
Concurrent Multipath Transfer Using SCTP Multihoming
���

Janardhan R. Iyengar, Keyur C. Shah, Paul D. Amer
Protocol Engineering Lab, Computer and Information Sciences, University of Delaware�

iyengar, shah, amer � @cis.udel.edu

Randall Stewart
Cisco Systems, rrs@cisco.com

Abstract

We propose Concurrent Multipath Transfer (CMT) using the Stream Control Transmission Protocol
(SCTP). CMT uses SCTP’s multihoming feature to simultaneously transfer new data across multiple
end-to-end paths to the receiver. Through ns-2 simulations, we observe significant reordering at the
receiver due to CMT. We identify three negative side-effects of reordering introduced by CMT that must
be managed before the full performance gains of parallel transfer can be achieved: (i) unnecessary fast
retransmissions at the sender, (ii) reduced cwnd growth due to fewer cwnd updates at the sender, and (iii)
more ack traffic due to fewer delayed acks. We propose three algorithms which augment and/or modify
current SCTP to counter these side-effects, and present initial simulations indicating correctness of the
proposed solutions. Using simulations, we then evaluate the performance of CMT using SCTP (CMT-
SCTP) with our algorithms. In this work, we operate under the strong assumptions that the receiver’s
advertised window does not constrain the sender, and that the bottleneck queues on the end-to-end paths
used in CMT are independent of each other.

1 Introduction

Multihoming among networked machines and devices is a technologically feasible and increasingly eco-
nomical proposition. A host is multihomed if it can be addressed by multiple IP addresses [7], as is the case
when the host has multiple network interfaces. Though feasibility alone does not determine adoption of an
idea, multihoming can be expected to be the rule rather than the exception in the near future. For instance,
cheaper access to the Internet may motivate a home user to have simultaneous connectivity through multiple
ISPs. Wireless devices may be simultaneously connected through multiple access technologies. More and
more machines will have wired and wireless connections. The use of multihoming increases a host’s fault
tolerance at an economically feasible cost. Multiple active interfaces also suggest the simultaneous exis-
tence of multiple paths between the multihomed hosts. In this paper, we propose using these multiple paths
between multihomed source and destination hosts through Concurrent Multipath Transfer (CMT) to increase

�
Prepared through collaborative participation in the Communications and Networks Consortium sponsored by the U. S. Army

Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U.
S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
thereon.�

Supported in part by the University Research Program of Cisco Systems, Inc.

1

throughput for a networked application. CMT is the simultaneous transfer of new data from a source host
to a destination host via two or more end-to-end paths. In our initial efforts, we assume that the bottleneck
queues on the end-to-end paths are independent of each other.

The current transport protocol workhorses, TCP and UDP, are ignorant of multihoming; TCP allows binding
to only one network address at each end of a connection. At the time TCP was designed, network interfaces
were expensive components, and hence multihoming was beyond the ken of research. Increasing economical
feasibility and a desire for networked applications to be fault tolerant at an end-to-end level, have brought
multihoming within the purview of the transport layer. In this paper, we investigate CMT at transport
layer, using transport layer multihoming. As opposed to the application layer, CMT at the transport layer is
desirable since the transport layer, being the first end-to-end layer, has finer information about the end-to-
end path(s). Further, CMT at the application layer would increase complexity at the transport-application
interface, due to continuous information exchange between the transport and the application.

Two recent transport layer protocols, the Stream Control Transmission Protocol (SCTP) [23], and the Data-
gram Congestion Control Protocol (DCCP) [16] support multihoming at the transport layer. The motivation
for multihoming in DCCP is mobility, while SCTP is driven by a broader and more generic application base,
which includes fault tolerance and mobility. Of the two, we use SCTP primarily because it is a reliable pro-
tocol (and due to our expertise with it). The issues presented in this paper and the corresponding algorithms
should be applicable to CMT using other reliable, SACK-based transport layer protocols; some issues are
applicable to unreliable protocols as well.

SCTP is an IETF standards track transport layer protocol. SCTP multihoming allows binding of one trans-
port layer association (SCTP’s term for a connection) to multiple IP addresses at each end of the association.
This binding allows an SCTP sender to send data to a multihomed receiver through different destination ad-
dresses. Due primarily to insufficient research in the area, simultaneous transfer of new data to multiple
destination addresses is currently not allowed in SCTP. In this paper, we investigate CMT-SCTP – CMT at
the transport layer using SCTP as a reliable, multihome-aware, SACK-based transport layer protocol.

In Section 2 we briefly describe SCTP mechanisms relevant to CMT, our simulation setup and assumptions,
and the graphs presented here. In Sections 3, 4, and 5, we present three negative side-effects of reordering
with CMT-SCTP, and propose algorithms to avoid these side-effects. We then present some initial perfor-
mance results in Section 6. Though the simulations in these sections represent specific cases, they should be
viewed as illustrations of the larger issues described. Section 7 concludes our work presented in this paper
with the current focus of our research. Section 8 describes related work in the area of concurrent multipath
transfer (or load balancing).

2 Preliminaries

We first present an overview of select ideas and mechanisms used by SCTP, also in comparison with TCP
to highlight relevant similarities and differences.

