we changed in order to 
use SCTP. This section also details and quantifies the overheads 
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in the current FTP over TCP design. Some security concerns in 
FTP over TCP have also been noted. Section 3 discusses possible 
solutions to eliminate these overheads while still using TCP as 
the transport. Section 4 introduces SCTP multistreaming. Section 
5 presents our protocol changes in FTP to exploit using SCTP 
multistreaming, and a description of how these designs reduce 
the overheads. Section 6 presents the experimental results and 
discussion. Section 7 concludes the paper. 
 
 

2. FTP Protocol Elements 
 
This section presents briefly the elements of the FTP protocol 
and its sequence of operations. It then quantifies the overheads in 
FTP’s operation.  
 
2.1 FTP over TCP Design 
 
FTP currently operates atop TCP’s reliable, byte stream service. 
An FTP session consists of one control connection, and one or 
more data connections. The control connection is used for the 
exchange of commands and replies in simple ASCII format. Each 
command and reply typically consists of 20-40 bytes. The 
exchange of commands and replies over the control connection is 
periodic in nature triggered by user requests. A unique data 
connection is established for each file transfer or directory listing 
transfer, and is terminated after the transfer. The closing of the 
data connection indicates the End of File (EOF). Thus the 
number of data connections in an FTP session is equivalent to the 
number of transfers performed. Each data connection follows one 
of the two modes, active or passive depending on whether the 
server or client initiates the connection, respectively. In the active 
mode, the client sends a PORT command to the server indicating 
the IP address and the port number to which the server should 
establish the data connection. Extensions to FTP [AOM98] 
introduce additional commands (e.g., EPSV, EPRT) mainly for 
operations in the passive mode where the client opens the 
connection to the server. The passive mode also solves, to some 
extent, the problems FTP faces in interacting with NATs and 
firewalls [Bel94]. 
    The common user service commands for file transfer are 
RETR, LIST, STOR, NLST, APPE [PR85]. One of the recent 
additions to the FTP command set proposed in [EH02] includes 
the SIZE command. The SIZE command requests the size of the 
remote file to be transferred, before the file is actually requested 
with a RETR command. The actual size is returned in a “213 
reply”. Knowing the file size can assist a receiver to determine 
the restart marker and the number of bytes left to be read under a 
restart condition, which may be caused by an end host crash or 
network failure. 
    FTP provides the retrieval of multiple files based on an 
expression given by the user, for example, using “mget * ”. The 
files are transferred independently and no form of connection 
information is shared between each file’s transfer. Each transfer 
requires the client to send PORT, SIZE and RETR (or 
equivalent) control commands. The total number of data 
connections consumed for a multiple file transfer request is 
(n+1): one to transfer of the name list of files, and one for each of 
the n file transfers. Figure 1 shows a timeline for multiple file 
retrieval, from the server to the client. The timeline shows the 
commands and replies exchanged, and the TCP connection 

establishment-teardown for the data transfer. (Not shown in 
Figure 1 is the TYPE command and its response. Moreover 
implementations may use extra commands exchanges prior to the 
data transfer. The time line is meant for the reader to understand 
the basic command exchanges in FTP and for comparison 
purposes to the modifications introduced later in this paper.) The 
solid and the dotted line in Figure 1 represent the transfer on the 
control and data connection, respectively. The dotted box 
represents operations repeated sequentially for each file 
transferred. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
2.2 Inefficiencies in the current FTP design 
 
FTP’s current design includes a number of inefficiencies due to 
(1) separate control and data connection and (2) non-persistent 
data connection. Each is discussed in turn.  
 
2.2.1 Distinct control and data connection 
    
A. FTP’s out-of-band control signaling approach has 
consequences in terms of end-to-end latency. Traffic on the 
control connection is periodic in nature, and hence this 
connection typically remains in the slow start phase of TCP 
congestion control [APS99]. The control connection is vulnerable 
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to timeouts because of the send-and-wait nature of control 
commands. (Also, insufficient packets are flowing to cause a 
TCP fast retransmit.) Thus, an operation (involving a single 
control command) will be subject to a timeout in the event of loss 
of either a command or its reply. 
 
B. Since control and data flow on separate connections, an extra 
overhead of at least 1.5 Round Trip Time (RTT) is incurred for 
connection setup-teardown (1RTT for setup and 0.5 RTT for 
teardown). Moreover the end hosts create and maintain on 
average two Transport Control Blocks (TCBs) for each FTP 
session. This factor is negligible for clients, but may significantly 
degrade performance of busy servers that are subject to reduced 
throughput due to memory block lookups [FTY99]. 
 
