
 1

Improving Multiple File Transfers Using SCTP Multistreaming*

Sourabh Ladha, Paul D. Amer

Protocol Engineering Lab
Computer and Information Sciences

University of Delaware
{ladha, amer}@cis.udel.edu

Abstract

We identify overheads associated with FTP, attributed to separate
TCP connections for data and control, non-persistence of the data
connections, and the sequential nature of command exchanges.
We argue that solutions to avoid these overheads using TCP
place an undue burden on the application. Instead we propose
modifying FTP to use SCTP and its multistreaming service. FTP
over SCTP avoids the identified overheads in the current FTP
protocol without introducing complexity at the application, while
still remaining “TCP-friendly”. We implemented FTP over SCTP
in three ways: (1) simply replacing TCP calls with SCTP calls,
thus using one SCTP association for control and one SCTP
association for each data transfer, (2) using a single
multistreamed SCTP association for control and all data
transfers, and (3) enhancing (2) with the addition of command
pipelining. Our experiments compared these 3 variations with the
classic FTP over TCP. Results indicate significant improvements
in throughput for multiple file transfers with all three of our
variations. The largest benefit occurs for (3) FTP over a single,
pipelined, multistreamed SCTP association. More generally, this
paper encourages the use of SCTP’s innovative services to
benefit existing and future application performance and presents
the case for multistreaming.

1. Introduction

The past decade has witnessed an exponential growth of traffic in
the Internet, with a proportionate increase in Hyper Text Transfer
Protocol (HTTP) [BFF96] and decline in File Transfer Protocol
(FTP) [PR85], both in terms of use and the amount of traffic. The
decline in FTP traffic is chiefly attributed to the inflexible nature
of its interface and inefficiency in its end-to-end delay
performance. Over the years several FTP extensions have been
proposed (e.g., [AOM98], [EH02], [HL97]), but few aim at
reducing file transfer latency [Kin00, AO97]. FTP uses TCP to
provide end-to-end reliability. In this paper, we identify reasons
why modifying FTP to reduce latency overheads has been
difficult, mainly due to TCP’s semantics which constrain the FTP
application. One result of these constraints has been that several
FTP implementations aiming to enhance performance use
parallel TCP connections to achieve better throughput. However,
opening parallel TCP connections (whether for FTP or HTTP) is

*Prepared through collaborative participation in the Communication and Network
Consortium sponsored by the U.S. Army Research Laboratory under the Collaborative
Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U.S.
Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

regarded as “TCP-unfriendly” [FF99] as this allows an
application to gain an unfair share of bandwidth at the expense of
other network flows, potentially sacrificing network stability.
Moreover multiple parallel TCP connections consume more
system resources than are necessary. This paper focuses on
improving end-to-end FTP latency and throughput in a TCP-
friendly manner.
 Although FTP traffic has proportionately declined in the past
decade, FTP still remains one of the most popular protocols for
bulk data transfer on the Internet [MC00]. For example,
Wuarchive [WUARCHIVE] serves as a file archive for a variety
of files including mirrors of open source projects. Wuarchive
statistics for the period of April 2002 to March 2003 indicate
FTP accounting for 5207 Gigabytes of traffic, and HTTP
accounting for 7285 Gigabytes of traffic. FTP is exclusively used
in many of the mirroring software on the Internet, for various
source repositories, for system backups and for file sharing. All
these applications require transferring multiple files from one
host to another.
 In this paper we identify the overheads associated with the
current FTP design. We present modifications to FTP to run over
Stream Control Transmission Protocol (SCTP) [SXY+03] instead
of TCP. SCTP is an IETF standards track transport layer
protocol. Like TCP, SCTP provides an application with a full
duplex, reliable transmission service. Unlike TCP, SCTP
provides additional transport services. This paper focuses on the
use of one such service: multistreaming. SCTP multistreaming
logically divides an association into streams with each stream
having its own delivery mechanism. All streams within a single
association share the same congestion and flow control
parameters. Multistreaming decouples data delivery and
transmission, and in doing so prevents Head-of-Line (HOL)
blocking.
 This paper shows how SCTP multistreaming benefits FTP in
reducing overhead, especially for multiple file transfers. We
recommend two modifications to FTP which make more efficient
use of the available bandwidth and system resources. We
implemented these modifications in a FreeBSD environment, and
carried out experiments to compare the current FTP over TCP
design vs. our FTP over SCTP designs. Our results indicate
dramatic improvements in transfer time and throughput for
multiple file transfers under certain network conditions.
Moreover, our modifications to FTP solve concerns that current
FTP protocol faces with Network Address Translators (NAT) and
firewalls in transferring IP addresses and port numbers in the
payload data ([AOM98], [Tou02], [Bel94]).
 The remainder of this paper is organized as follows. Section 2
summarizes FTP, focusing on features we changed in order to
use SCTP. This section also details and quantifies the overheads

 2

in the current FTP over TCP design. Some security concerns in
FTP over TCP have also been noted. Section 3 discusses possible
solutions to eliminate these overheads while still using TCP as
the transport. Section 4 introduces SCTP multistreaming. Section
5 presents our protocol changes in FTP to exploit using SCTP
multistreaming, and a description of how these designs reduce
the overheads. Section 6 presents the experimental results and
discussion. Section 7 concludes the paper.

2. FTP Protocol Elements

This section presents briefly the elements of the FTP protocol
and its sequence of operations. It then quantifies the overheads in
FTP’s operation.