SCTP is defined in RFC2960 [23] with changes and additions included in the SCTP Implementer’s Guide [22].
An SCTP packet consists of one or more concatenated building blocks called chunks: either control or data.
For the purposes of reliability and congestion control, each data chunk in an association is assigned a unique
Transmission Sequence Number (TSN), similar in function to sequence numbers in TCP. Since SCTP is

2

message-oriented and chunks are atomic, TSNs are associated only with chunks of data, as opposed to a
TCP bytestream which associates a sequence number with each byte of data. In our simulations, we assume
one data chunk per packet for ease of illustration; each packet thus carries, and is associated with a single
TSN.

SCTP uses a selective ack scheme similar to SACK TCP. SCTP’s congestion control algorithms are based
on RFC2581 [3], and include SACK-based mechanisms for better performance. Similar to TCP, SCTP
uses three control variables: receiver’s advertised window (rwnd), sender’s congestion window (cwnd), and
sender’s slow start threshold (ssthresh). However, unlike TCP, SCTP’s cwnd reflects how much data can be
sent, not which data to send. In SCTP, rwnd is shared across an association. Unlike in TCP, SCTP uses a
separate set of congestion control parameters (cwnd and ssthresh, among others) per destination since each
destination address may result in a different path to the destination. Currently, due to lack of research in
CMT, RFC2960 does not allow a sender to simultaneously send new data on multiple paths; an SCTP sender
maintains a primary destination to which all transmissions of new data are sent (Note: retransmissions are
sent to alternate destinations).

Thus far, in our investigation of CMT, we assume independent paths. Though we use disjoint paths from
sender to receiver in the simulation results presented in this paper, our premise of independent paths means
that the paths have separate bottlenecks. Overlap in the paths is acceptable, but bottlenecks are assumed
independent. We also assume that the rwnd is large enough to not constrain the sender. This assumption
enables us to study cwnd dynamics with CMT, without introducing the dynamics of rwnd sharing across
different paths. Our initial simulations also do not have any loss. Even without loss, conventional mecha-
nisms such as cwnd growth and roundtrip time (RTT) estimation mechanisms, are significantly affected by
CMT. We will relax these unrealistic constraints in our continued efforts with CMT.

The simulations presented in this paper use the University of Delaware’s SCTP module for ns-2 [4, 8].
The simulation setup has two dualhomed hosts, sender � with local addresses ��������� , and receiver � with
local addresses �	�
����� . The hosts are connected by two separate paths: Path 1 (����
����), and Path 2
(����
����) whose end-to-end available bandwidths are 0.2 Mbps and 1 Mbps, respectively. The roundtrip
propagation delay on both paths is 70 milliseconds, which roughly reflects the U. S. coast-to-coast delay.
The CMT-SCTP sender (host �) uses a scheduling algorithm that sends new data to a destination as soon as
its corresponding cwnd allows new data to be sent.

The simulation results described in the paper (Figures 1, 3, 5, and 7) all show cwnd evolution with time. The
figures have four curves, which show the CMT-SCTP sender’s (1) cwnd evolution for destination ��� (�),
(2) cwnd evolution for destination ��� (�), (3) aggregate cwnd evolution (sum of (1) and (2)) (�), and (4)
expected aggregate cwnd evolution (–). The expected aggregate cwnd evolution curve is obtained as the sum
of the cwnd evolution curves of two independent SCTP runs, using ��� and ��� as the primary destination,
respectively.

We now introduce some notation which is used in this paper; the meaning and usage of this notation will be
clear as the reader progresses through the paper. CMT-SCTP refers to a host involved in CMT using current
SCTP. CMT-SCTP � , CMT-SCTP � , and CMT-SCTP � refer to a host involved in CMT using SCTP with the
SFR-CACC algorithm (Section 3), the CMT Cwnd Update Algorithm (Section 4) and the CMT Delayed
Ack algorithm (Section 5), respectively. Using more than one subscript suggests inclusion of more than one
algorithm. For instance, CMT-SCTP ��� refers to a CMT-SCTP host involved in CMT using SCTP with the
SFR-CACC and CMT Cwnd Update algorithms.

3

3 Fast Retransmissions with CMT

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT-SCTP(B1)
CMT-SCTP(B2)

CMT-SCTP(B1+B2)
Expected [SCTP(B1) + SCTP(B2)]

Figure 1: CMT with current SCTP (CMT-SCTP): Evolution of the different cwnds

When multiple paths being used for CMT have disparate delay and bandwidth characteristics, additional
packet reordering is observed at the receiver. When reordering is observed, a receiver sends gap reports
through SACKs to the sender, and the sender uses the gap reports to detect loss through the fast retrans-
mission procedure [3, 23]. With CMT, the observed reordering not due to loss can be significant enough
to trigger unnecessary fast retransmissions [14], which has two negative consequences: (1) Since each re-
transmission is assumed to occur due to a congestion loss, the sender reduces its cwnd for the destination on
which the retransmitted data was outstanding, and (2) the cwnd overgrowth problem [13] causes a sender’s
cwnd to grow aggressively for the destination on which the retransmissions are sent, due to acks received
for original transmissions.

Figure 1 shows how unnecessary fast retransmissions can significantly hinder cwnd growth. The aggregate
cwnd growth obtained by CMT-SCTP is much slower than by even a single SCTP association on any of the
two paths (not shown). Note that all cwnd reductions seen are due to unnecessary fast retransmissions; no
packet loss was simulated.