C. Over the past years there have been considerable discussions 
on FTP’s lack of security, some of them attributed to data 
connection information (IP address, port number) being 
transmitted in plain text in the PORT command on the control 
connection to assist the peer in establishing a data connection. 
Moreover, transferring IP addresses and port numbers in the 
protocol payload creates problem for Network Address 
Translators (NATs) and firewalls which must monitor and 
translate addressing information [AOM98, Tou02].  
 
2.2.2 Non-persistence of the data connection 
 
A. The non-persistence of the data connection causes connection 
setup overhead at least on the order of 1 RTT each time a file 
transfer or directory listing request is serviced (see Figure 1). 
Queuing delays can significantly increase the RTT [PM94]. To 
improve end-to-end delays, every attempt should be made to 
minimize the number of round trips.  
 
B. Every new data connection causes a new probing of the 
congestion window (cwnd) during the connection’s slow start 
phase. Each connection begins by probing for the available 
bandwidth before it reaches its steady state cwnd. Moreover, a 
loss early in the slow start phase, before the cwnd is large enough 
to allow for fast retransmit, will result in a timeout at the server. 
Figure 2 graphically shows the nature of this re-probing overhead 
in the event of three consecutive file transfers. The interval 
between the transfers indicates the time involved in terminating 
the previous connection, setting up a new connection, and 
transferring control commands. (The reader should be able to 
understand that this is a generic example and not an exact 
indication of cwnd evolution.)  
 
 
 
 
 
 
 
 
 
 
 
C. For each file transfer, a one RTT overhead is incurred for each 
exchange of the PORT command and its 200 reply (see Figure 1).  

D. In the event of multiple small file transfers, the server ends up 
having many connections in the TCP TIME-WAIT state and 
hence maintain on average more than two TCBs per session. This 
per-connection memory load can adversely affect a server’s 
connection rate and throughput [FTY99].  
 
 
3. Possible solutions and drawbacks 
 
We describe some of the possible solutions that try to avoid the 
above stated overheads while still using TCP as the underlying 
transport service. The drawbacks associated with each solution 
are presented.  
 
A. Use a single persistent TCP connection for both control and 
data 
  
Improvements: This approach avoids most overheads associated 
with FTP’s current design listed in the previous section. The 
commands over the control connection can be pipelined (in the 
event of a multiple file transfer) to improve latency, and maintain 
the probed congestion window for subsequent transfers.  
 
Drawbacks: TCP provides a byte-stream service and does not 
differentiate between the different types of data it transmits over 
the same connection. Using a single TCP connection requires the 
application to use markers to differentiate between control and 
data. This marking burden increases application layer 
complexity.  Control and file data in an FTP session are logically 
different types of data, and conceptually are best kept logically, if 
not physically, separate. Additionally, using a single connection 
risks Head-of-Line (HOL) blocking (HOL blocking is discussed 
more in Section 4).  
 
B. Use two TCP connections: one for control, and one persistent 
data connection 
 
Improvements: A persistent data connection eliminates the 
connection setup-teardown and command exchange overheads 
for every file transfer, and thus reduces round trips.  
 
Drawbacks: Due to the sequential nature of commands over the 
control connection, the data connection will remain idle in 
between transfers of a multiple files transfer. During this idle 
time, the data connection congestion window may reduce to as 
much as the initial default size, and later require TCP to reprobe 
for the available bandwidth. Moreover this approach suffers the 
overheads listed in Section 2.2.1. 
 
C. Use two TCP connections: one for control, and one persistent 
data connection. Also use command pipelining on the control 
connection. 
 
Improvements: A persistent data connection with command 
pipelining will maintain a steadier flow of data (i.e., higher 
throughput) over the data connection by letting subsequent 
transfers utilize the already probed bandwidth. 
 
Drawbacks: This approach suffers from the overheads listed in 
Section 2.2.1. 
 

Figure 2: Expected cwnd evolution during a multiple file transfer in 
FTP over TCP 
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D. Use one TCP connection for control, and ‘n’ parallel data 
connections 
 
Improvements: Some FTP implementations achieve better 
throughput using parallel TCP connections for a multiple file 
transfer.  
 