2.1 FTP over TCP Design

FTP currently operates atop TCP’s reliable, byte stream service.
An FTP session consists of one control connection, and one or
more data connections. The control connection is used for the
exchange of commands and replies in simple ASCII format. Each
command and reply typically consists of 20-40 bytes. The
exchange of commands and replies over the control connection is
periodic in nature triggered by user requests. A unique data
connection is established for each file transfer or directory listing
transfer, and is terminated after the transfer. The closing of the
data connection indicates the End of File (EOF). Thus the
number of data connections in an FTP session is equivalent to the
number of transfers performed. Each data connection follows one
of the two modes, active or passive depending on whether the
server or client initiates the connection, respectively. In the active
mode, the client sends a PORT command to the server indicating
the IP address and the port number to which the server should
establish the data connection. Extensions to FTP [AOM98]
introduce additional commands (e.g., EPSV, EPRT) mainly for
operations in the passive mode where the client opens the
connection to the server. The passive mode also solves, to some
extent, the problems FTP faces in interacting with NATs and
firewalls [Bel94].
 The common user service commands for file transfer are
RETR, LIST, STOR, NLST, APPE [PR85]. One of the recent
additions to the FTP command set proposed in [EH02] includes
the SIZE command. The SIZE command requests the size of the
remote file to be transferred, before the file is actually requested
with a RETR command. The actual size is returned in a “213
reply”. Knowing the file size can assist a receiver to determine
the restart marker and the number of bytes left to be read under a
restart condition, which may be caused by an end host crash or
network failure.
 FTP provides the retrieval of multiple files based on an
expression given by the user, for example, using “mget * ”. The
files are transferred independently and no form of connection
information is shared between each file’s transfer. Each transfer
requires the client to send PORT, SIZE and RETR (or
equivalent) control commands. The total number of data
connections consumed for a multiple file transfer request is
(n+1): one to transfer of the name list of files, and one for each of
the n file transfers. Figure 1 shows a timeline for multiple file
retrieval, from the server to the client. The timeline shows the
commands and replies exchanged, and the TCP connection

establishment-teardown for the data transfer. (Not shown in
Figure 1 is the TYPE command and its response. Moreover
implementations may use extra commands exchanges prior to the
data transfer. The time line is meant for the reader to understand
the basic command exchanges in FTP and for comparison
purposes to the modifications introduced later in this paper.) The
solid and the dotted line in Figure 1 represent the transfer on the
control and data connection, respectively. The dotted box
represents operations repeated sequentially for each file
transferred.

2.2 Inefficiencies in the current FTP design

FTP’s current design includes a number of inefficiencies due to
(1) separate control and data connection and (2) non-persistent
data connection. Each is discussed in turn.

2.2.1 Distinct control and data connection

A. FTP’s out-of-band control signaling approach has
consequences in terms of end-to-end latency. Traffic on the
control connection is periodic in nature, and hence this
connection typically remains in the slow start phase of TCP
congestion control [APS99]. The control connection is vulnerable

Server Client
PORT

200
NLST

SYN
SYN-ACK

ACK
150

Name List

FIN

226

FIN-ACK

PORT

ACK

 200
213

RETR
SYN

SYN-ACK
ACK
150

DATA

FIN

SIZE

 Figure 1: Current FTP over TCP

. . .

. . .

FIN-ACK

ACK

226

 3

to timeouts because of the send-and-wait nature of control
commands. (Also, insufficient packets are flowing to cause a
TCP fast retransmit.) Thus, an operation (involving a single
control command) will be subject to a timeout in the event of loss
of either a command or its reply.

B. Since control and data flow on separate connections, an extra
overhead of at least 1.5 Round Trip Time (RTT) is incurred for
connection setup-teardown (1RTT for setup and 0.5 RTT for
teardown). Moreover the end hosts create and maintain on
average two Transport Control Blocks (TCBs) for each FTP
session. This factor is negligible for clients, but may significantly
degrade performance of busy servers that are subject to reduced
throughput due to memory block lookups [FTY99].

C. Over the past years there have been considerable discussions
on FTP’s lack of security, some of them attributed to data
connection information (IP address, port number) being
transmitted in plain text in the PORT command on the control
connection to assist the peer in establishing a data connection.
Moreover, transferring IP addresses and port numbers in the
protocol payload creates problem for Network Address
Translators (NATs) and firewalls which must monitor and
translate addressing information [AOM98, Tou02].

2.2.2 Non-persistence of the data connection

A. The non-persistence of the data connection causes connection
setup overhead at least on the order of 1 RTT each time a file
transfer or directory listing request is serviced (see Figure 1).
Queuing delays can significantly increase the RTT [PM94]. To
improve end-to-end delays, every attempt should be made to
minimize the number of round trips.

B. Every new data connection causes a new probing of the
congestion window (cwnd) during the connection’s slow start
phase. Each connection begins by probing for the available
bandwidth before it reaches its steady state cwnd. Moreover, a
loss early in the slow start phase, before the cwnd is large enough
to allow for fast retransmit, will result in a timeout at the server.
Figure 2 graphically shows the nature of this re-probing overhead
in the event of three consecutive file transfers. The interval
between the transfers indicates the time involved in terminating
the previous connection, setting up a new connection, and
transferring control commands. (The reader should be able to
understand that this is a generic example and not an exact
indication of cwnd evolution.)

C. For each file transfer, a one RTT overhead is incurred for each
exchange of the PORT command and its 200 reply (see Figure 1).

D. In the event of multiple small file transfers, the server ends up
having many connections in the TCP TIME-WAIT state and
hence maintain on average more than two TCBs per session. This
per-connection memory load can adversely affect a server’s
connection rate and throughput [FTY99].