For our proposed solution, we suggest a different interpretation of SACK information. Conventional un-
derstanding of a SACK chunk in SCTP (or ack with SACK option in TCP) is that gap reports imply loss.
The probability of a gap report indicating loss increases with the number of gap reports received for the
same TSN (or sequence numbers in TCP). With CMT, we suggest that the SACK information be treated as
a concise description of the TSNs received thus far by the receiver. Hence, a loss may not be immediately
obvious from just SACK information. In other words, gap reports do not necessarily imply a lost TSN; the
sender infers lost TSNs using information in SACKs, and history information in the retransmission queue.

4

On receipt of a SACK containing gap reports [Sender side behavior]:
1) initialize cacc saw newack = FALSE for all destination addresses;
2) for each TSN ��� being acked that has not been acked in any SACK thus far do

(i) let ��� be the destination to which ��� was sent;
(ii) set �����	��
��
� ��
�� ������
���� = TRUE;

3) � destinations ��� , set ��������� �����!�!� �"� ��
��#� $&%�' ���!�!� to highest TSN being newly acked on ��� ;
4) to determine whether missing report count for a TSN �)(should be incremented:

(i) let ��(be the destination to which ��(was sent;
(ii) if (��(*�	��
���� ��
�� ������
��#� = TRUE) and (��(+���,� ���-����� �.� �!
��#� $&%/' �������102�3() then

increment missing report count for ��(;
else do not increment missing report count for � (;

NOTE 1: The HTNA algorithm [22] does not need to be applied separately,
since step (4) covers the function of the HTNA algorithm.

NOTE 2: This SFR-CACC algorithm requires that after retransmission due to a timeout,
the retransmitted TSN must be made ineligible for a further fast retransmission.

Figure 2: SFR-CACC Algorithm – Eliminating unnecessary fast retransmissions

The proposed solution to address the side-effect of incorrect cwnd evolution due to unnecessary fast re-
transmissions is the Split Fast Retransmit Changeover Aware Congestion Control (SFR-CACC) algorithm,
shown in Figure 2. This algorithm is based on a previous incarnation which could not handle cycling
changeover [14], and hence could not be directly applied to CMT. This revised SFR-CACC is simpler, and
is applicable to CMT as well as to single changeover. SFR-CACC introduces a virtual queue per destina-
tion within the sender’s retransmission queue. The sender then uses SACK information in conjunction with
history information in the retransmission queue to correctly deduce missing reports for a TSN by inferring
cumulative ack and gap report information per destination.

In SFR-CACC, two variables are introduced per destination:
1. highest in sack for dest - stores the highest TSN acked per destination by the SACK being processed.
2. cacc saw newack - a flag used during the processing of a SACK to infer the causative TSN(s)’s

destination(s). Causative TSNs for a SACK are those TSNs which caused the SACK to be sent.
Figure 3 shows cwnd evolution for CMT-SCTP including the SFR-CACC algorithm, i.e., CMT-SCTP � . We
see that SFR-CACC eliminates the unnecessary fast retransmissions, reflected by the absence of unnecessary
cwnd reductions in the graph. The aggregate cwnd growth obtained by CMT-SCTP � while better, is still
slower than expected; this slower growth with CMT is addressed in the next section.

4 Cwnd Updates with CMT

The cwnd evolution algorithm for SCTP [23] (and also TCP [3]) dictates growth in cwnd only when a new
cum ack is received by the sender. In other words, when SACKs with unchanged cum acks are received (say
due to reordering), a sender does not modify its cwnd. This mechanism again reflects the conventional view
that a SACK which does not advance the cum ack indicates possibility of loss.

5

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT-SCTP_s (B1)
CMT-SCTP_s (B2)

CMT-SCTP_s(B1+B2)
Expected[SCTP(B1) + SCTP(B2)]

Figure 3: Including the SFR-CACC algorithm (CMT-SCTP �): Evolution of the different cwnds

Figure 3 illustrates that there still remains reduced cwnd growth with CMT-SCTP � . The aggregate cwnd
growth for CMT-SCTP � (CMT-SCTP � [B1+B2] in Figure 3) is slower than expected. We will now discuss
reasons for this behavior. Since a CMT-SCTP � receiver observes reordering, many SACKs are sent contain-
ing new gap reports but not new cum acks. When reported gaps are later filled by a new cum ack, cwnd
growth occurs, but only for the newly acked data. The data previously acked through gap reports will not
contribute to cwnd growth. Even though data may have reached the receiver “in-order per destination”,
without changing the current SCTP cwnd management process, the updated cwnd will not reflect this fact.

This inefficient behavior can be attributed to SCTP’s current design principle that the cum ack in the SACK,
which tracks the latest TSN received in-order at the receiver, applies to an entire association, not per destina-
tion. TCP and current SCTP use only one destination address at any given time to transmit new data to, and
hence, this design principle works fine. Since CMT-SCTP uses multiple destinations simultaneously, cwnd
growth in CMT-SCTP demands tracking the latest TSN received in-order per destination. This information
is not coded directly in a SACK. A sender must infer cum ack per destination, possibly through SACKs and
history information in the retransmission queue.

We also note from Figure 3 that of the constituent paths, cwnd growth for destination ��� (which is the
higher bandwidth path, Path 2) is stunted; in fact, the cwnd ceases to increase after some initial growth. This
behavior, which may be specific to this illustration, is attributed to the fact that though data gets through at a
faster rate to destination � � , the sender receives most of the new cum acks (and after a while all of the new
cum acks) from destination � � . This causes the cwnd for destination ��� to grow considerably slower than
expected.

