
Making SCTP More Robust to Changeover
�

Janardhan R. Iyengar, Armando L. Caro, Jr., Paul D. Amer, Gerard J. Heinz
Computer and Information Sciences

University of Delaware�
iyengar, acaro, amer, heinz � @cis.udel.edu

Randall R. Stewart
Cisco Systems Inc.

rrs@cisco.com

Abstract

Unlike TCP, the Stream Control Transmission Protocol (SCTP) supports IP multihoming at the transport
layer. SCTP allows an association to span multiple local and peer IP addresses, and allows the application
to dynamically change the primary destination during an active association. We present a problem in the
current SCTP (RFC2960) specification that results in unnecessary retransmissions and “TCP-unfriendly”
growth of the sender’s congestion window during certain changeover conditions. We first present an
analytical model of this problem, and then propose solutions which incorporate changeover awareness
in SCTP’s congestion control mechanism. Using ns-2 simulations, we validate the model and evaluate
the recommended solution. Based on the analysis, we make recommendations for modifications to SCTP.

1 Introduction

A node is multihomed if it can be addressed by multiple IP addresses [4], as would be the case when the
host has multiple network interfaces. Network layer redundancy allows access to a host even if one of its IP
addresses becomes unreachable; ideally packets can be rerouted to one of the host’s alternate IP addresses.
However, since IP is connectionless, end-to-end session persistence under failure conditions becomes the
responsibility of the transport layer and above. To provide for such fault tolerance, the Stream Control
Transmission Protocol (SCTP) supports multihoming at the transport layer. SCTP sessions, or associations,
can dynamically span over multiple local and peer IP addresses so that an association can remain alive even
if one of the endpoints’ addresses becomes unreachable.

In an SCTP association, the sender transmits data to its peer’s primary destination address. SCTP provides
for application-initiated changeovers so that the sending application can change the the sender’s primary

�
Prepared through collaborative participation in the Communications and Networks Consortium sponsored by the U. S. Army

Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U.
S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
thereon.

1

destination address, thus moving the outgoing traffic to a potentially different path1. We have uncovered
a problem in the current SCTP (RFC2960) specification [11] that results in unnecessary retransmissions
and “TCP-unfriendly” growth of the sender’s congestion window under certain changeover conditions. We
present the problem in a specific case in [6].

In this paper, we present the problem in general form, and develop an analytical model of the problem
in section 2. The analytical model abstractly quantifies the cwnd overgrowth under various network and
changeover conditions. Based on the model, we present some results estimating conditions for cwnd over-
growth in section 3. Having proposed the Rhein Algorithm as a solution in [6], we now present in section
4 two changeover aware congestion control algorithms: Conservative CACC (C-CACC) and Split Fast Re-
transmit CACC (SFR-CACC), are presented. After analyzing the advantages and disadvantages of the Rhein
and the CACC algorithms, we recommend the addition of the SFR-CACC algorithm to SCTP.

2 Congestion Window Overgrowth: A General Model

In [6], we present a specific example illustrating the occurence of cwnd overgrowth and unnecessary retrans-
missions with SCTP’s currently specified handling of changeover. In this section, we model the scenario
described in [6] in general terms. This model abstractly quantifies the cwnd overgrowth and the number of
unnecessary retransmissions caused by the changeover under various network conditions.

In section 2.1, we describe the architecture and the parameters used in the model. In 2.2, we present a
generalized timeline of SCTP behaviour during changeover. We then derive analytic results from this general
model in section 2.3, followed by a discussion of these results in section 2.4.

2.1 Preliminaries

NetworkHost A

Path1

Path2

A1

A2

Host B
B1

B2

Figure 1: Model architecture

Consider the architecture shown in figure 1. SCTP endpoints
�

and � have an association between them.
Both endpoints are multihomed,

�
with network interfaces

���
and

���
, and � with interfaces � � and � � 2.

All four addresses are bound to the SCTP association effectively allowing
�

and � to use either of their two
interfaces for transmitting or receiving.

1SCTP was designed as a transport protocol for telephony signaling networks, i.e., SS7 networks. In an SS7 network the upper
layers have a say in which destination address packets will be sent to, motivating the application-initiated changeover feature in
SCTP.

2More precisely, ��� , �
	 , ��� and �
	 are IP addresses associated with link layer interfaces. Here we assume only one address
per interface, so address and interface are used interchangeably.

2

For one of several possible reasons (e.g., path diversity, policy based routing, load balancing), we assume
that the data traffic from

�
to ��� is routed out

� � , and from
�

to ��� is routed out
� � .

We now describe the parameters used in the development of the model. Some of the parameters may not be
immediately clear. These parameters will be discussed further in section 2.2, which describes the timeline
used for the general model.

� ���
	 � ��� : Maximum Transmission Unit (MTU) sizes on forward paths
� � to ��� and

� � to ��� , respectively�����
	����� : End-to-End available bandwidths [7] on forward paths
� � to ��� and

� � to ��� , respectively� : Delay experienced by a packet along a path, given by:

��� ����������������� ! "�$#&%('*),+-'/. ��0 %('1)2+,3". �40 %$576 � 6 � . �80 %:9�)2;&<>=,. � (1)

where '1)2+-' = propagation delay, '1)2+,3 = processing delay, 5?6 � 6 � = queueing delay, and 9�)2;&<>= = transmis-
sion delay.