Drawbacks: This approach is not TCP-friendly [FF99] as it may 
allow an application to gain an unfair share of bandwidth and 
adversely affect the network’s equilibrium [FF99, BFF96]. 
Moreover past research has shown that parallel TCP connections 
may suffer from aggressive congestion control resulting in a 
reduced throughput [FF99]. As such, this solution should not be 
considered. 
 
Related Work: Apart from the above solutions, researchers in the 
past have suggested ways to overcome TCP’s limitations in order 
to boost application performance (e.g. [Bra94], [BRS99]). For 
example, T/TCP [Bra94] reduced the connection setup/teardown 
overhead by allowing data to be transferred in the TCP 
connection setup phase. But due to a fundamental security flaw, 
T/TCP was removed from operating systems. Objectives (of 
aggregating transfers) have also been discussed for HTTP over 
the past years [PM94]. But while HTTP semantics allowed for 
persistent data connections and command pipelining, FTP 
semantics do not allow similar solutions without introducing 
changes to the application (see A. above). 
 
Having summarized ways for improving FTP performance while 
still using TCP, we now consider improving FTP performance by 
using SCTP, an emerging IETF general purpose transport 
protocol [SXM+00].  
 
 

4. SCTP Multistreaming 
 
One of the innovative transport layer services that promises to 
improve application layer performance is SCTP multistreaming. 
A stream in an SCTP association is “A uni-directional logical 
channel established from one to another associated SCTP 
endpoint, within which all user messages are delivered in 
sequence except for those submitted to the unordered delivery 
service” [SXM+00].  
    Multistreaming within an SCTP association separates flows of 
logically different data into independent streams. This separation 
enhances application flexibility by allowing it to identify 
semantically different flows of data, and having the transport 
layer “manage” these flows (as the authors argue should be the 
responsibility of the transport layer, not the application layer). No 
longer must an application open multiple end-to-end connections 
to the same host simply to signify different semantic flows. 
    In Figure 3, Hosts A and B have a multistreamed association. 
In this example three streams go from A to B, and one stream  
 
 
 
 
 
 
 

goes from B to A. The number of streams in each direction is 
negotiated during SCTP’s association establishment phase.  
    Each stream has an independent delivery mechanism, thus 
allowing SCTP to differentiate between data delivery and reliable 
data transmission and avoid HOL blocking. Similar to TCP, 
SCTP uses a sequence number to order information. However, 
TCP sequences bytes, and SCTP sequences PDU’s or “chunks”. 
SCTP uses Transmission Sequence Numbers (TSN) for reliable 
transmission. The TSN is global over all streams. Each stream is 
uniquely identified by a Stream ID (SID) and has its own Stream 
Sequence Numbers (SSN). In TCP, when a sender transmits 
multiple TCP segments, and the first segment is lost, the later 
segments must wait in the receiver's queue until the first segment 
is retransmitted and arrives correctly. This HOL blocking delays 
the delivery of data to the application, which in signaling and 
some multimedia applications is unacceptable. In SCTP, 
however, if data on stream 1 is lost, only stream 1 may be 
blocked at the receiver while awaiting retransmissions. With 
streams being logically independent flows, the data on the 
remaining streams is deliverable to the application. The socket 
API extensions for SCTP [SXY+03] provide data structures and 
socket calls through which application can indicate or determine 
the stream number on which it intends to send or receive data. 
 
 
5. FTP over SCTP Variants 
 
In this section we propose three variants of FTP which use SCTP 
as the transport layer protocol. Each is discussed in turn. 
 
5.1 FTP over SCTP 
 
FTP over SCTP keeps the same semantics as the classic FTP 
over TCP. Thus, this FTP model uses one separate SCTP 
association for control, and a new SCTP association for each file 
transfer, directory listing, or file namelist. The changes to the 
classic implementation involved only changing the socket call 
parameters from IPPROTO_TCP to IPPROTO_SCTP in both the 
client and the server sources. 
 