3. Possible solutions and drawbacks

We describe some of the possible solutions that try to avoid the
above stated overheads while still using TCP as the underlying
transport service. The drawbacks associated with each solution
are presented.

A. Use a single persistent TCP connection for both control and
data

Improvements: This approach avoids most overheads associated
with FTP’s current design listed in the previous section. The
commands over the control connection can be pipelined (in the
event of a multiple file transfer) to improve latency, and maintain
the probed congestion window for subsequent transfers.

Drawbacks: TCP provides a byte-stream service and does not
differentiate between the different types of data it transmits over
the same connection. Using a single TCP connection requires the
application to use markers to differentiate between control and
data. This marking burden increases application layer
complexity. Control and file data in an FTP session are logically
different types of data, and conceptually are best kept logically, if
not physically, separate. Additionally, using a single connection
risks Head-of-Line (HOL) blocking (HOL blocking is discussed
more in Section 4).

B. Use two TCP connections: one for control, and one persistent
data connection

Improvements: A persistent data connection eliminates the
connection setup-teardown and command exchange overheads
for every file transfer, and thus reduces round trips.

Drawbacks: Due to the sequential nature of commands over the
control connection, the data connection will remain idle in
between transfers of a multiple files transfer. During this idle
time, the data connection congestion window may reduce to as
much as the initial default size, and later require TCP to reprobe
for the available bandwidth. Moreover this approach suffers the
overheads listed in Section 2.2.1.

C. Use two TCP connections: one for control, and one persistent
data connection. Also use command pipelining on the control
connection.

Improvements: A persistent data connection with command
pipelining will maintain a steadier flow of data (i.e., higher
throughput) over the data connection by letting subsequent
transfers utilize the already probed bandwidth.

Drawbacks: This approach suffers from the overheads listed in
Section 2.2.1.

Figure 2: Expected cwnd evolution during a multiple file transfer in
FTP over TCP

 4

D. Use one TCP connection for control, and ‘n’ parallel data
connections

Improvements: Some FTP implementations achieve better
throughput using parallel TCP connections for a multiple file
transfer.

Drawbacks: This approach is not TCP-friendly [FF99] as it may
allow an application to gain an unfair share of bandwidth and
adversely affect the network’s equilibrium [FF99, BFF96].
Moreover past research has shown that parallel TCP connections
may suffer from aggressive congestion control resulting in a
reduced throughput [FF99]. As such, this solution should not be
considered.

Related Work: Apart from the above solutions, researchers in the
past have suggested ways to overcome TCP’s limitations in order
to boost application performance (e.g. [Bra94], [BRS99]). For
example, T/TCP [Bra94] reduced the connection setup/teardown
overhead by allowing data to be transferred in the TCP
connection setup phase. But due to a fundamental security flaw,
T/TCP was removed from operating systems. Objectives (of
aggregating transfers) have also been discussed for HTTP over
the past years [PM94]. But while HTTP semantics allowed for
persistent data connections and command pipelining, FTP
semantics do not allow similar solutions without introducing
changes to the application (see A. above).

Having summarized ways for improving FTP performance while
still using TCP, we now consider improving FTP performance by
using SCTP, an emerging IETF general purpose transport
protocol [SXM+00].

4. SCTP Multistreaming

One of the innovative transport layer services that promises to
improve application layer performance is SCTP multistreaming.
A stream in an SCTP association is “A uni-directional logical
channel established from one to another associated SCTP
endpoint, within which all user messages are delivered in
sequence except for those submitted to the unordered delivery
service” [SXM+00].
 Multistreaming within an SCTP association separates flows of
logically different data into independent streams. This separation
enhances application flexibility by allowing it to identify
semantically different flows of data, and having the transport
layer “manage” these flows (as the authors argue should be the
responsibility of the transport layer, not the application layer). No
longer must an application open multiple end-to-end connections
to the same host simply to signify different semantic flows.
 In Figure 3, Hosts A and B have a multistreamed association.
In this example three streams go from A to B, and one stream

goes from B to A. The number of streams in each direction is
negotiated during SCTP’s association establishment phase.
 Each stream has an independent delivery mechanism, thus
allowing SCTP to differentiate between data delivery and reliable
data transmission and avoid HOL blocking. Similar to TCP,
SCTP uses a sequence number to order information. However,
TCP sequences bytes, and SCTP sequences PDU’s or “chunks”.
SCTP uses Transmission Sequence Numbers (TSN) for reliable
transmission. The TSN is global over all streams. Each stream is
uniquely identified by a Stream ID (SID) and has its own Stream
Sequence Numbers (SSN). In TCP, when a sender transmits
multiple TCP segments, and the first segment is lost, the later
segments must wait in the receiver's queue until the first segment
is retransmitted and arrives correctly. This HOL blocking delays
the delivery of data to the application, which in signaling and
some multimedia applications is unacceptable. In SCTP,
however, if data on stream 1 is lost, only stream 1 may be
blocked at the receiver while awaiting retransmissions. With
streams being logically independent flows, the data on the
remaining streams is deliverable to the application. The socket
API extensions for SCTP [SXY+03] provide data structures and
socket calls through which application can indicate or determine
the stream number on which it intends to send or receive data.

5. FTP over SCTP Variants

In this section we propose three variants of FTP which use SCTP
as the transport layer protocol. Each is discussed in turn.

5.1 FTP over SCTP

FTP over SCTP keeps the same semantics as the classic FTP
over TCP. Thus, this FTP model uses one separate SCTP
association for control, and a new SCTP association for each file
transfer, directory listing, or file namelist. The changes to the
classic implementation involved only changing the socket call
parameters from IPPROTO_TCP to IPPROTO_SCTP in both the
client and the server sources.