� � : Delay experienced by a data packet, along the forward path. Assumption: Each data packet is @BADC
sized, therefore, � � is estimated by:

� � � ������>�E���F�-�G
 "�$#H�JIK�����ML/���N/#"�OP %('*),+-'/. � 0 %('1)2+,3". � 0 %$576 � 6 � . � 0
�
� � (2)

where,
�

is the MTU of the path, and � � is available bandwidth at hop Q .� ���
	 � ��� : Delays experienced by a data packet on forward paths
� � to ��� and

� � to ��� , respectively,

�SR : Delay experienced by a pure SACK packet, along the reverse path. Assumption: that transmission
delays for pure SACK packets are negligible, therefore, � R is estimated by:

�?RT� ������U�E�V�����G
 "�$#H�JIW���FX��F��YF�Z#"�OP %('1)2+-'/. ��0 %('1)2+73". �[0 %$576 � 6 � . � (3)

� � R 	 � � R : Delays experienced by a pure SACK packet on reverse paths �4� to
� � and ��� to

� � , respectively.

\
: Minimum delay observed between consecutive packets transmitted along a same path by the receiver of

the packets. This delay is dictated by end-to-end available bandwidth of the path, which is determined by
the hop with the minimum available bandwidth on the path (in other words, the path bottleneck).

\
is given

by: \ � �
]8^P_ �������E�V�F�-�G ! S�:#�` � �Fa (4)

where,
�

is the MTU of the path, and � � is available bandwidth at hop Q .
\ ��� 	 \ ��� : Minimum delays between consecutive data packets from

� � to � � observed at � � , and from� � to ��� observed at ��� , respectively.\ � R 	 \ � R : Minimum delays between consecutive SACK packets from � � to
� � observed at

� � , and from��� to
� � observed at

� � , respectively.

Assumption: The reverse path does not change the delay between SACKs. In other words, the forward

3

path’s bottleneck dictates the rate at which SACKs are transmitted and then received, not the reverse path’s
bottleneck. Therefore, the delay observed between SACKs is the same as the delay observed between the
data packets. In other words, \ � R � \ ���
	 ;�<

\ \ � R � \ ��� (5)

� ��	 � � : Congestion windows at A for ��� and ��� , respectively

9 � : Changeover time - Moment after a changeover when sender
�

starts sending packets to new primary
destination � �
9 � : Time when fast retransmission (incorrectly) starts.� � : Number of Transmission Sequence Numbers (TSNs) sent in initial group transmitted to destination �8�
in the time interval `�� 	 9 �

a
.� 0�� : First TSN to be fast retransmitted (incorrectly) by

�
.

2.2 Model Description

We now present a generalized timeline of SCTP behaviour during changeover in Figure 2. This timeline
is an excerpt from an association and is based on an example scenario described in [6]. The vertical lines
represent interfaces ��� , � � , � � and ��� . The numbers along the vertical lines represent times. Each arrow
depicts the departure of a packet from one transport layer and its arrival at the destination. The labels on
the arrows are either SCTP Transmission Sequence Numbers (TSN) or labels ��A	� % A�
��� A
�� . . Assuming
one chunk per packet, every packet in the model corresponds to one TSN. A number represents the TSN of
the chunk in the packet being transmitted. A label ��A � % A
� � A
�� . represents a packet carrying a SACK
chunk with cumulative ack A�� , and gap ack for TSNs A�
� through A�
�� .

The assignments such as initial TSN = 1 and initial time 9 � � are arbitrary assignments to signify the
beginning of the snapshot. These assignments are not meant to imply the beginning of the association.
cwnds are shown in @BADC s and not bytes. Initially,

� � ��� because we assume that either there has been
no transmission to ��� before 9 � � during the lifetime of the association, or

� � has decayed3 to two @BADC =by 9 � � . For simplicity of analysis, we assume that the host
�

transmits one chunk per packet, and each
packet is @BADC sized.

At 9 � � , host
�

starts to transmit
� � TSNs (TSN 1 through

� �) to destination address ��� . By time 9 � the
transport layer at host

�
has

� � TSNs outstanding. This group of TSNs (1 through
� �) is referred to as the

initial group. Note that these TSNs are outstanding at the transport entity at host
�

and could be buffered
anywhere along the end-to-end path, even at interface

� � . By time 9 � ,
�

has changed its primary destination
to ��� . At the instant 9 � 9 � ,

�
starts transmitting new data to � � through interface

� � . 9 � can also be thought
of as the time elapsed from the transmission of the first outstanding TSN on destination �[� at the time of
transmission of the first TSN on destination � � after changeover. Note that the SCTP receiver normally
responds with delayed SACKs for packets, but sends a SACK for each received packet when reordering is
observed.

3According to RFC2960 [11], the cwnd for a certain destination address decays exponentially if no data is transmitted to that
destination address.