5.2 FTP over SCTP with multistreaming  
 
In this second model, we use multistreaming to combine the FTP 
control and data connections in a single SCTP association. Only 
one SCTP association exists for the entire FTP session. First, an 
FTP client establishes an SCTP association with the server. 
During initialization, two streams are opened in each direction. 
The client and the server send control information (commands 
and replies) on their respective stream 0. Their respective data 
stream or stream 1 is used to transfer data (files, directory 
listings, and file namelists). This approach maintains semantics 
for streams analogous to the control and data connections in FTP 
over TCP.  
    Recall that the data connection in FTP over TCP is non-
persistent and the end of data transfer (EOF) is detected by the 
data connection’s close. To detect EOF in our approach, we 
utilize the SIZE command [EH02]. The SIZE command is 
already widely used in FTP for the purpose of detecting restart 
markers. For directory listings, the end of data transfer is detected 
by using the information (number of bytes read by the resvmsg 

Figure 3: Use of streams within an SCTP association 
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call) provided to the application by the SCTP socket API 
[SXY+03]. 
    In the event of a multiple file retrieval issued, the client sends 
out the request on outgoing stream 0 and receives the data on 
incoming steam 1 for each file in a sequential manner. Figure 
4(a) shows the retrieval of multiple files using FTP over 
multistreamed SCTP. The outgoing stream for all messages and 
data has been identified. Data on stream 1 is represented by 
dashed lines, and control messages on stream 0 have been 
represented by solid lines. The dashed box on the timeline in 
Figure 4(a) indicates the operations that are repeated sequentially 
for each file to be transferred.  
    This approach has various advantages, and avoids most of the 
overheads described in Section 2.2. The number of round trips is 
reduced as: (1) a single connection (association in SCTP 
terminology) exists throughout the FTP session, hence repeated 
setup-teardown of each data connection is avoided, and (2) 
exchanging PORT commands for data connection information is 
not needed. The server load is reduced as the server maintains 
TCBs for at most half of the connections as required with FTP 
over TCP. 
    The drawback that this approach faces is similar to the 
drawbacks described in Section 2.2.2 (B). In the event of a 
multiple file transfer, each subsequent file transfer will not be 
able to utilize the prior probed available bandwidth. Before 
transmitting new data chunks, the sender calculates the cwnd 
based on the SCTP protocol parameter Max.Burst [SOA+03] as 
follows: 
 

if ((flightsize + Max.Burst*MTU) < cwnd)                 (1) 
         cwnd = flightsize + Max.Burst*MTU 
 

    Since the next file transfer of file i+1 cannot take place 
immediately (due to the exchange of control commands before 
each transfer (see Figure 4a)), all data sent by the server for file i 
gets acked, and reduces the flightsize at the server to zero. Thus 
in multiple file transfers, the server’s cwnd may be reduced to 
Max.Burst*MTU ([SOA+03] recommends the value of the 
protocol parameter Max.Burst to be set to 4) before starting each 
subsequent file transfer.  
 
5.3 FTP over SCTP with multistreaming and command 
pipelining 
 
Finally in this third model we introduce command pipelining in 
our design from Section 5.2 to avoid unnecessary cwnd reduction 
for a multiple file transfer. In Section 5.2’s model, the cwnd 
reduction between file transfers occurs because the SIZE and 
RETR commands for each subsequent file are sent only after the 
previous file has been received completely by the client.  
    In Figure 4(b), we present a solution which allows each 
subsequent transfer to utilize the probed value of congestion 
window from the prior transfer. Command pipelining ensures a 
continuous flow of data from the server to client throughout the 
execution of a multiple file transfer. As seen in Figure 4(b), after 
parsing the name list of the files, the client sends SIZE 
commands for all files at once. As soon as a reply for each SIZE 
command is received, the client sends out the RETR command 
for that file. Since the control stream is ordered, the replies for 
the SIZE and RETR commands will arrive in the same sequence 
as the commands.  

    By using SCTP multistreaming and pipelining, FTP views 
multiple file transfers as a single data cycle. Command pipelining 
aggregates all of the file transfers resulting in better management 
of the cwnd. This solution overcomes all of the drawbacks listed 
in Section 2.2, resulting in a more efficient utilization of the 
bandwidth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
6. Experimental results 
 
We now report on our experimental study of FTP over TCP vs. 
FTP over SCTP. We focus only on experimental results, however 
we have also verified our results by simulations using ns version 
2.1b8 [NS] and the SCTP patch developed within our Protocol 
Engineering Lab (PEL) at the University of Delaware. We 
measured the total transfer time observed for a multiple file 
transfer for a varied set of parameters. 
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• Bandwidth-Propagation Delay (B-D) configuration: Three 
path configurations were evaluated: (1Mbps, 35ms),  
(256Kbps, 125ms), (3Mbps, 1ms). Both the client to server and 
server to client paths share the same characteristics. In this 
section, we focus on the results of (1Mbps, 35ms) 
configuration. Results of the other two configurations have 
been described in Appendix A. 