We propose a cwnd growth algorithm to track the earliest outstanding TSN per destination and update the
cwnd, even in the absence of new cum acks. The algorithm uses SACKs and history information to deduce

6

Initialize find exp pseudo cumack = TRUE at beginning of the association;
On receipt of a SACK [Sender side behavior]:

1) � destinations d, reset d.new pseudo cumack = FALSE;
2) if the SACK carries a new cum ack then

for each TSN � � being cum acked for the first time, that was not acked through prior
gap reports do

(i) let � � be the destination to which ��� was sent;
(ii) set � �#��$ �.� � � ��� � ��������% �����
��#� = TRUE;
(iii) set � ��� ���#� � ��������% �����
���� = TRUE;

3) if gap reports are present in the SACK then
for each TSN �
	 being processed from the retransmission queue do

(i) let ��	 be the destination to which ��	 was sent;
(ii) if (��	 ��$ �.� � � ��� � ��������% �����
���� = TRUE) and �
	 was not acked in the past then

�
	 ��� ��� � ��������% �����
��#� = ��	 ;
�
	 ��$ �.� � � ��� � �/������% �����
��#� = FALSE;

(iii) if ��	 is acked via gap reports for first time and (��	 ��� ��� � �/������% �����
��#� = ��) then
� 	 � ���#� � ��������% �����
��#� = TRUE;
�
	 ��$ �.� � � ��� � �/������% �����
��#� = TRUE;

4) for each destination � do
if (d.new pseudo cumack = TRUE) then update cwnd according to [22, 23];

Figure 4: CMT Cwnd Update Algorithm – Handling side-effect of reduced cwnd growth due to fewer cwnd
updates

in-order delivery per destination. In understanding our proposed solution, again bear in mind that gap reports
do not (necessarily) imply a missing TSN; SACK information is treated only as a concise description of the
TSNs received thus far by the receiver.

Figure 4 shows the proposed CMT Cwnd Update algorithm. We propose the idea of a pseudo-cumack that
tracks the earliest outstanding TSN per destination at the sender. The sender tracks changes in the pseudo-
cumack of each destination using SACKs and history information in the retransmission queue. An advance
in a pseudo-cumack is used by a sender to trigger a cwnd update for the corresponding destination. Thus,
if a SACK causes the pseudo-cumack for a destination to be advanced, then the cwnd for that destination is
updated, even when the actual cum ack is not advanced. The pseudo-cumack should be used only for cwnd
updates; only the actual cum ack can be used for dequeuing data in the sender’s retransmission queue since
a receiver can reneg on data that has been acked through gap reports, but not cumulatively acked. In the
CMT Cwnd Update algorithm (Figure 4), three variables are introduced per destination:

1. exp pseudo cumack - maintains next expected pseudo-cumack at a sender.

2. new pseudo cumack - flag used to indicate if a new pseudo-cumack has been received.

3. find exp pseudo cumack - flag used to find a new expected pseudo-cumack. This flag is set after a
new pseudo-cumack has been received.

Figure 5 shows cwnd growth for CMT-SCTP ��� . The figure shows that the CMT Cwnd Update Algorithm
resolves the side-effect of reduced cwnd growth due to fewer cwnd updates. Of significant interest is the

7

observation that the aggregate cwnd obtained by CMT-SCTP � � exceeds the expected aggregate cwnd. This
unexpected behavior is discussed at the end of Section 5.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT-SCTP_sc (B1)
CMT-SCTP_sc (B2)

CMT-SCTP_sc(B1+B2)
Expected[SCTP(B1) + SCTP(B2)]

Figure 5: Including the Cwnd Update Algorithm (CMT-SCTP ���): Evolution of the different cwnds

5 Delayed Acks with CMT

SCTP specifies that a receiver should use the delayed ack algorithm as given in RFC2581 while acknowl-
edging data. Specifically, RFC2581 states that “Out-of-order data segments SHOULD be acknowledged
immediately...” With CMT’s frequent reordering, this rule causes an SCTP receiver to frequently not delay
acks. Hence a negative side-effect of reordering with CMT is increased ack traffic on the return path. To
prevent this increase in ack traffic, we suggest that a CMT-SCTP receiver ignore the rule mentioned above.
That is, a CMT-SCTP receiver does not immediately ack an out-of-order packet, but delays the ack. Though
this modification at the receiver eliminates the observed increase in ack traffic, the rule from RFC2581
mentioned above has another purpose which gets hampered.

According to RFC2851, “Out-of-order data segments SHOULD be acknowledged immediately, in order to
accelerate loss recovery. To trigger the fast retransmit algorithm, the receiver SHOULD send an immediate
... ACK when it receives a data segment above a gap in the sequence space.” In SCTP, four acks with gap
reports for a missing TSN (i.e., four missing reports for a TSN) suggest that the receiver received at least four
data packets sent after the missing TSN. Receipt of four missing reports for a TSN triggers the fast retransmit
algorithm at the sender. In other words, the sender has a reordering threshold (or dupack threshold in TCP
terminology) of four packets. Since a CMT-SCTP receiver cannot distinguish between loss and reordering
introduced by CMT, the modification suggested above by itself would cause a CMT-SCTP receiver to delay
acks even in the face of loss. Consequently, when a loss does occur, fast retransmit would be triggered at

8

On receipt of a data packet [Receiver side behavior]:
1) delay sending an ack as given in [23], with the additional change that

acks should be delayed even if reordering is observed.
2) in each ack, report number of data packets received since sending of previous ack.