4

1 G
1 +1

SY ([G1
+1] - [G1 +1])*

K+1

S G
1 +5

G1

G
1 +2

(C2 = G1 -K+1)

B1 A1 A2 B2

Sender
A

Receiver
B

Receiver
B

(C2=2) tc

K+2
SK+2 ([G

1 +1] – [G
1 +4])

K
SK ([G

1 +1] - [G
1 +X])*SK+1 ([G

1 +1] - [G
1 +4])

t1

(C2 = 2) t2

e1F

(C2 = 3)

(C2 = 4)

2

0

SK ([G1
+1] - [G1

+4])t1

G
1 +4

G
1 +3

G
1 +5

G1 - 1
S G

1 -1 ([G
1 +1] - [G

1 +5])

(C2 = G1 -K+2)

t2

* X = 3 if TSN K is received after TSN (G1+ 3), i.e.,
{ e1F + (K-1)d1F } > { tc+ 2e2F + e2R }

2 otherwise
Y = ceiling {(tc+ e2F - e1F) / d1F}

d1F
d2F

e2F

e1R

e2R

d2F

New transmissions,
limited by Max.Burst

K+1 (rtx)K+2, K+3 (rtx)
K+4, K+5 (rtx)

G
1 (rtx)

(G1 TSNs being
transmitted)

Figure 2: General timeline for the problem

The critical instant in the scenario, denoted as 9 � , occurs when
�

receives the fourth legitimate4 missing
report. At this instant, TSNs

� 0 � through
� � get marked for retransmission. Due to the receipt of a

SACK acking TSN
� � 0 � , (at 9 �)

� � allows one @ ADC sized chunk to be transmitted, hence TSN
� 0 �

gets retransmitted to destination � � . According to RFC2960, “... when its peer is multi-homed, an endpoint
SHOULD try to retransmit a chunk to an active destination transport address that is different from the last
destination address to which the DATA chunk was sent”. Since the original transmission of TSN

� 0 �
went to � � , the retransmission of TSN

� 0 � is sent to � � . The value of
�

is estimated and its relevance to
the cwnd overgrowth is explained in section 2.3.

The retransmission of TSN
� 0 � at 9 � 9 � is a consequence of the fourth missing report (SACK received

on interface
� � at 9 � 9 �) carrying cumulative ack

�
. Since TSNs

� � 0 � through
� � 0 � reached host� by time 9 � , the SACK also carries a gap ack for TSNs

� � 0 � through
� � 0 � , resulting in the marking

of TSNs
� 0 � through

� � for retransmission. The cumulative ack
�

is an indication that the receiver �
has received

�
TSNs in-sequence by time 9 � . This in-sequence data is clearly the data received by � on the

interface � � by time 9 � .
Following the retransmission of TSN

� 0�� , the SACK for the original transmission of TSN
� 0 � arrives

at
�

. Since host
�

now considers TSN
� 0 � to be outstanding on destination �D� , the receipt of this SACK

incorrectly increases
� � , and allows TSNs

� 0 � and
� 0�� to be retransmitted. The receipt of a SACK

for TSN
� 0 � immediately after TSN

� 0 � is retransmitted is not a coincidence. At time 9 � when host �
4SCTP’s congestion control algorithms [11, 9] are revised TCP congestion control algorithms [5]. According to the revised fast

retransmit algorithm, not all missing reports are legitimate [9].

5

sends a SACK with a cumulative ack of
�

acking the receipt of TSN
� � 0 � , TSN

� 0 � is concurrently
being received on interface ��� . Immediately after the receipt of TSN

� 0 � on interface �4� , host � sends a
SACK with cumulative ack

� 0 � . Consequently, the sequence of events at host
�

is the receipt of a SACK
with cumulative ack

�
(which is also the fourth missing report for TSNs

� 0 � through
� �) followed by a

SACK with cumulative ack
� 0�� . As shown, this behaviour continues until the SACKs for all the original

transmissions to � � (up to TSN
� �) have been received at host

�
.

2.3 Analytic Results

Based on the model, we will now estimate the cwnd overgrowth of
� � , and the number of unnecessary

retransmissions.

Packet transmission on path 2 starts at time 9 � ; it takes some time for the fourth legitimate missing report to
reach the sender

�
. This time instant is shown in Fig 2 as 9 � , which is given by:

9 � � 9 � 0 �2� ��� 0 �2� � R 0 \ ��� (6)

9 � is the instant when this fourth legitimate missing report leaves the receiver � through ��� , and is given
by:

9 � � 9 � � � � R � 9 � 0 �2� ��� 0 � � R 0 \ ��� (7)

As shown in Fig 2, we assume that the SACK received at 9 � on
� � contains the highest cumulative ack

received by
�

so far5.

Let
�

be defined as the TSN that was most recently cumulatively acked at sender
�

prior to time 9 � . In
other words,

�
is the last TSN that reached the receiver � on �4� at 9 � , where,

� � � O����1� ���N ������ � O
	�� � �� � �/������/N� � �1� ���N ��� � (8)

The result is that TSNs %
� 0 � . through

� � will be retransmitted on Path 2 and the total number of unnec-
essary retransmissions =]���� `�� 	 � � � %

� 0 � . 0 � a �]���� `�� 	 � � � � a
. The cwnd overgrowth for

� �
will be]���� `�� 	 � � � � a

.

2.4 Discussion

For an AIMD (Additive Increase Multiplicative Decrease) congestion control algorithm, a round refers to
the period from the transmission of cwnd amount of data to the receipt of acks for that data. After receipt
of these acks, the next round starts as the sender transmits cwnd+1 amount of data. In our general model,
the period between 9 � � and 9 � 9 � represents the beginning of such a round when the sender transmits� � amount of data. This transmission of data may or may not be in a burst, but the receiver receives the

5This assumption is made for simplicity of analysis. If this assumption does not hold, the cwnd overgrowth will be lesser by������������� �! ��" # .