5.2 FTP over SCTP with multistreaming

In this second model, we use multistreaming to combine the FTP
control and data connections in a single SCTP association. Only
one SCTP association exists for the entire FTP session. First, an
FTP client establishes an SCTP association with the server.
During initialization, two streams are opened in each direction.
The client and the server send control information (commands
and replies) on their respective stream 0. Their respective data
stream or stream 1 is used to transfer data (files, directory
listings, and file namelists). This approach maintains semantics
for streams analogous to the control and data connections in FTP
over TCP.
 Recall that the data connection in FTP over TCP is non-
persistent and the end of data transfer (EOF) is detected by the
data connection’s close. To detect EOF in our approach, we
utilize the SIZE command [EH02]. The SIZE command is
already widely used in FTP for the purpose of detecting restart
markers. For directory listings, the end of data transfer is detected
by using the information (number of bytes read by the resvmsg

Figure 3: Use of streams within an SCTP association

 5

call) provided to the application by the SCTP socket API
[SXY+03].
 In the event of a multiple file retrieval issued, the client sends
out the request on outgoing stream 0 and receives the data on
incoming steam 1 for each file in a sequential manner. Figure
4(a) shows the retrieval of multiple files using FTP over
multistreamed SCTP. The outgoing stream for all messages and
data has been identified. Data on stream 1 is represented by
dashed lines, and control messages on stream 0 have been
represented by solid lines. The dashed box on the timeline in
Figure 4(a) indicates the operations that are repeated sequentially
for each file to be transferred.
 This approach has various advantages, and avoids most of the
overheads described in Section 2.2. The number of round trips is
reduced as: (1) a single connection (association in SCTP
terminology) exists throughout the FTP session, hence repeated
setup-teardown of each data connection is avoided, and (2)
exchanging PORT commands for data connection information is
not needed. The server load is reduced as the server maintains
TCBs for at most half of the connections as required with FTP
over TCP.
 The drawback that this approach faces is similar to the
drawbacks described in Section 2.2.2 (B). In the event of a
multiple file transfer, each subsequent file transfer will not be
able to utilize the prior probed available bandwidth. Before
transmitting new data chunks, the sender calculates the cwnd
based on the SCTP protocol parameter Max.Burst [SOA+03] as
follows:

if ((flightsize + Max.Burst*MTU) < cwnd) (1)
 cwnd = flightsize + Max.Burst*MTU

 Since the next file transfer of file i+1 cannot take place
immediately (due to the exchange of control commands before
each transfer (see Figure 4a)), all data sent by the server for file i
gets acked, and reduces the flightsize at the server to zero. Thus
in multiple file transfers, the server’s cwnd may be reduced to
Max.Burst*MTU ([SOA+03] recommends the value of the
protocol parameter Max.Burst to be set to 4) before starting each
subsequent file transfer.

5.3 FTP over SCTP with multistreaming and command
pipelining

Finally in this third model we introduce command pipelining in
our design from Section 5.2 to avoid unnecessary cwnd reduction
for a multiple file transfer. In Section 5.2’s model, the cwnd
reduction between file transfers occurs because the SIZE and
RETR commands for each subsequent file are sent only after the
previous file has been received completely by the client.
 In Figure 4(b), we present a solution which allows each
subsequent transfer to utilize the probed value of congestion
window from the prior transfer. Command pipelining ensures a
continuous flow of data from the server to client throughout the
execution of a multiple file transfer. As seen in Figure 4(b), after
parsing the name list of the files, the client sends SIZE
commands for all files at once. As soon as a reply for each SIZE
command is received, the client sends out the RETR command
for that file. Since the control stream is ordered, the replies for
the SIZE and RETR commands will arrive in the same sequence
as the commands.

 By using SCTP multistreaming and pipelining, FTP views
multiple file transfers as a single data cycle. Command pipelining
aggregates all of the file transfers resulting in better management
of the cwnd. This solution overcomes all of the drawbacks listed
in Section 2.2, resulting in a more efficient utilization of the
bandwidth.

6. Experimental results

We now report on our experimental study of FTP over TCP vs.
FTP over SCTP. We focus only on experimental results, however
we have also verified our results by simulations using ns version
2.1b8 [NS] and the SCTP patch developed within our Protocol
Engineering Lab (PEL) at the University of Delaware. We
measured the total transfer time observed for a multiple file
transfer for a varied set of parameters.

 Server Client
NLST

150
Name List

226
213

RETR
150

 DATA

226

 SIZE

 (a)

Stream 0
Stream 0

Stream 0

Stream 0

Stream 1

Stream 0

Stream 0

Stream 0

Stream 1

Stream 0

. . .

. . .

Figure 4: (a) FTP over multistreamed SCTP (b) FTP over
multistreamed SCTP with command pipelining

Client

NLST
150
Name List

226

(b)

Stream 0

RETR
213
213

150

226

RETR

DATA

 Server

SIZE

SIZE
Stream 0
Stream 0

Stream 0
Stream 0

. . .

. . .

Stream 0

Stream 1

Stream 0

Stream 0
Stream 0

Stream 0

Stream 1

Stream 0

 6

• Bandwidth-Propagation Delay (B-D) configuration: Three
path configurations were evaluated: (1Mbps, 35ms),
(256Kbps, 125ms), (3Mbps, 1ms). Both the client to server and
server to client paths share the same characteristics. In this
section, we focus on the results of (1Mbps, 35ms)
configuration. Results of the other two configurations have
been described in Appendix A.