When incrementing missing report count through SFR-CACC:Step 4(ii) (Figure 2) [Sender side behavior]:
1) let � (be the TSN for which missing reports should be incremented;
2) let ��(be the destination to which ��(was sent;
3) if (��(+�	��
���� �!
�� ���#�
��#� = TRUE) then

if (� destinations ��� such that ��� �� � (, �����	�

���� ��
�� ���#��
��#� = FALSE) then
/** all newly acked TSNs were sent to the same destination as �)(**/

if (� newly acked TSNs ��� , � � such that ���	� �3(
� � �) then
(conservatively) increment missing report count for �)(by 1;

else if (� newly acked TSNs ��� , � �*0 � () then
increment missing report count for ��(by number of packets reported by receiver;

else /** Mixed SACK - newly acked TSNs were sent on multiple destinations **/
(conservatively) increment missing report count for � (by 1;

Figure 6: CMT Delayed Ack Algorithm – Handling side-effect of increased ack traffic

the CMT-SCTP sender only if the receiver receives at least seven data packets sent after a lost TSN. Thus,
the effective reordering threshold at the sender would increase to at least seven packets.

This effective increase in reordering threshold at the sender can be countered by reducing the actual number
of acks required to trigger a fast retransmit at the sender. In other words, if a sender can increment the
number of missing reports more accurately per ack received, fewer acks will be required to trigger a fast
retransmit. The receiver can provide more information in each ack to assist the sender in accurately inferring
the number of missing reports per ack for a lost TSN.

We suggest that in each ack, a receiver report the count of data packets received since the previous ack was
sent. The final algorithm to enable delayed acks with CMT is given in Figure 6. This algorithm specifies a
receiver’s behavior on receipt of data, and also a sender’s behavior when the missing report count for a TSN
needs to be incremented.

Since SCTP (and TCP) acks are cumulative, loss of an ack will result in loss of the data packet count
reported by the receiver, but the TSNs acked will be acknowledged by the following ack. Receipt of this
following ack can cause ambiguity in inferring missing report count per destination. As shown in Figure 6,
our algorithm conservatively assumes a single missing report count per destination in such ambiguous cases.

Figure 7 shows cwnd evolution for CMT-SCTP ��� after including the CMT Delayed Ack Algorithm, i.e.,
CMT-SCTP � � � . We observe that cwnd growth remains almost the same as in Figure 5, but the amount of
ack traffic (not shown) is reduced with CMT-SCTP��� � .

We still observe that aggregate cwnd growth of CMT-SCTP exceeds the expected aggregate cwnd growth,
a surprising positive side-effect. To recap, the expected aggregate cwnd is the sum of the cwnd growth of

9

two independent SCTP runs, each using one of the two destination addresses as its primary destination.
The number of acks received in the CMT-SCTP ��� � simulation run is the same as the total number of acks
received in both the SCTP simulation runs. In the SCTP runs, each delayed ack can increase the cwnd by at
most one MTU during slow start, even if the ack acknowledges more than one MTU worth of data.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT-SCTP_scd (B1)
CMT-SCTP_scd (B2)

CMT-SCTP_scd(B1+B2)
Expected[SCTP(B1) + SCTP(B2)]

Figure 7: Including the Delayed Ack Algorithm (CMT-SCTP ��� �): Evolution of the different cwnds

On the other hand, in the CMT-SCTP ��� � run, if a delayed ack simultaneously acknowledges an MTU of data
on each of the two destinations, the sender can simultaneously increase the two cwnds by one MTU each.
Thus, a single delayed ack that acknowledges the data flows on the two paths can cause an aggregate cwnd
growth of two MTUs. From analyzing the traces, we conclude that such delayed acks which simultaneously
contribute to the cwnd growth of the two destinations cause the aggregate cwnd growth of CMT-SCTP ��� � to
exceed the expected aggregate cwnd growth.

Though the aggregate cwnd growth exceeds expected aggregate cwnd growth, we argue that the sender is
not aggressive. The sender does not create bursts of data during slow start, and tries to build up the ack clock
as expected. The sender is able to clock out more data due to delayed acks that acknowledge data flows on
multiple paths.

6 Initial Performance Results

Without CMT-SCTP, a multihoming-aware application can choose to perform CMT at the application layer
by distributing data across multiple transport layer associations, one on each path to the receiver. The
throughput obtained by such an application depends on the scheduling algorithm that the application uses to
distribute data across the associations. We propose Application-Striping, a hypothetical multihome-aware

10

application that achieves the highest throughput achievable by an application that distributes data across
multiple SCTP associations.

An application can, on the other hand, use CMT-SCTP � � � , allowing the transport layer to perform distri-
bution of data across paths. To evaluate the performance and further the case for using CMT-SCTP ��� � ,
we wish to evaluate an application using multiple SCTP associations, i.e., Application-Striping, against an
application using CMT-SCTP ��� � . We hypothesize that an application using CMT-SCTP ��� � will perform at
least as well as Application-Striping. In this section, this hypothesis is evaluated under zero loss conditions
using ns-2 simulations.