6

data with packet interarrival times of at least
\ ��� on interface ��� since

\ ��� is the delay due to the available
bandwidth of the bottleneck link on path 1. Thus, in our model, we assume that TSNs are received on
interfaces ��� and ��� uniformly with interarrival times

\ ��� and
\ ��� , respectively.

If
� � � � , then all of the original transmissions to �4� are received by host � by time 9 � . Hence, the SACK

received by host
�

at time 9 � would carry a cumulative ack of
� � 0 � and no gap acks. Thus, if

� � � � ,
no unnecessary retransmission and no TCP-unfriendly cwnd growth occurs.

On the other hand, if
��� � � , then

�
is the last TSN cumulatively acked prior to time 9 � . Consequently,� 0 � is the first TSN to be retransmitted incorrectly, and

� � overgrows by
� � � � . A higher value of

�

results in a higher cumulative ack at
�

at 9 � , hence fewer retransmissions and consequently less error in
� � .

Similarly, as
�

decreases, more unnecessary retransmissions occur, and the error in
� � also increases.

From equation (8),
�

decreases with a decrease in
\ ��� , or an increase in

\ ��� . Further,
�

decreases with
an increase in � ��� , or a decrease in � ��� . These relationships between

�
and the characteristics of the two

paths imply that when a changeover is made to a higher quality path, there is a likelihood of TCP-unfriendly
cwnd growth and unnecessary retransmissions, and the bigger the improvement in quality that the new path
provides, the larger the TCP-unfriendly growth and number of incorrect retransmissions will be.

3 Analytic Results: Validation and Visualization

It is clear from the analytic results derived in section 2.3 that cwnd overgrowth occurs if the sender has
more than

�
packets outstanding at the time of changeover. The value of

�
, given by equation (8), is thus

pivotal in quantifying cwnd overgrowth. We first validate this analytical value of
�

using ns-2 simulations
in section 3.1. We then estimate the value of

�
using the model under various network and changeover

conditions in section 3.2.

3.1 Analytic Results: Validation

We now validate the analytical value of
�

derived in section 2.3 through simulations using the SCTP module
for ns-2 which was developed in the Protocol Engineering Lab at the University of Delaware [1, 8].

The topology is the same as in figure 1. The simulations do not have any cross traffic, hence the end-
to-end available bandwidths on each of paths 1 and 2 is equal to the minimum of link capacities on the
corresponding path. Each of paths 1 and 2 has three links - two edge links and one core link. The edge links
have a capacity of 10Mbps and propagation delay of 1ms. The available bandwidths of the paths, i.e., the
capacities of the core links are chosen randomly between 10Kbps and 1Mbps. The propagation delays of
the core links are chosen randomly between 25ms and 50ms. The sender’s sending window is clamped to
20KB by setting the receiver’s advertised window to 20KB. We clamp the sending window to make it easier
to extract parameters from the traces. Changeover occurs at a time of 5 seconds.

Of 1000 simulation runs, 511 runs showed the occurrence of incorrect fast retransmissions due to changeover.
Only the runs which showed these retransmissions could be used for validation because to infer the value of

7

�
from a simulation run (

� Y�� �), at least one such retransmission had to occur. The first incorrect retrans-
mission would correspond to TSN

� Y�� � 0�� .
We extracted the values of the parameters � ��� , � � R , � ��� , � � R ,

\ ��� ,
\ ��� and 9 � from the traces for each of

the 511 runs. Feeding these parameters into equation (8) gave us the analytic value of
�

(
� �I,���).

Simulation results show that of the 511 comparisons of
� Y�� � and

� ��I7��� , 431 results agreed exactly. In the
remaining 80 results that did not agree,

� �I,��� was equal to
� YG� � � � . This underestimation of

�
by the

analytic model could be attributed to the assumption made in the derivation of analytic expression for
�

in
section 2.3, or to approximations made in extracting the parameters from the traces.

The simulations thus agree with our analytic results for the most part.

3.2 Analytic Results: Visualization

In graphing the analytically derived value of
�

, we reduce the number of independent variables by making
the following assumptions so as to visualize the graphs better:

� Forward paths 1 and 2 have the same @ A C . Hence,

� ��� � � ��� � �
(9)

� The forward and reverse paths have the same propagation, processing and queueing delays. In other
words, using equations (2) and (3),

� � � � R 0 ������>�Z�8�����G "�$#!�JI ������L/���N/#"��OP
�
� � (10)

� The transmission delays at the other links along a path are assumed negligible in comparison to the
transmission delay at the bottleneck link. In other words, using equation (4),

������>�Z�8�����G "�$#
�
� ���

�
]8^P_ ���������������� ! "�$#E` � �Fa � \

(11)

� Combining the above two assumptions, we get

� � � �SR 0 \ � � �?R 0 �
��� (12)

For the forward paths 1 and 2, the above equation can be rewritten as

� ��� � � � R 0 �
� ��� ;�<

\ � ��� � � � R 0 �
����� (13)

Figures 3 and 4 (left) graph
�

as a function of �D��� , for fixed values of ����� , � � R and � � R . In these graphs,
the changeover time, 9 � , is fixed at 10ms. Each three-dimensional graph in figures 3 and 4 (left) picks one

8

representative curve from the corresponding two-dimensional graph (left), and shows the influence of 9 � on�
. These three-dimensional graphs thus show

�
as a function of �D��� and 9 � , for fixed values of ����� , � � R

and � � R .