• Packet Loss Ratio (PLR): The PLRs studied were (0, .01, .03,
.06, and .1). Each value represents the loss ratio for both the
client to server and the server to client paths experience the
same loss rate. We used a uniform probability distribution to
emulate packet loss. Certainly 10% loss represents an extreme
case but we were interested in general trends as the loss rate
increases. Moreover, higher loss rates may be of interest to
wireless and military networks.

• File sizes: Although FTP is widely used for bulk data transfer,
some applications (e.g., source updates) use FTP to transfer
small files. To evaluate potential reduced overheads in a
variety of these applications, we chose file sizes as (10K, 50K,
200K, 500K, and 1M).

 Two sets of experiments were performed with different
number of files transferred (10 and 100 files) to observe the
effect of total transfer time on the number of files being
transferred.

6.1 Experimental setup

We used Netbed [WLS+02] (an outgrowth of Emulab) which
provides integrated access to experimental networks. Three nodes
were used for each experiment, one for the FTP client and one
for the FTP server. The third node acted as a router for shaping
traffic between the client and server. The client and server nodes
are 850MHz Intel Pentium III processors, and based on the Intel
ISP1100 1U server platform. All three nodes run FreeBSD-4.6.
The FreeBSD kernel implementation of SCTP available with the
KAME Stack [KAME] was used on the client and server nodes.
KAME is an evolving and experimental stack mainly targeted for
IPv6/IPsec in BSD based operating systems. An updated
snapshot of the stack (KAME snap kit) is released every week.
We used the snap kit of 14th October, 2002. The router node runs
Dummynet [Riz97] which simulates a drop tail router with a
queue size of 50 packets, and specified bandwidth, propagation
delay and packet loss ratio.
 We implemented protocol changes by modifying the FTP
client and server source code available with the FreeBSD 4.6
distribution. In our experiments, total transfer was measured
using packet level traces as follows. The starting time was taken
as the time the client sends out the first packet to the server
following the user’s “mget” command. The end time was the
time the “226 control reply” from the server reached the client
after the last file transfer. Each combination of parameters (3 B-
D configurations x 5 PLR x 5 file sizes) was run multiple times
to achieve a 90% confidence level for the total transfer time.
Tcpdump [TCPDUMP] (version 3.7.1) was used to perform
packet level traces. SCTP decoding functionality in tcpdump was
developed in collaboration of UD's Protocol Engineering Lab and
Temple University's Netlab. Our results compare four FTP
variants:

(1) FTP over TCP: The current FTP protocol which uses a
separate TCP connection for control, and a new TCP data

connection for every file transfer, directory listing and name
list. The TCP variant used was New-Reno.

(2) FTP over SCTP: The original FTP protocol design but using
SCTP at the transport. See Section 5.1.

(3) FTP over multistreamed SCTP: This design, described in
Section 5.2, uses a single SCTP association for both control
and data. It uses multistreaming to assign one stream to
control, and one stream to data. The SCTP association
between the client and the server persists throughout the
FTP session.

(4) FTP over multistreamed SCTP with command pipelining:
Described in Section 5.3, this design adds command
pipelining to FTP over multistreamed SCTP to ensure that
the congestion window is not needlessly probed for each file
transfer.

 We have performed experiments involving single as well as
multiple file transfer. Although the improvement of file transfers
using SCTP multistreaming is also witnessed in single file
transfers, we emphasize the results of experiments involving
multiple file transfer for two reasons. First, the positive impact of
multistreaming is more predominant in the event of multiple file
transfers. Second, comparing variant (1) vs. variant (2) provides
insight on single file transfer.

6.2 Results

Figure 5 shows the results obtained for (1Mbps, 35ms)
bandwidth-delay configuration. Each graph represents the loss
probabilities vs. total transfer time to retrieve 10 files (each the
same size) using four different FTP variants. Figure 6 shows the
same comparisons but with retrieval of 100 files.

6.2.1 Comparing (1) vs. (2)

 Since variant (2) is simply a straightforward substitution of TCP
calls with SCTP calls, any difference in performance must be
attributed to SCTP’s handling of data (i.e., congestion control,
loss recovery) and not to its feature of multistreaming. Figure 5
shows that for small file transfers (see Figure 5(a) and 5(b)) (1)
and (2) overall perform similarly. (2) performs worse than (1) at
low loss rates (~ 0-3%) due to the fact that the per packet payload
being carried by SCTP (1408 bytes) is less than TCP (1448
bytes) thus making the overhead associated with SCTP slightly
more than TCP. (At the time experiments were performed, the
SCTP fragmentation threshold for the FreeBSD implementation
was 1408. This threshold has been increased recently thus
reducing its effect on per packet overhead.) As the packet loss
rate increases, (2) begins outperforming (1). We believe this
reversal is due to SCTP’s more robust loss recovery and
congestion control mechanisms which outbalance the effects of
per packet overheads. Details on the differences of congestion
control mechanisms between SCTP and TCP can be found in
[AAI02].
 For small file transfers, the data connection in both (1) and (2)
is dominated by the slow start phase of the congestion control. As
the file size increases (see Figures 5 and 6: (c), (d) and (e)), the
data connection’s life time in both (1) and (2) is dominated by the
congestion avoidance phase. Hence as the file size increases,
both the scale and ratio of performance benefit seen by (2) as
compared to (1) at loss rates (1-10%) increases. For example, at