6.1 Methodology

Since we do not have an ideal scheduling mechanism for Application-Striping to distribute data across the
two SCTP associations, we simulate an 8MB file transfer by Application-Striping as follows: Step 1: We
transfer 8MB files using two SCTP associations separately, one association using � � as primary destination,
and the other using � � as primary destination; Step 2: We analyze the traces side by side to locate the point
in time when the total data transferred by the two associations in-order together sums up to 8MB, this time
is recorded as the assumed to be the optimal (i.e., minimum) time that would be needed by Application-
Striping to transfer an 8MB file. We use a filesize of 8MB since it is large enough to enable the associations
to spend much of their lifetime in the congestion avoidance phase, and small enough to maintain zero loss
by avoiding buffer overflow at any intermediate buffers between the sender and the receiver.

The simulation setup has two dualhomed hosts, sender A with local addresses A1, A2, and receiver B with
local addresses B1, B2. The hosts are connected by two separate paths: Path1 (A1 - B1), and Path2 (A2 -
B2). The roundtrip propagation delay on both paths is 70 milliseconds. We vary the end-to-end available
bandwidth, but maintain a constant sum of the bandwidth-delay products on the two paths to obtain our
results. We use a constant sum of bandwidth-delay products to observe the effect of varying bandwidth of
the paths within a constant sum. Since we are interested in the sum of throughputs obtained on the paths by
SCTP or CMT-SCTP � � � , varying the bandwidth within a constant sum of bandwidth-delay products provides
insight into how bandwidth alone influences throughput in these simulations. Ideally, with a constant sum
of bandwidth-delay products, the sum of throughputs obtained on the paths should remain constant as well.
For a fixed delay of 70 milliseconds on both paths, we maintain the sum of bandwidths of the paths constant
at 40Mbps. For a given set of network parameters, we compare:

� the time taken to transfer an 8MB file using Application-Striping. This measurement, as a base refer-
ence, represents the best performance that can be obtained by an application that uses multiple SCTP
associations to distribute traffic on the two paths.

� the time taken to transfer a 8MB file using CMT-SCTP� � � .

6.2 Results

In Figure 8, the X-axis shows the difference in bandwidth between Path 1 and Path 2. The sum of the
bandwidths is set to 40Mbps; at 0 on the X-axis, each path has 20Mbps bandwidth. The one way delay is

11

set to 35ms on each path. Figure 8 compares the time take to transfer an 8MB file using CMT-SCTP��� � with
the time taken to transfer an 8MB file using Application-Striping.

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

-40 -30 -20 -10 0 10 20 30 40

T
im

e
ta

ke
n

fo
r

8M
B

 tr
an

sf
er

 (
in

 s
ec

on
ds

)

Bandwidth difference (Path1 - Path2) (in Mbps)

Application-Striping
CMT-SCTP_scd

Figure 8: Performance comparison of CMT-SCTP � � � with Application-Striping under zero loss conditions

To understand the shape of the Application-Striping curve, consider the following two scenarios -
Scenario 1: two concurrent SCTP associations over paths each with end-to-end available bandwidth X bps,
and
Scenario 2: a single SCTP association over one path with end-to-end available bandwidth 2X bps.

If we assume the same end-to-end propagation delay for all paths and same rwnd for both scenarios, it can
be seen that in the slow start phase, Scenario 1 will have a cwnd growth rate faster than the Scenario 2. The
following steps through the first few stages in the cwnd growth for the two scenarios may clarify this point.
Assuming delayed acks result in one ack for every two data packets received:

1. At time 0: In Scenario 1, aggregate cwnd is 4 MTUs (2 MTUs per destination). In Scenario 2,
aggregate cwnd is 2 MTUs.

2. After 1 RTT: In Scenario 1, aggregate cwnd is 6 MTUs. In Scenario 2, aggregate cwnd is 3 MTUs.

3. After 2 RTTs: In Scenario 1, aggregate cwnd is 8 MTUs. In Scenario 2, aggregate cwnd is 4 MTUs.

Such cwnd increase continues until the sender enters congestion avoidance. With our simulation parameters,
the sender enters congestion avoidance after the cwnd increases beyond the rwnd. We can thus see that there
is an faster rate of cwnd growth in Scenario 1 than in Scenario 2 during the slow start phase.

12

The shape of the Application-Striping curve in Figure 8 can be now understood on the basis of the two
scenarios we have described. At the center of the X-axis, both paths have equal bandwidth (20Mbps each).
This point on the X-axis is equivalent to Scenario 1 described above. Further from the center of the X-axis,
the paths have increasingly disparate bandwidth characteristics (with the bandwidth of one path decreasing
linearly to zero, while bandwidth of the other path increases linearly to 40Mbps), and the simulations tend
towards Scenario 2 described above.

Thus, due to differing cwnd growth rates, the time taken for Application-Striping to transfer an 8MB file in-
creases as the bandwidth difference between the paths increases and the sum of the bandwidths is maintained
a constant.

At all bandwidth allocations between the two paths, CMT-SCTP ��� � performs better than Application-Striping.
This improved performance is primarily due to a faster rate of cwnd growth during slow start with CMT due
to acks for data on multiple paths, as described in Section 5. We thus demonstrate under zero loss condi-
tions that even if the application uses an ideal scheduling algorithm to distribute data across multiple SCTP
associations, CMT-SCTP � � � will perform at least as well such an application.