The graphs are organized as follows:

� The first set of results, shown in figure 3, uses the range 10kbps - 100kbps for the available bottleneck
bandwidths ����� and ����� . 9 � is set to 10ms in the two-dimensional graphs. The curve corresponding
to ����� = 50kbps is used as a representative curve to show the influence of 9 � on

�
. 9 � varies over

10ms - 100ms in the three dimensional graphs. Three combinations of (� � R , � � R) are used: (50ms,
50ms), (50ms, 25ms), and (25ms, 50ms).

� The second set of results, shown in figure 4, uses the range 100kbps - 1Mbps for the available bot-
tleneck bandwidths ����� and ����� . 9 � is set to 10ms in the two-dimensional graphs. The curve cor-
responding to ����� = 500kbps is used as a representative curve to show the influence of 9 � on

�
. 9 �varies over 10ms - 100ms in the three dimensional graphs. Three combinations of (� � R , � � R) are used:

(50ms, 50ms), (50ms, 25ms), and (25ms, 50ms).

We split the range (10kbps - 1Mbps) into two ranges (10kbps - 100kbps and 100kbps - 1Mbps), because
the variation observed in

�
with both �4��� and ����� ranging from 10kbps to 1Mbps is large. We are thus

able to visualize the behaviour of
�

over a large range of available bandwidths, with the assumption that
the available bandwidths of the two paths are comparable.

In the first set of results,
�

varies between 0 and 30, and mostly has a value below 10. Remember that the
smaller

�
is, the more unnecessary retransmissions will occur, and the more cwnd grows when it should

not. Changes in � � R 	 � � R and 9 � seem to have little influence on
�

, as compared to the variation due to�����
	����� . That is because in this set, since the available bandwidths are low the total delay is dominated
by transmission delay.

In the second set of results,
�

varies between 0 and 40. The median value of
�

in this set has increased
from the first set. This increase can be attributed to the greater range of the bottleneck bandwidths. Another
important factor can be understood by considering equation (8). With an increase in the bottleneck band-
width, the value of

\ ��� decreases, consequently increasing
�

. We also observe the increased influence of� � R 	 � � R and 9 � in this set of results, since the transmission delay is lesser dominant in this set.

In both sets, we note that
�

decreases with a decrease in �4��� or an increase in ����� , as is expected.

4 Proposed Solution: Changeover Aware Congestion Control

The TCP-unfriendly cwnd growth and incorrect retransmissions during changeover occur due to a current
inadequacy of SCTP - either (i) the sender is unable to distinguish SACKs for transmissions from SACKs
for retransmissions, or (ii) the sender’s congestion control mechanism is unaware of the occurrence of a
changeover, and hence is unable to identify reordering introduced due to changeover. Addressing either of
these inadequacies will solve the more important problem of TCP-unfriendly cwnd growth. We propose the

9

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

K

B2F

B2F (in kbps) vs K (e1R = 50 ms, e2R = 50ms, tc = 10ms)

B1F=10kbps
B1F=30kbps
B1F=50kbps
B1F=70kbps

B1F=100kbps

K as a function of B2F and tc (e1R=50ms, e2R=50ms, B1F=50kbps)

K

10
20

30
40

50
60

70
80

90
100 10 20 30 40 50 60 70 80 90 100

0

5

10

15

B2F (kbps)

tc (ms)

K

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

K

B2F

B2F (in kbps) vs K (e1R = 50 ms, e2R = 25ms, tc = 10ms)

B1F=10kbps
B1F=30kbps
B1F=50kbps
B1F=70kbps

B1F=100kbps

K as a function of B2F and tc (e1R = 50ms, e2R = 25ms, B1F = 50kbps)

K

10
20

30
40

50
60

70
80

90
100 10 20 30 40 50 60 70 80 90 100

0

5

10

15

B2F (kbps)

tc (ms)

K

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

K

B2F

B2F (in kbps) vs K (e1R = 25 ms, e2R = 50ms, tc = 10ms)

B1F=10kbps
B1F=30kbps
B1F=50kbps
B1F=70kbps

B1F=100kbps

K as a function of B2F and tc (e1R = 25ms, e2R = 50ms, B1F = 50kbps)

K

10
20

30
40

50
60

70
80

90
100 10 20 30 40 50 60 70 80 90 100

0

5

10

15

B2F (kbps)

tc (ms)

K

Figure 3: Graphing K analytically: 10kbps
� �4���
	����� �

100kbps

10

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700 800 900 1000

K

B2F

B2F (in kbps) vs K (e1R = 50ms, e2R = 50ms, tc = 10ms)

B1F=100kbps
B1F=300kbps
B1F=500kbps
B1F=700kbps

B1F=1Mbps

K as a function of B2F and tc (e1R = 50ms, e2R = 50ms, B1F = 500kbps)

K

100
200

300
400

500
600

700
800

900
1000 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

B2F (kbps)

tc (ms)

K

0

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000

K

B2F

B2F (in kbps) vs K (e1R = 50ms, e2R = 25ms, tc = 10ms)

B1F=100kbps
B1F=300kbps
B1F=500kbps
B1F=700kbps

B1F=1Mbps

K as a function of B2F and tc (e1R = 50ms, e2R = 25ms, B1F = 500kbps)

K

100
200

300
400

500
600

700
800

900
1000 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

B2F (kbps)

tc (ms)

K

0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

K

B2F

B2F (in kbps) vs K (e1R = 25ms, e2R = 50ms, tc = 10ms)

B1F=100kbps
B1F=300kbps
B1F=500kbps
B1F=700kbps

B1F=1Mbps

K as a function of B2F and tc (e1R = 25ms, e2R = 50ms, B1F = 500kbps)

K

100
200

300
400

500
600

700
800

900
1000 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

B2F (kbps)

tc (ms)

K

Figure 4: Graphing K analytically: 100kbps
� �4���
	����� �

1Mbps

11

Rhein Algorithm in [6], which solves the problem by addressing (i). In this section, we propose solutions
which solve the problem by addressing (ii). In other words, the following solutions introduce changeover
awareness in the sender’s congestion control mechanism.