• Packet Loss Ratio (PLR): The PLRs studied were (0, .01, .03, 
.06, and .1). Each value represents the loss ratio for both the 
client to server and the server to client paths experience the 
same loss rate. We used a uniform probability distribution to 
emulate packet loss. Certainly 10% loss represents an extreme 
case but we were interested in general trends as the loss rate 
increases. Moreover, higher loss rates may be of interest to 
wireless and military networks. 

• File sizes: Although FTP is widely used for bulk data transfer, 
some applications (e.g., source updates) use FTP to transfer 
small files. To evaluate potential reduced overheads in a 
variety of these applications, we chose file sizes as (10K, 50K, 
200K, 500K, and 1M).  

 
    Two sets of experiments were performed with different 
number of files transferred (10 and 100 files) to observe the 
effect of total transfer time on the number of files being 
transferred. 
  
6.1 Experimental setup 
 
We used Netbed [WLS+02] (an outgrowth of Emulab) which 
provides integrated access to experimental networks. Three nodes 
were used for each experiment, one for the FTP client and one 
for the FTP server. The third node acted as a router for shaping 
traffic between the client and server. The client and server nodes 
are 850MHz Intel Pentium III processors, and based on the Intel 
ISP1100 1U server platform. All three nodes run FreeBSD-4.6. 
The FreeBSD kernel implementation of SCTP available with the 
KAME Stack [KAME] was used on the client and server nodes. 
KAME is an evolving and experimental stack mainly targeted for 
IPv6/IPsec in BSD based operating systems. An updated 
snapshot of the stack (KAME snap kit) is released every week. 
We used the snap kit of 14th October, 2002. The router node runs 
Dummynet [Riz97] which simulates a drop tail router with a 
queue size of 50 packets, and specified bandwidth, propagation 
delay and packet loss ratio.  
    We implemented protocol changes by modifying the FTP 
client and server source code available with the FreeBSD 4.6 
distribution. In our experiments, total transfer was measured 
using packet level traces as follows. The starting time was taken 
as the time the client sends out the first packet to the server 
following the user’s “mget” command. The end time was the 
time the “226 control reply” from the server reached the client 
after the last file transfer. Each combination of parameters (3 B-
D configurations x 5 PLR x 5 file sizes) was run multiple times 
to achieve a 90% confidence level for the total transfer time. 
Tcpdump [TCPDUMP] (version 3.7.1) was used to perform 
packet level traces. SCTP decoding functionality in tcpdump was 
developed in collaboration of UD's Protocol Engineering Lab and 
Temple University's Netlab. Our results compare four FTP 
variants:  

(1) FTP over TCP: The current FTP protocol which uses a 
separate TCP connection for control, and a new TCP data 

connection for every file transfer, directory listing and name 
list. The TCP variant used was New-Reno. 

(2) FTP over SCTP: The original FTP protocol design but using 
SCTP at the transport. See Section 5.1.  

(3) FTP over multistreamed SCTP: This design, described in 
Section 5.2, uses a single SCTP association for both control 
and data. It uses multistreaming to assign one stream to 
control, and one stream to data. The SCTP association 
between the client and the server persists throughout the 
FTP session.  

(4) FTP over multistreamed SCTP with command pipelining: 
Described in Section 5.3, this design adds command 
pipelining to FTP over multistreamed SCTP to ensure that 
the congestion window is not needlessly probed for each file 
transfer. 
 

    We have performed experiments involving single as well as 
multiple file transfer. Although the improvement of file transfers 
using SCTP multistreaming is also witnessed in single file 
transfers, we emphasize the results of experiments involving 
multiple file transfer for two reasons. First, the positive impact of 
multistreaming is more predominant in the event of multiple file 
transfers. Second, comparing variant (1) vs. variant (2) provides 
insight on single file transfer. 
 
6.2 Results 
 
Figure 5 shows the results obtained for (1Mbps, 35ms) 
bandwidth-delay configuration. Each graph represents the loss 
probabilities vs. total transfer time to retrieve 10 files (each the 
same size) using four different FTP variants. Figure 6 shows the 
same comparisons but with retrieval of 100 files.  
 