7 Conclusion and Future Work

We have identified three potential negative side-effects of introducing CMT with SCTP, and propose algo-
rithms to avoid these side-effects. We show that initial simulation results indicate correctness of the proposed
algorithms. The side-effects presented in this paper and the corresponding algorithms should be applicable
to CMT using other reliable, SACK-based transport layer protocols; some issues may be applicable to un-
reliable protocols as well. We also demonstrate under zero loss conditions that even if the application uses
an ideal scheduling algorithm to distribute data across multiple SCTP associations, CMT-SCTP � � � will per-
form at least as well such an application. With simulations, we are currently evaluating CMT-SCTP ��� � using
different combinations of bandwidth, delay and lossrate on the paths.

There are some other effects which we feel may demand attention in our continued efforts. For instance,
a positive synergy exists between the paths used for CMT; acks sent later on the faster path may reach the
sender prior to acks sent earlier on the slower path. The acks received on the faster path also carry infor-
mation about data received on the slower path due to cumulative information contained in the acks. Thus,
the slower path will experience a faster cwnd growth due to a faster return path, and consequently a smaller
effective RTT. We suspect that the impact of this phenomenon would be higher when paths with largely dif-
ferent end-to-end delays are used. This phenomenon also suggests a negative side-effect – spurious timeouts
may occur due to an inaccurate RTT estimate for the slower path, requiring reevaluation of the RTT estima-
tion algorithm (see Figure 9). We plan to investigate the effects of this phenomenon on RTT estimation at
the sender.

We observe that inefficient sharing of rwnd at the sender may reduce the performance benefits of CMT-
SCTP � � � . We believe that a shared finite rwnd will become a performance bottleneck, specifically when the
paths have different loss rates. We plan to investigate rwnd reservation mechanisms per destination at the
sender. We plan on continuing work with CMT, starting with relaxation of the constraint of a large rwnd.
We then plan on incorporating an end-to-end technique for shared bottleneck detection [12, 19] to enable
the sender to dynamically decide from either shared or distinct congestion control across paths.

13

A1 A2 B2Sender
A

Receiver
B

B1
Receiver

B

TSN x

TSN x+n

SACK
(cumack = x)

SACK

(cumack = x+n)

t1

RTT sample used for
destination B1

Error in RTT sample used

x, n : Positive integers
t1 : Moment when timer is started for TSN x
t2 : Moment when timer is stopped for TSN x since cumack covers TSN x
t3 : Moment when timer should correctly be stopped for TSN x
RTT sample used = R = (t2 - t1)
RTT sample that should be used = R’ = (t3 - t1)
Error in RTT sample used = R’ – R = (t3 - t2)

t2

t3

Figure 9: Erroneous RTT Calculation at CMT-SCTP Sender

8 Related Work

Mao et al. [17] extend RTP (Realtime Transport Protocol) to support use of multiple paths in Multi-path
Realtime Transport Protocol (MRTP), an application layer protocol which could use one of TCP, SCTP
or UDP as transport. MRTP specifies session establishment and maintenance mechanisms and scheduling
mechanisms over multiple paths, possibly using SCTP multihoming or UDP. The authors propose, as one
option, to use SCTP multihoming for simultaneously using multiple paths. This work is complementary to
CMT-SCTP work, since the authors provide motivation and an application that would benefit from using
CMT-SCTP in a multipath environment.

Al et al. [2] suggest ideas for load sharing with SCTP, but requires that more metadata be added to the
packets. We believe that the SCTP (and TCP-SACK) packets already contain sufficient information for
the data sender to infer the information that [2] explicitly codes as metadata into the packets. The authors
introduce new sequence numbers to maintain per-path ordering information, but fail to suggest modified
procedures for mechanisms which are immediately affected, such as initialization of the per-path sequence
numbers, association initialization and shutdown procedures with multiple sequence numbering schemes,
and response to reneging by a receiver.

Phatak [18] proposes distributing data at the network (IP) layer transparent to the higher layers using IP-in-IP
encapsulation. Under the questionable assumption that that end-to-end delays are dominated by transmission
delay, Phatak identifies conditions under which this mechanism would work without triggering incorrect
retransmission timeouts. Phatak fails to adequately address key issues such as reordering and relevance in
propagation delay dominated paths or paths with dynamically changing bandwidths and/or delays.

14

Blanton et al. [5], Zhang et al. [25] and Bohacek et al. [6] describe algorithms to eliminate the effects
of reordering due to the network. With CMT, we discuss reordering introduced at the sender, not in the
network. The sender has more information about sender introduced reordering, and can hence address this
reordering more effectively. [5, 25] can be applied to CMT independently, since they address reordering
introduced by the network.

Gerla et al. [11] show that TCP Westwood [9], which uses a different mechanism from TCP Reno [3] for
bandwidth estimation, is robust to packet reordering introduced by the network. [11] also demonstrates
that TCP Westwood is capable of obtaining aggregated throughput when the network layer uses multiple
paths, but does not discuss performance in the presence of a shared bottleneck. Gerla et al.[11] assume
that multiple paths at the network layer will be optimally utilized by the routing infrastructure. There exist
scenarios where the end user has knowledge of and control over only the multihomed endpoints but not
the intermediate routers, such as in the Internet. In such cases the endpoint cannot dictate or govern use of
multiple paths in the network, but can certainly distribute traffic over the multiple end-to-end paths that may
be available at the endpoint, thus motivating transport layer CMT.