The cwnd overgrowth occurs due to the sender misinterpreting SACK feedback, and incorrectly sending
fast retransmissions. We propose changeover aware congestion control (CACC) algorithms which curb the
TCP-unfriendly cwnd growth by eliminating these improper fast retransmissions. The key idea in a CACC
algorithm is maintaining state at the sender for each destination when changeover happens. On receipt of
a SACK, the sender selectively increases the missing report count for TSNs in the retransmission list, thus
preventing incorrect fast retransmissions.

Section 4.1 describes the Conservative CACC (C-CACC) algorithm which has the disadvantage that in the
face of loss, a significant number of TSNs could potentially wait for a retransmission timeout when they
could have been fast retransmitted. In section 4.2, we describe the Split Fast Retransmit CACC (SFR-CACC)
algorithm which alleviates this disadvantage. We verify the effectiveness of the SFR-CACC algorithm
through simulation in section 4.3. In section 4.4, we discuss the advantages of the CACC algorithms over
the Rhein algorithm in solving the cwnd overgrowth problem.

4.1 Conservative CACC

As mentioned previously, C-CACC maintains state at the sender when changeover happens, on a per-
destination basis. This state is used to conservatively increment missing report counts for TSNs. This
conservative approach prevents incorrect triggering of fast retransmissions, thus eliminating the cwnd over-
growth problem.

As was discussed in section 2.2, the receiver could observe reordering of TSNs due to changeover. Accord-
ing to C-CACC, the sender uses state maintained for the current primary destination to identify SACKs that
are sent by the receiver after the receiver observes this reordering. The state is constituted by two variables
per-destination:

1. CHANGEOVER ACTIVE - a flag which indicates the occurence of a changeover.
2. next tsn at change - the next TSN to be used by the sender, at the moment of changeover.

The algorithm is described in figure 5. On changeover, the sender sets the state as described6 . The sender
is considered to be in active changeover state until the CHANGEOVER ACTIVE flag is cleared. The flag is
cleared when a SACK which cumulatively acks TSNs up to and including next tsn at change is received.
At that time, all TSNs which were sent to the receiver before changeover occurred at the sender have been
received. Thus, reordering due to changeover can no longer happen. This period during which the sender is
in active changeover state is referred to as the active changeover period, and the outstanding TSNs which
have not yet been acked at the sender at the moment of changeover constitute the changeover range.

During the changeover period, receipt of a SACK that reports a TSN greater than or equal to next tsn at change
indicates to the sender that reordering has been observed at the receiver. Since this reordering is likely due

6Unless explicitly stated, the variables used in the CACC algorithms refer to the state for the current primary destination, from
the sender’s viewpoint.

12

On changeover, the sender maintains the following state for the new primary destination:
1) Set CHANGEOVER ACTIVE to 1, indicating that a changeover has occured.
2) Store the next TSN to be sent in next tsn at change.

On receipt of a SACK,
1) If the cumulative ack in the SACK is

�
the next tsn at change,

the CHANGEOVER ACTIVE flag is cleared.
2) The following algorithm dictates when the missing report count for a TSN

9 should be incremented in accordance with [11, 9], and when the count
should not be incremented:

if (CHANGEOVER ACTIVE == 1) and
(the SACK reports at least one TSN

�
next tsn at change)

then
if (9
�

next tsn at change)
then

Increment missing report count for 9 according to [11, 9];
else

Do not increment missing report count for 9 ;fi;
else

Increment missing report count for 9 according to [11, 9];
fi;

Figure 5: Conservative CACC Algorithm

to changeover, the sender does not increment missing report counts for TSNs in the changeover range, thus
preventing the incorrect fast retransmissions.

C-CACC is conservative because when reordering due to changeover is observed at the receiver and conse-
quently reported to the sender, the sender conservatively chooses to not increment missing reports for any
TSN in the changeover range. In the face of loss, the sender will not perform fast retransmission on any
TSN in the changeover range. The TSNs in the changeover range would thus have to wait for retransmission
timeouts to be retransmitted. Furthermore, C-CACC does not take into account the possibility of multiple
changeovers at the sender.

4.2 Split Fast Retransmit CACC (SFR-CACC)

To alleviate the limitations of C-CACC, we make the following observation: the reordering observed during
changeover happens because TSNs which are supposed to reach the receiver in-sequence end up reaching
the receiver in concurrent groups, in-sequence within each group. With this observation, we reason that the
fast retransmit algorithm can be applied independently within each group. That is, on the receipt of a SACK,
if the sender can estimate the TSN(s) that causes this SACK to be sent from the receiver, the sender can use

13

the SACK to increment missing report counts within the causative TSN(s)’s group.

On changeover, for the new primary destination:
1) If CHANGEOVER ACTIVE is 1, then there was a changeover to this

destination address earlier. The sender sets CYCLING CHANGEOVER to 1,
indicating that this changeover is a cycling switch to the same destination address
during an active changeover.