 7

3% loss rate the ratio of total transfer time taken by (1) to (2) is
0.92, 1.14, 1.29, 1.31, 1.56 for ten 10K, 50K, 200K, 500K and
1M multiple file transfers, respectively. This steady increase
results because as the number of loss events generated increases
proportionally with the size of file transfers, SCTP takes
advantage over TCP on a per loss event basis eventually reducing
latency by nearly or more than 50%. This improvement can be
seen in Figure 6(e) at a 3% loss, (1) requires 2210 seconds to
transfer 100 1M-files whereas (2) requires 1409 seconds.
 As can be seen from Figures 5 and 6, as the number of file
transfers increase from 10 to 100, the scale of performance of (2)
as compared to (1) also increases. As the loss rate increases,
more significant performance improvements can be seen. SCTP’s
significant outperformance of TCP at medium to high loss rate
came as a surprise as it was widely understood that the
congestion control mechanisms in TCP and SCTP are
approximately the same. We have validated our results using
simulations, and are currently investigating the effect of the
subtle differences between the congestion control mechanisms in
TCP and SCTP, which result in such significant difference
observed in overall steady state performance (e.g., SCTP’s
congestion control semantics incorporate Limited Transmit
[ABF01], Appropriate Byte Counting [All03], while the TCP
implementation that is currently prevalent (and the TCP
implementation used in our experiments) does not use such
features.). The congestion control mechanisms in TCP are in the
process of being fine tuned, a research task underway in the IETF
[e.g., ABF01, All03]. Once the TCP extensions are included in
TCP implementations, we expect (1) and (2) to perform similarly
at different loss rates.

6.2.2 Comparing (3) and (4) vs. (2)

We now turn our discussion to the multistreamed FTP variants
(3) and (4). We compare (3) and (4) with (2) and not with (1)
because our main focus is to evaluate the effect of SCTP
multistreaming and command pipelining on multiple file
transfers.
 As noted in Sections 2 and 5, using multistreaming and
command pipelining (a) reduces the number of round trips in
command exchanges and connection setup-teardown, and (b)
maintains the probed value of the congestion window for
subsequent transfers in a multiple file transfer. We hypothesized
that the effect of (a) would remain fairly constant irrespective of
the file sizes being transferred, and the effect of (b) would be
more evident in transfer of small files and less in large files. For
small files, non-persistent data connections would tend to remain
in the slow start phase probing for available bandwidth, whereas
the time spent in probing for available bandwidth for large file
transfers would be relatively small as compared to the time spent
in steady state congestion avoidance. However, we expected that
the effects of both (a) and (b) would be directly proportional to
the number of files being transferred.
 In (3) we reduce the number of round trips but do not maintain
the probed congestion window for subsequent transfers (see
Section 5.2). As noted above this effect should have a constant
scale as compared to (2). We can see from Figure 5 that the ratio
of transfer time taken by (2) vs. (3) remains fairly constant
ranging between 1.5 and 1.7. The small variance can be
attributed to the losses (which result in timeouts) incurred by the

extra round trips involved in (2). As noted above, the most
significant impact of (4) as compared to (2) comes for short
transfers. For example in Figure 6(a), at a 3% loss scenario (2)
requires 103.3 seconds to transfer 100 files of size 10K each, as
compared to (4) which takes only 19.8 seconds. From Figure 5, at
3% loss rate the ratio of total transfer time taken by (2) to (4) is
4.9, 4.1, 3.5, 3.1, and 2.1 for ten 10K, 50K, 200K, 500K and 1M
file transfers, respectively. Thus this effect, which is also seen by
comparing the ratio of (3) vs. (4), demarcates the benefits that
multistreaming and command pipelining provide.
 Moreover, it can be seen from Figures 5 and 6 that as the
number of files to be transferred increase from 10 to 100, the
performance gain by (4) as compared to (2) increases. This
increase implies significant benefits to mirroring applications that
use FTP (e.g., fmirror) which often have to mirror a large number
of files from one server to the other.
 We would like to note that comparing (1) which is FTP over
TCP-New Reno (the variant prevalent in the Internet) to (4)
shows the tremendous impact that SCTP, multistreaming and
command pipelining can have in FTP transfer time. From Figure
6(e), (1) takes 2210 seconds as compared to (4) which takes 948
seconds to transfer 100 1M-files at 3% loss. Also to note is that
(3) and (4) perform consistently better as compared to either (1)
or (2) irrespective of the loss rates.
 [The results of other bandwidth-delay configurations are
included in Appendix A. Due to page limitations, they will not be
included in the final paper if accepted.]

6.2.3 Summary

To summarize the results of our experiments:

• It is evident from the experimental results that (2) performs
close to (1) at lower loss rates, and as the loss rate increases,
(2) outperforms (1) significantly. For smaller loss rates, per
packet overhead in (2) results in marginally lower
performance as compared to (1). (This factor does not play
into the latest implementation of SCTP.) Past research has
shown that the congestion control semantics and loss
recovery mechanisms in SCTP are robust as compared to
TCP, which result in better steady state throughput at higher
loss rates [AAI02].

• Exploiting SCTP multistreaming (in (3)) performs better by a
steady scale factor of approximately 1.5 (in relation to file
sizes) as compared to FTP over SCTP without
multistreaming (in (2)). This gain can be attributed to the fact
that multistreaming helps in reducing a constant number of
round trips directly proportional to the number of files being
transferred. The slight variance witnessed is due to the loss
(and eventually timeouts) that these extra round trips can
incur.

• Adding command pipelining to multistreaming in (4) further
reduces total transfer time for a multiple file transfer. The
effect of command pipelining is more predominant in small
transfers due to the fact that short flows spend most of the
time probing for the available bandwidth.