6.2.1 Comparing (1) vs. (2) 
  

 Since variant (2) is simply a straightforward substitution of TCP 
calls with SCTP calls, any difference in performance must be 
attributed to SCTP’s handling of data (i.e., congestion control, 
loss recovery) and not to its feature of multistreaming. Figure 5 
shows that for small file transfers (see Figure 5(a) and 5(b)) (1) 
and (2) overall perform similarly. (2) performs worse than (1) at 
low loss rates (~ 0-3%) due to the fact that the per packet payload 
being carried by SCTP (1408 bytes) is less than TCP (1448 
bytes) thus making the overhead associated with SCTP slightly 
more than TCP. (At the time experiments were performed, the 
SCTP fragmentation threshold for the FreeBSD implementation 
was 1408. This threshold has been increased recently thus 
reducing its effect on per packet overhead.) As the packet loss 
rate increases, (2) begins outperforming (1). We believe this 
reversal is due to SCTP’s more robust loss recovery and 
congestion control mechanisms which outbalance the effects of 
per packet overheads. Details on the differences of congestion 
control mechanisms between SCTP and TCP can be found in 
[AAI02]. 
    For small file transfers, the data connection in both (1) and (2) 
is dominated by the slow start phase of the congestion control. As 
the file size increases (see Figures 5 and 6: (c), (d) and (e)), the 
data connection’s life time in both (1) and (2) is dominated by the 
congestion avoidance phase. Hence as the file size increases, 
both the scale and ratio of performance benefit seen by (2) as 
compared to (1) at loss rates (1-10%) increases. For example, at 
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3% loss rate the ratio of total transfer time taken by (1) to (2) is 
0.92, 1.14, 1.29, 1.31, 1.56 for ten 10K, 50K, 200K, 500K and 
1M multiple file transfers, respectively. This steady increase 
results because as the number of loss events generated increases 
proportionally with the size of file transfers, SCTP takes 
advantage over TCP on a per loss event basis eventually reducing 
latency by nearly or more than 50%. This improvement can be 
seen in Figure 6(e) at a 3% loss, (1) requires 2210 seconds to 
transfer 100 1M-files whereas (2) requires 1409 seconds.  
    As can be seen from Figures 5 and 6, as the number of file 
transfers increase from 10 to 100, the scale of performance of (2) 
as compared to (1) also increases. As the loss rate increases, 
more significant performance improvements can be seen. SCTP’s 
significant outperformance of TCP at medium to high loss rate 
came as a surprise as it was widely understood that the 
congestion control mechanisms in TCP and SCTP are 
approximately the same. We have validated our results using 
simulations, and are currently investigating the effect of the 
subtle differences between the congestion control mechanisms in 
TCP and SCTP, which result in such significant difference 
observed in overall steady state performance (e.g., SCTP’s 
congestion control semantics incorporate Limited Transmit 
[ABF01], Appropriate Byte Counting [All03], while the TCP 
implementation that is currently prevalent (and the TCP 
implementation used in our experiments) does not use such 
features.). The congestion control mechanisms in TCP are in the 
process of being fine tuned, a research task underway in the IETF 
[e.g., ABF01, All03]. Once the TCP extensions are included in 
TCP implementations, we expect (1) and (2) to perform similarly 
at different loss rates. 
 
6.2.2 Comparing (3) and (4) vs. (2) 
 
We now turn our discussion to the multistreamed FTP variants 
(3) and (4). We compare (3) and (4) with (2) and not with (1) 
because our main focus is to evaluate the effect of SCTP 
multistreaming and command pipelining on multiple file 
transfers.                
    As noted in Sections 2 and 5, using multistreaming and 
command pipelining (a) reduces the number of round trips in 
command exchanges and connection setup-teardown, and (b) 
maintains the probed value of the congestion window for 
subsequent transfers in a multiple file transfer. We hypothesized 
that the effect of (a) would remain fairly constant irrespective of 
the file sizes being transferred, and the effect of (b) would be 
more evident in transfer of small files and less in large files. For 
small files, non-persistent data connections would tend to remain 
in the slow start phase probing for available bandwidth, whereas 
the time spent in probing for available bandwidth for large file 
transfers would be relatively small as compared to the time spent 
in steady state congestion avoidance. However, we expected that 
the effects of both (a) and (b) would be directly proportional to 
the number of files being transferred. 
    In (3) we reduce the number of round trips but do not maintain 
the probed congestion window for subsequent transfers (see 
Section 5.2). As noted above this effect should have a constant 
scale as compared to (2). We can see from Figure 5 that the ratio 
of transfer time taken by (2) vs. (3) remains fairly constant 
ranging between 1.5 and 1.7. The small variance can be 
attributed to the losses (which result in timeouts) incurred by the 