2) The sender sets CHANGEOVER ACTIVE to 1, indicating that a changeover
has occured.

3) The sender stores the next TSN to be sent in next tsn at change.

Figure 6: Split Fast Retransmit CACC Algorithm (Part 1)

In SFR-CACC, four variables for each destination are introduced:

1. CHANGEOVER ACTIVE - a flag which indicates the occurrence of a changeover.
2. CYCLING CHANGEOVER - a flag which indicates whether the change of primary is the first changeover

to this destination address during an active changeover. This flag is used to determine changeovers
cycling through destination address space.

3. next tsn at change - the next TSN to be used by the sender, at the moment of changeover.
4. cacc saw newack - a temporary flag, which is used during the processing of a SACK to estimate the

causative TSN(s)’s group.

SFR-CACC is broken up into three logical parts. SFR-CACC(1) is very similar to the initial part of C-CACC
algorithm, except for the CYCLING CHANGEOVER flag which we will discuss shortly. SFR-CACC(2) and
SFR-CACC(3) specify sender actions on receipt of a SACK.

On receipt of a SACK that cumulatively acks up to and including next tsn at change, the sender leaves the
active changeover state. In SFR-CACC(2) the sender estimates the causative TSN(s)’s destination. The
sender estimates the causative TSN(s) as TSN(s) getting acked for the first time in a SACK. TSNs sent to
the same destination as the causative TSN(s) form the causative TSN(s)’s group.

In SFR-CACC(3), the sender does not increment missing report counts for TSNs outside the causative
TSN(s)’s group. In other words, the sender applies the SACK selectively to fast retransmit within the
causative TSN(s)’s group. If more than one group are being acked, then fast retransmit is conservatively
applied only to TSNs in the current primary destination’s group.

SFR-CACC does the in-group marking of TSNs only as long as the sender does not changeover to a pre-
viously used destination address which was already used during the current active changeover period. If
the sender starts to cycle through destination address space, then the sender switches to a more conserva-
tive behaviour of marking only TSNs in the latest outstanding group. The protection from such cycling
changeovers is necessary because SFR-CACC assumes that the latest outstanding TSNs were transmitted
to the current primary. One could envision a scenario where the sender has TSNs outstanding on two des-
tination addresses, ��� and ��� , having performed changeover in that order. The sender then performs a

14

On receipt of a SACK,
1) If the cumulative ack in the SACK is

�
next tsn at change,

the CHANGEOVER ACTIVE and CYCLING CHANGEOVER
flags are cleared for all destinations.

2) If (CHANGEOVER ACTIVE == 1) and (the SACK contains Gap Acks)
then

for each destination
\

do
initialize d.cacc saw newack = 0;

done;

for each TSN 9 being acked, that has not been acked in any SACK so far
do

let
\

be the destination to which t was sent;
set d.cacc saw newack = 1;

done
fi;

Figure 7: Split Fast Retransmit CACC Algorithm (Part 2)

changeover back to ��� , and a SACK acking both TSNs from both groups is received. The sender could now
end up incorrectly fast retransmitting TSNs sent to destination �[� , causing cwnd overgrowth on destination� � - precisely what we are trying to avoid. There may be other scenarios where the original problem of
cwnd overgrowth may occur due to cycling changeovers. For the moment, we have not looked into cycling
changeover in greater depth and design SFR-CACC to be more conservative when a cycling changeover
occurs.

4.3 Simulations

Verification of the effectiveness of SFR-CACC was done through ns-2 simulations. Using SFR-CACC under
the same conditions as in section 3.1 for which cwnd overgrowth was observed, the simulations did not show
any unnecessary retransmissions, or cwnd overgrowth due to changeover.

4.4 Discussion

By approaching the problem from different perspectives, the Rhein algorithm [6] and the CACC algorithms
both solve the problem of TCP-unfriendly cwnd growth. The Rhein algorithm recognizes that this growth
occurs due to the sender’s inadequacy in distinguishing between the SACKs for the original transmissions
and the SACKs for the retransmissions. This algorithm does not solve the problem of unnecessary fast
retransmissions on a changeover. This algorithm also adds the overhead of an extra chunk for every SCTP

15

On receipt of a SACK (contd.),
3) The following algorithm dictates when the missing report count for a TSN

9 should be incremented in accordance with [11, 9], and when the count
should not be incremented:

if (CHANGEOVER ACTIVE == 1) and (CYCLING CHANGEOVER == 0)
then

let count of newacks be number of destinations for which cacc saw newack is set;
if (count of newacks == 1)
then /* SACK acks only one dest */

let
\

be the destination to which 9 was sent;
if (d.cacc saw newack == 1)
then

Increment missing report count for 9 according to [11, 9];
else

Do not increment missing report count for 9 ;fi;
else /* Mixed SACK - SACK acks more than one dest */

if (9 was sent to the current primary)
then

Increment missing report count for 9 according to [11, 9];
else

Do not increment missing report count for 9 ;fi;
fi;

else if (CHANGEOVER ACTIVE == 1) and (CYCLING CHANGEOVER == 1)
then /* Cycling observed, hence mark only in latest group */

if (9
�

next tsn at change)
then

Increment missing report count for 9 according to [11, 9];
else

Do not increment missing report count for 9 ;fi;

else /* Sender is not in changeover active state */
Increment missing report count for 9 according to [11, 9];

fi;

Figure 8: Split Fast Retransmit CACC Algorithm (Part 3)

16

packet.