• The absolute scale of transfer time improvement in FTP over
multistreamed SCTP with/without command pipelining is
directly proportional to the number of files being transferred
in a multiple file transfer request: more files transferred
results in more relative savings in transfer time.

 8

 (a) File Size = 10K
 (b) File Size = 50K

 (c) File Size = 200K
 (d) File Size =500K

 (e) File Size = 1M

Figure 5: Transfer Time vs. Loss Probability for a multiple
transfer of 10 files (Bandwidth = 1Mbps Propagation
Delay = 35ms)

 9

 (a) File Size = 10K

 (c) File Size = 200K

 (e) File Size = 1M

 (b) File Size = 50K

 (d) File Size = 500K

Figure 6: Transfer Time vs. Loss Probability for a multiple
transfer of 100 files (Bandwidth = 1Mbps Propagation
Delay = 35ms)

 10

7. Conclusions

Our experimental results confirm that modifying FTP to use
SCTP multistreaming and command pipelining dramatically
reduces latency of multiple file transfers. These features:

• reduce the number of connections by aggregating the control
and data connections,

• reduce the number of round trips required for connection

setup/teardown, and command exchange, and

• use the bandwidth more efficiently by preserving the
congestion window between file transfers.

Apart from transfer time improvements, other advantages
achieved by running FTP over SCTP (with multistreaming and/or
command pipelining) instead of over TCP are:

• The number of connections a server must maintain is
reduced. Quantifying server load and its effects on
throughput is beyond the scope of this paper. The interested
reader is pointed to [FTY99]. We however expect that by
using either modification (3) or (4), servers will be able to
serve at least twice the number of clients as compared to the
current FTP over TCP design (assuming that the bottleneck
for the number of simultaneous clients served is the number
of TCBs reserved for the connections). This consideration
may be of interest to busy servers who are constrained by
the number of clients that can be served simultaneously.

• The number of packets exchanged between the client and the

server is reduced, thus reducing the overall network load.

• Aggregating control and data connections into one SCTP
multistreamed association solves concerns that current FTP
protocol faces with Network Address Translators (NAT) and
firewalls in transferring IP addresses and port numbers
through the control connection [AOM98, Tou02].

 The authors further argue that the benefits of SCTP’s
multistreaming can be exploited by other applications. SCTP’s
multistreaming provides a TCP-friendly mechanism for parallel
transfers. Ongoing research at UD’s PEL is investigating whether
web transfers using HTTP can benefit from aggregation of
multiple transfers in a single SCTP association.

Two limitations of this work which we plan to address in the
future:

• We have used a uniform loss distribution model for
emulating losses on the path. We are investigating a
variation of Dummynet which can model burst losses.

• Recent additions to the TCP congestion control [e.g. ABF01,

AF99] attempt to fine tune TCP’s behavior to result in faster
recovery from loss events, and fewer timeouts. An extension
to our work could be to take such TCP fine tunings into
consideration.

Acknowledgements

This paper significantly benefited from discussions with
Janardhan Iyengar and Armando Caro. We thank Randall Stewart
for providing support for the KAME stack implementation of
SCTP. We thank Jay Lepreau and the support staff of Netbed
(formerly known as Emulab), the Utah Network Emulation
Testbed (which is primarily supported by NSF grant ANI-00-
82493 and Cisco Systems) for making their facilities available
for our experiments. A special thanks to Mike Hibler for helping
set up nodes on Netbed. Finally, we thank the members of the
Protocol Engineering Lab for helpful comments on an earlier
draft of this paper.

References

[AAI02] R. Alamgir, M. Atiquzzaman, W. Ivancic, Effect of
Congestion Control on the Performance of TCP and SCTP over
Satellite Networks. Proc. NASA Earth Science Technology
Conference, June 2002. Pasadena, CA.

[ABF01] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP's
Loss Recovery Using Limited Transmit. RFC 3042, January 2001.

[AF99] M. Allman, A. Falk, On the Effective Evaluation of TCP.
ACM Computer Communication Review, 29(5), October 1999.

[All03] M. Allman, TCP Congestion Control with Appropriate Byte
Counting (ABC). RFC 3465, February 2003.

[AO97] M. Allman, S. Ostermann, Multiple Data Connection FTP
Extensions. Technical Report TR-19971, Ohio University Computer
Science, February 1997.

[AOM98] M. Allman, S. Ostermann, C. Metz, FTP extensions for
NATS and firewalls. RFC 2428, September 1998.

[APS99] M. Allman, V. Paxson, W. Stevens, TCP Congestion
Control. RFC 2581, April 1999.

[Bra94] R. Braden, T/TCP - TCP extensions for transactions
functional specification. RFC 1644, July 1994.

[BRS99] H. Balakrishnan, H. Rahul, S. Seshan, An Integrated
Congestion Management Architecture for Internet Hosts.
Proceedings SIGCOMM, September 1999.

[Bel94] S. Bellovin, Firewall-Friendly FTP. RFC 1579, February
1994.

[BFF96] T. Berners-Lee, R. Fielding, H. Frystyk, Hypertext Transfer
Protocol -- HTTP/1.0. RFC 1945, IETF, May 1996.

[BPS+98] H. Balakrishnan, V. Padmanabhan, S. Seshan, M. Stemm,
R. Katz, TCP Behavior of a Busy Internet Server: Analysis and
Improvements. Proc. IEEE Infocom, March 1998. San Francisco,
CA.