extra round trips involved in (2). As noted above, the most 
significant impact of (4) as compared to (2) comes for short 
transfers. For example in Figure 6(a), at a 3% loss scenario (2) 
requires 103.3 seconds to transfer 100 files of size 10K each, as 
compared to (4) which takes only 19.8 seconds. From Figure 5, at 
3% loss rate the ratio of total transfer time taken by (2) to (4) is 
4.9, 4.1, 3.5, 3.1, and 2.1 for ten 10K, 50K, 200K, 500K and 1M 
file transfers, respectively. Thus this effect, which is also seen by 
comparing the ratio of (3) vs. (4), demarcates the benefits that 
multistreaming and command pipelining provide.  
    Moreover, it can be seen from Figures 5 and 6 that as the 
number of files to be transferred increase from 10 to 100, the 
performance gain by (4) as compared to (2) increases. This 
increase implies significant benefits to mirroring applications that 
use FTP (e.g., fmirror) which often have to mirror a large number 
of files from one server to the other. 
    We would like to note that comparing (1) which is FTP over 
TCP-New Reno (the variant prevalent in the Internet) to (4) 
shows the tremendous impact that SCTP, multistreaming and 
command pipelining can have in FTP transfer time. From Figure 
6(e), (1) takes 2210 seconds as compared to (4) which takes 948 
seconds to transfer 100 1M-files at 3% loss. Also to note is that 
(3) and (4) perform consistently better as compared to either (1) 
or (2) irrespective of the loss rates. 
    [The results of other bandwidth-delay configurations are 
included in Appendix A. Due to page limitations, they will not be 
included in the final paper if accepted.] 
 
6.2.3 Summary 
 

To summarize the results of our experiments: 
 

• It is evident from the experimental results that (2) performs 
close to (1) at lower loss rates, and as the loss rate increases, 
(2) outperforms (1) significantly. For smaller loss rates, per 
packet overhead in (2) results in marginally lower 
performance as compared to (1). (This factor does not play 
into the latest implementation of SCTP.) Past research has 
shown that the congestion control semantics and loss 
recovery mechanisms in SCTP are robust as compared to 
TCP, which result in better steady state throughput at higher 
loss rates [AAI02].  

• Exploiting SCTP multistreaming (in (3)) performs better by a 
steady scale factor of approximately 1.5 (in relation to file 
sizes) as compared to FTP over SCTP without 
multistreaming (in (2)). This gain can be attributed to the fact 
that multistreaming helps in reducing a constant number of 
round trips directly proportional to the number of files being 
transferred. The slight variance witnessed is due to the loss 
(and eventually timeouts) that these extra round trips can 
incur. 

• Adding command pipelining to multistreaming in (4) further 
reduces total transfer time for a multiple file transfer. The 
effect of command pipelining is more predominant in small 
transfers due to the fact that short flows spend most of the 
time probing for the available bandwidth. 

• The absolute scale of transfer time improvement in FTP over 
multistreamed SCTP with/without command pipelining is 
directly proportional to the number of files being transferred 
in a multiple file transfer request: more files transferred 
results in more relative savings in transfer time. 
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   (a) File Size = 10K 
    (b) File Size = 50K 

 

   (c) File Size = 200K 
    (d) File Size =500K 

 

   (e) File Size = 1M 
 

Figure 5: Transfer Time vs. Loss Probability for a multiple 
transfer of 10 files ( Bandwidth = 1Mbps    Propagation 
Delay = 35ms ) 
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   (a) File Size = 10K 
 

   (c) File Size = 200K 
 

   (e) File Size = 1M 
 

   (b) File Size = 50K 
 

   (d) File Size = 500K 
 

Figure 6: Transfer Time vs. Loss Probability for a multiple 
transfer of 100 files ( Bandwidth = 1Mbps    Propagation 
Delay = 35ms ) 
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7. Conclusions 
 
Our experimental results confirm that modifying FTP to use 
SCTP multistreaming and command pipelining dramatically 
reduces latency of multiple file transfers. These features: 
 

• reduce the number of connections by aggregating the control 
and data connections, 

 
• reduce the number of round trips required for connection 

setup/teardown, and command exchange, and 
 

• use the bandwidth more efficiently by preserving the 
congestion window between file transfers. 