The CACC algorithms maintain state information during a changeover, and use this information to avoid
incorrect fast retransmissions. Consequently, these algorithms prevent the TCP-unfriendly cwnd growth.
These algorithms have the added advantage that no extra bits are added to any packets, and thus the load on
the wire and the network is not increased. One disadvantage of the CACC algorithms is that some of the
TSNs on the old primary will not be eligible for fast retransmit. Furthermore, there is added complexity at
the sender to maintain and use the added state variables.

Of the CACC algorithms, SFR-CACC is more optimistic than C-CACC. The fast retransmit algorithm is
active on the changeover range for a longer time in SFR-CACC than with C-CACC. To quantify the num-
ber of TSNs which will be ineligible for fast retransmit in the face of loss, let us assume that only one
changeover is performed and that SACKs are not lost. Under these assumptions, potentially only the last
four packets sent to the old primary destination will be forced to be retransmitted with an RTO instead of
a fast retransmit. In other words, under these assumptions, if a TSN is lost, and there at least four packets
successfully transmitted to the same destination after the loss, then the TSN will be retransmitted via fast
retransmit. C-CACC is also incapable of handling multiple changeovers, whereas SFR-CACC is equipped
to handle multiple changeovers.

We therefore recommend the addition of the SFR-CACC algorithm to RFC2960 to alleviate the problem of
artificial cwnd growth and unnecessary fast retransmissions during a changeover.

5 Conclusion and Future Work

The problem presented in this paper is a known problem; packet reordering is not uncommon in the Internet.
But with multihomed SCTP endpoints, there is a severe problem of cwnd overgrowth which occurs due to
packet reordering. The severity of this problem is further amplified by giving the application the ability to
perform changeover, potentially introducing reordering at the sender itself.

Restricting changeover, however, is not a solution to the problem since changeover can have significant
benefits. Pending further research, the application of changeover can be envisioned in various scenarios
such as handoffs occurring in mobile environments or load balancing of traffic among the various paths to a
peer host.

In this paper, we modeled SCTP’s behaviour during changeover, and used the model to estimate cwnd
overgrowth due to changeover. We validated the model using ns-2 simulations, and then used the model
to estimate circumstances under which cwnd overgrowth could occur. The graphs suggest that the problem
might not be a “corner case”, since for a large range of network settings, the value of

�
, which governs the

minimum packets required to be outstanding at the time of changeover so as to observe cwnd overgrowth, is
low.

By approaching the problem from different perspectives, the Rhein algorithm [6] and changeover aware
congestion control (CACC) algorithms both solve the problem of TCP-unfriendly cwnd growth. Of the
algorithms, the Split Fast Retransmit CACC (SFR-CACC) algorithm has clear benefits over the other al-
gorithms. We therefore recommend the addition of SFR-CACC to RFC2960 to alleviate the problem of

17

artificial cwnd growth and unnecessary fast retransmissions during a changeover.

We have implemented SFR-CACC in the NetBSD/FreeBSD release for the KAME stack [3, 2]. The imple-
mentation uses three additional flags and one TSN marker for each destination, as described in section 4.2.
Approximately twenty lines of

�
code were needed to facilitate the SFR-CACC algorithm, most of which

will be executed only when a changeover is performed in an association.

In the future, we plan to further investigate simulated results for the cwnd overgrowth with cross traffic. We
also plan to look at multiple and cycling changeovers, and how well SFR-CACC performs in the face of
multiple changeovers. It may also be interesting to look at how the receiver could help the sender make
more informed decisions by participating more actively in the congestion control mechanisms.

6 Disclaimer

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.
S. Government.

7 Acknowledgments

Thanks to Ivan Arias Rodriguez, Vern Paxson, Mark Allman, Phillip Conrad and Johan Garcia for their
comments and inputs.

References

[1] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[2] The SCTP Homepage. http://www.sctp.org.

[3] Webpage of the KAME project. http://www.kame.net.

[4] R. Braden. Requirements for internet hosts–communication layers. RFC1122, Internet Engineering
Task Force (IETF), October 1989.

[5] M. Allman et al. TCP Congestion Control. RFC2581, Internet Engineering Task Force (IETF), April
1999.

[6] Janardhan R. Iyengar, Armando L. Caro Jr., Paul D. Amer, Gerard J. Heinz, and Randall Stewart.
SCTP Congestion Window Overgrowth During Changeover. Proc. SCI2002, Orlando, July 2002.

[7] M. Jain and C. Dovrolis. Pathload: A Measurement Tool for End-to-End Available Bandwidth. Proc.
3rd Passive and Active Measurements Workshop, Fort Collins, March 2002.

18

[8] Protocol Engineering Lab, University of Delaware. SCTP Module for ns-2. http://pel.cis.udel.edu.

[9] R. Stewart, L. Ong, I. Arias-Rodriguez, and K. Poon. SCTP Implementors Guide. Internet Draft:
draft-ietf-tsvwg-sctpimpguide-04.txt, Internet Engineering Task Force (IETF), March 2002. (work in
progress).

[10] R. Stewart and Q. Xie. Stream Control Transmission Protocol (SCTP): A Reference Guide. Addison
Wesley, New York, NY, 2001.

[11] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol. Proposed standard, RFC2960, Internet Engi-
neering Task Force (IETF), October 2000.

19