Research in link layer load balancing, also known as inverse multiplexing or link aggregation [1, 10, 15, 20,
21, 24] has generally not been end-to-end, and the operating conditions do not represent the conditions that
end-to-end CMT over the Internet has to operate in.

9 Disclaimer

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Army Research Laboratory or the
U.S. Government.

References

[1] H. Adiseshu, G. Parulkar, and G. Varghese. A Reliable and Scalable Striping Protocol. In ACM
SIGCOMM 1996, Stanford, California, August 1996.

[2] A. Abd El Al, T. Saadawi, and M. Lee. Load Sharing in Stream Control Transmission Protocol. draft-
ahmed-lssctp-00.txt, Internet Draft (expired), Internet Engineering Task Force (IETF), May 2003.

[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC2581, Internet Engineering
Task Force (IETF), April 1999.

[4] UC Berkeley, LBL, USC/ISI, and Xerox Parc. ns-2 documentation and software, Version 2.1b8, 2001.
http://www.isi.edu/nsnam/ns.

[5] E. Blanton and M. Allman. On Making TCP More Robust to Packet Reordering. ACM Computer
Communication Review, 32(1), January 2002.

[6] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and K. Obraczka. TCP-PR: TCP for Persistent Packet
Reordering. In IEEE ICDCS 2003, Rhode Island, May 2003.

15

[7] R. Braden. Requirements for Internet hosts–communication layers. RFC1122, Internet Engineering
Task Force (IETF), October 1989.

[8] A. Caro and J. Iyengar. ns-2 SCTP module, Version 3.2, December 2002. http://pel.cis.udel.edu.

[9] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sansadidi, and R. Wang. TCP Westwood: End-to-End Con-
gestion Control for Wireless Networks. Wireless Networks Journal, (8):467–479, March 2002.

[10] The ATM Forum Technical Committee. Inverse Multiplexing for ATM (IMA) Specification, Version
1.0, July 1997. AF-PHY-0086.000.

[11] M. Gerla, S. S. Lee, and G. Pau. TCP Westwood Simulation Studies in Multiple-Path Cases. In
SPECTS 2002, San Diego, California, July 2002.

[12] K. Harfoush, A. Bestavros, and J. Byers. Robust Identification of Shared Losses Using End-to-End
Unicast Probes. In ICNP 2000, Osaka, Japan, October 2000.

[13] J. Iyengar, A. Caro, P. Amer, G. Heinz, and R. Stewart. SCTP Congestion Window Overgrowth During
Changeover. In SCI 2002, Orlando, FL, July 2002.

[14] J. Iyengar, A. Caro, P. Amer, G. Heinz, and R. Stewart. Making SCTP More Robust to Changeover.
In SPECTS 2003, Montreal, Canada, July 2003.

[15] D. A. Khotimsky. A Packet Resequencing Protocol for Fault-Tolerant Multipath Transmission with
Non-Uniform Traffic Splitting. In IEEE GLOBECOM 1999, Rio de Janeiro, Brazil, December 1999.

[16] E. Kohler, S. Floyd, M. Handley, and J. Padhye. Datagram Congestion Control Protocol (DCCP).
draft-ietf-dccp-spec-04.txt, Internet Draft (work in progress), Internet Engineering Task Force (IETF),
June 2003.

[17] S. Mao, D. Bushmitch, S. Narayanan, and S. S. Panwar. MRTP: A Multi-Flow Realtime Transport
Protocol for Ad Hoc Networks. In IEEE Vehicular Technology Conference, Orlando, Florida, October
2003.

[18] D. S. Phatak and T. Goff. A Novel Mechanism for Data Streaming Across Multiple IP Links for
Improving Throughput and Reliability in Mobile Environments. In IEEE INFOCOM 2002, New York,
NY, June 2002.

[19] D. Rubenstein, J. Kurose, and D. Towsley. Detecting Shared Congestion of Flows Via End-to-end
Measurement. IEEE/ACM Transactions on Networking, 10(3), June 2002.

[20] K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti. The PPP Multilink Protocol (MP).
RFC1990, Internet Engineering Task Force (IETF), August 1996.

[21] A. C. Snoeren. Adaptive Inverse Multiplexing for Wide-Area Wireless Networks. In IEEE GLOBE-
COM 1999, Rio de Janeiro, Brazil, December 1999.

[22] R. Stewart, L. Ong, I. Arias-Rodriguez, K. Poon, P. Conrad, A. Caro, and M. Tuexen. Stream Control
Transmission Protocol (SCTP) Implementer’s Guide. draft-ietf-tsvwg-sctpimpguide-08.txt, Internet
Draft (work in progress), Internet Engineering Task Force (IETF), March 2003.

[23] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol. RFC2960, Internet Engineering Task Force
(IETF), October 2000.

16

[24] C.B.S. Traw and J. M. Smith. Striping Within the Network Subsystem. IEEE Network, 9(4):22–32,
July 1995.

[25] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP: A Reordering-Robust TCP with DSACK.
Technical Report TR-02-006, ICSI, July 2002.

17