[EH02] R. Elz, P. Hethmon, Extensions to FTP. draft-ietf-ftpext-
mlst-16.txt, IETF Internet draft (work in progress), September 2002.

 11

[FF99] S. Floyd, K. Fall, Promoting the Use of End-to-End
Congestion Control in the Internet. IEEE/ACM Transactions on
Networking, August 1999.

[FH99] S. Floyd, T. Henderson, The NewReno Modification to TCP's
Fast Recovery Algorithm. RFC 2582, April 1999.

[FTY99] T. Faber, J. Touch, W. Yue, The TIME-WAIT State in TCP
and Its Effect on Busy Servers. Proceedings Infocom, March 1999.
New York City, NY.

[HL97] M. Horowitz, S. Lunt, FTP Security Extensions. RFC 2228,
October 1997.

[KAME] KAME Project, www.kame.net

[Kin00] J. King, Parallel FTP Performance in a High-Bandwidth,
High-Latency WAN, SC2000, November 2000.

[MC00] S. McCreary, K. Clay, Trends in Wide Area IP Traffic
Patterns - A View from Ames Internet Exchange. Proc. ITC,
September 2000. Monterey, CA.

[NS] UC Berkeley, LBL, USC/ISI, and Xerox Parc. Ns-2
documentation and software, version 2.1b8.
http://www.isi.edu/nsnam/ns.

[PM94] V. Padmanabhan, J. Mogul, Improving HTTP latency. Proc.
2nd International World Wide Web Conference, October 1994.
Chicago, IL.

[PR85] J. Postel, J. Reynolds, File Transfer Protocol (FTP). RFC
959, October 1985.

[Riz97] L. Rizzo, Dummynet: a simple approach to the evaluation of
network protocols. ACM Computer Communication Review,
27(1):3141, January 1997.

[SOA+03] R. Stewart, L. Ong, I. Arias-Rodriguez, K. Poon, P.
Conrad, A. Caro, M. Tuexen, Stream Control Transmission Protocol
(SCTP) Implementers Guide.draft-ietf-tsvwg-sctpimpguide-08.txt,
IETF Internet draft (work in progress), February 2003.

[SXM+00] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V. Paxson,
Stream Control Transmission Protocol. RFC 2960, October 2000.

[SXY+03] R. Stewart, Q. Xie, L. Yarroll, J. Wood, K. Poon,, K.
Fujita, M. Tuexen, Sockets API Extensions for Stream Control
Transmission Protocol (SCTP). draft-ietf-tsvwg-sctpsocket-06.txt,
IETF Internet draft (work in progress), February 2003.

[TCPDUMP] TCPDUMP public repository, http://www.tcpdump.org

[Tou02] J. Touch, Those Pesky NATs, IEEE Internet Computing, pp.
96, July/August 2002.

[WLS+02] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, A. Joglekar. An Integrated
Experimental Environment for Distributed Systems and Networks.
Proc. 5th Symposium on Operating Systems Design and
Implementation, December 2002. Boston, MA.

[WUARCHIVE] Usage Statistics for wuarchive,
http://wuarchive.wustl.edu

Appendix A

Figures 7 and 8 present results comparing the four FTP variants
discussed earlier in this paper, in different bandwidth-delay
configurations. The (256Kbps, 125ms) configurations represents
an emulated satellite channel; whereas the (3Mbps, 1ms)
configuration can be thought of as representing a Local Area
Network (LAN) connectivity. The experimental setup used is the
same as described in Section 6.1. The number of files transferred
using a multiple file transfer is 10.

It can be seen from Figures 7 and 8 that the relative scale of
improvement of (3) or (4) as compared to (1) remains fairly
similar for different bandwidth-delay configurations. However,
since the path with the higher effective RTT will result in lower
throughput, the absolute difference in transfer time taken by (3)
or (4) as compared to (1) will be large for such a configuration.
This effect can be seen by comparing the total transfer time taken
in corresponding graphs in Figures 6 and 7.

As seen earlier, (1) performs slightly better than (2) at low loss
rates (0-3%), however (2) outperforms (1) significantly as the
loss rate increases and as the size of the files being transferred
increases. The outperformance of (2) can be again attributed to
the better congestion control semantics in SCTP as compared to
TCP.

Experimenting with different bandwidth-delay configurations,
results in similar conclusions about the relation of file sizes and
impact of multistreaming and command pipelining. Multiple file
transfer of smaller file sizes (10K, 50K) using (3) or (4) results in
significant relative improvements in throughput. As the loss rate
increases, total transfer time taken by (4) increases much slowly
as compared to (1) or (2). This robustness to loss can be derived
from the congestion control principles in SCTP: since (4)
aggregates all the files into a bulk data transfer (thus keeping the
window fairly high), the number of losses detected by timeouts in
(4) will be relatively very low as compared to the number of
losses detected by four missing reports. However, in (1) and (2),
the connection may spend substantial time in slow start (thus
having smaller windows), and hence depend on timeouts for loss
recovery.

 12

 (a) File Size = 10K

 (b) File Size = 50K

 (c) File Size = 200K
 (d) File Size =500K

 (e) File Size = 1M

Figure 7: Transfer Time vs. Loss Probability for a multiple
transfer of 10 files (Bandwidth = 256Kbps Propagation
Delay = 125ms)

 13

 (a) File Size = 10K

 (b) File Size = 50K

 (c) File Size = 200K

 (d) File Size =500K

 (e) File Size = 1M

Figure 8: Transfer Time vs. Loss Probability for a multiple
transfer of 10 files (Bandwidth = 3Mbps Propagation
Delay = 1ms)