 
Apart from transfer time improvements, other advantages 
achieved by running FTP over SCTP (with multistreaming and/or 
command pipelining) instead of over TCP are: 
 

• The number of connections a server must maintain is 
reduced. Quantifying server load and its effects on 
throughput is beyond the scope of this paper. The interested 
reader is pointed to [FTY99]. We however expect that by 
using either modification (3) or (4), servers will be able to 
serve at least twice the number of clients as compared to the 
current FTP over TCP design (assuming that the bottleneck 
for the number of simultaneous clients served is the number 
of TCBs reserved for the connections). This consideration 
may be of interest to busy servers who are constrained by 
the number of clients that can be served simultaneously. 

 
• The number of packets exchanged between the client and the 

server is reduced, thus reducing the overall network load. 
 

• Aggregating control and data connections into one SCTP 
multistreamed association solves concerns that current FTP 
protocol faces with Network Address Translators (NAT) and 
firewalls in transferring IP addresses and port numbers 
through the control connection [AOM98, Tou02].  

 
    The authors further argue that the benefits of SCTP’s 
multistreaming can be exploited by other applications. SCTP’s 
multistreaming provides a TCP-friendly mechanism for parallel 
transfers. Ongoing research at UD’s PEL is investigating whether 
web transfers using HTTP can benefit from aggregation of 
multiple transfers in a single SCTP association.  
 
Two limitations of this work which we plan to address in the 
future: 
 

• We have used a uniform loss distribution model for 
emulating losses on the path. We are investigating a 
variation of Dummynet which can model burst losses. 

 
• Recent additions to the TCP congestion control [e.g. ABF01, 

AF99] attempt to fine tune TCP’s behavior to result in faster 
recovery from loss events, and fewer timeouts. An extension 
to our work could be to take such TCP fine tunings into 
consideration. 
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Appendix A 
 
Figures 7 and 8 present results comparing the four FTP variants 
discussed earlier in this paper, in different bandwidth-delay 
configurations. The (256Kbps, 125ms) configurations represents 
an emulated satellite channel; whereas the (3Mbps, 1ms) 
configuration can be thought of as representing a Local Area 
Network (LAN) connectivity. The experimental setup used is the 
same as described in Section 6.1. The number of files transferred 
using a multiple file transfer is 10. 
 
It can be seen from Figures 7 and 8 that the relative scale of 
improvement of (3) or (4) as compared to (1) remains fairly 
similar for different bandwidth-delay configurations. However, 
since the path with the higher effective RTT will result in lower 
throughput, the absolute difference in transfer time taken by (3) 
or (4) as compared to (1) will be large for such a configuration. 
This effect can be seen by comparing the total transfer time taken 
in corresponding graphs in Figures 6 and 7. 
 
As seen earlier, (1) performs slightly better than (2) at low loss 
rates (0-3%), however (2) outperforms (1) significantly as the 
loss rate increases and as the size of the files being transferred 
increases. The outperformance of (2) can be again attributed to 
the better congestion control semantics in SCTP as compared to 
TCP. 
 
Experimenting with different bandwidth-delay configurations, 
results in similar conclusions about the relation of file sizes and 
impact of multistreaming and command pipelining. Multiple file 
transfer of smaller file sizes (10K, 50K) using (3) or (4) results in 
significant relative improvements in throughput. As the loss rate 
increases, total transfer time taken by (4) increases much slowly 
as compared to (1) or (2). This robustness to loss can be derived 
from the congestion control principles in SCTP: since (4) 
aggregates all the files into a bulk data transfer (thus keeping the 
window fairly high), the number of losses detected by timeouts in 
(4) will be relatively very low as compared to the number of 
losses detected by four missing reports. However, in (1) and (2), 
the connection may spend substantial time in slow start (thus 
having smaller windows), and hence depend on timeouts for loss 
recovery.  
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   (a) File Size = 10K 
 

   (b) File Size = 50K 
 

   (c) File Size = 200K 
    (d) File Size =500K 

 

 (e) File Size = 1M 
 

Figure 7: Transfer Time vs. Loss Probability for a multiple 
transfer of 10 files ( Bandwidth = 256Kbps    Propagation 
Delay = 125ms ) 
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   (a) File Size = 10K 
 

   (b) File Size = 50K 
 

   (c) File Size = 200K 
 

   (d) File Size =500K 
 

 (e) File Size = 1M 
 

Figure 8: Transfer Time vs. Loss Probability for a multiple 
transfer of 10 files ( Bandwidth = 3Mbps    Propagation 
Delay = 1ms ) 
 


