
Making SCTP More Robust to Changeover�

Janardhan R. Iyengar, Armando L. Caro, Jr., Paul D. Amer, Gerard J. Heinz

Protocol Engineering Lab

Computer and Information Sciences

University of Delaware

fiyengar, acaro, amer, heinzg@cis.udel.edu

Randall R. Stewart

Cisco Systems Inc.

rrs@cisco.com

ABSTRACT

We present a problem in the current SCTP (RFC2960)
specification that results in unnecessary retransmissions and
“TCP-unfriendly” growth of the sender’s congestion window
during certain changeover conditions. We first illustrate the
problem using an example scenario. To gain insight into the
ambient conditions under whichcwnd overgrowth can be
observed, we present an analytical model of this problem. As
solutions, we then propose twochangeover aware congestion
control (CACC) algorithms which incorporatechangeover
awarenessin SCTP’s congestion control mechanism:Con-
servative CACC (C-CACC), andSplit Fast Retransmit CACC
(SFR-CACC). Using ns-2 simulations, we validate the model
and evaluate the recommended solution. Based on the
analysis, we make recommendations for modifications to
SCTP.

Keywords: SCTP, Changeover, Multihoming, Reordering,
Congestion Control, Transport Protocols

1 INTRODUCTION
A node ismultihomedif it can be addressed by multiple IP ad-
dresses [5], as would be the case when the host has multiple
network interfaces. Network layer redundancy allows access
to a host even if one of its IP addresses becomes unreach-
able; ideally packets can be rerouted to one of the host’s alter-
nate IP addresses. However, since IP is connectionless, end-

�Prepared through collaborative participation in the Communications and
Networks Consortium sponsored by the U. S. Army Research Laboratory un-
der the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U. S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

to-end session persistence under failure conditions becomes
the responsibility of the transport layer and above. To pro-
vide for such fault tolerance, the Stream Control Transmis-
sion Protocol (SCTP) supports multihoming at the transport
layer. SCTP sessions, orassociations, can dynamically span
over multiple local and peer IP addresses so that an associa-
tion can remain alive even if one of the endpoints’ addresses
becomes unreachable.

SCTP [13] is a recent standards track transport layer protocol
in the Internet Engineering Task Force (IETF). Of the salient
features that distinguish SCTP from TCP, we concern our-
selves withmultihoming. SCTP multihoming allows binding
of one transport layer association to multiple IP addresses.
This binding allows an SCTP sender to send data to a multi-
homed receiver through different destination addresses. For
instance, in figure 1,A could send data toB using desti-
nation addressB1 or B2. SCTP’s multihoming feature was
motivated by fault tolerance; if one destination address be-
comes unreachable, the destination can still send and receive
via other interfaces bound to the association.

In a multihomed SCTP association, the sender transmits data
to its peer’sprimary destination address. SCTP provides for
application-initiated changeovers so that the sending applica-
tion can change the sender’s primary destination address, thus
moving the outgoing traffic to a potentially different path1.
We uncovered a problem in the current SCTP (RFC2960)
specification [13] that results in unnecessary retransmissions
and “TCP-unfriendly” growth of the sender’s congestion win-
dow under certain changeover conditions.

1SCTP was designed as a transport protocol for telephony signaling in
SS7 networks. In an SS7 network the upper layers can dictate to which
destination address packets will be sent, motivating the application-initiated
changeover feature in SCTP.

We wish to point out that the problem of unnecessary fast
retransmits observed is applicable to TCP as well, under
reordering of traffic by the network. Such reordering has
been known to occur, and there’s been work done in the
area [4, 7, 14]. But, under a single association, SCTP has the
unique feature of multihoming which allows multiple conges-
tion windows to co-exist. Such a feature has not been known
to TCP, and hence the problem of congestion window over-
growth is unique to SCTP. Nevertheless, any transport layer
protocol equipped with multihoming awareness would prob-
ably observe the described problems. Though the solutions
as described in Section 4 are specific to SCTP, they also indi-
cate that such multihoming aware transport protocols should
incorporatechangeover awarenessin their congestion control
algorithms.

In [8], we present a specific example which illustrates the
problem ofcwndovergrowth with SCTP’s currently specified
handling of changeover. In this paper, we generalize the prob-
lem and develop an analytical model in Section 2. The model
abstractly quantifies thecwndovergrowth under various net-
work and changeover conditions. This model provides insight
into the ambient conditions under whichcwnd overgrowth
can be observed. Based on the model, we present some re-
sults estimating conditions forcwndovergrowth in Section 3.
Due to the fact that transport layer multihoming is not a cur-
rent practice, it is extremely difficult to use any empirical data
to reinforce the importance of the observed congestion win-
dow overgrowth. Hence, we use analytical results in Section
3 to suggest that the problem might not be a “corner case”.
Section 4 presents twochangeover aware congestion control
algorithms as solutions:Conservative CACC (C-CACC)and
Split Fast Retransmit CACC (SFR-CACC). By approaching
the problem from different perspectives, the Rhein algorithm
(described in a previous work [8]) and the CACC algorithms
(Section 4) all solve the problem of TCP-unfriendlycwnd
growth. After analyzing their advantages and disadvantages
in Section 5, we recommend the addition of the SFR-CACC
algorithm to SCTP.

2 CONGESTION WINDOW OVER-
GROWTH: A GENERAL MODEL

In this section, we generalize the scenario described in [8].
This model abstractly quantifies thecwnd overgrowth and
the number of unnecessary retransmissions caused by the
changeover under various network conditions. In Section 2.1,
we present a generalized timeline of SCTP behaviour during
changeover. We then derive analytic results from this gen-
eral model in Section 2.2, followed by a discussion of these

results in section 2.3.

NetworkHost A

Path1

Path2

A1

A2

Host B
B1

B2

Figure 1: Architecture used in example

The general model uses the architecture shown in figure 1.
EndpointsA andB have an SCTP association between them.
Both endpoints are multihomed,A with network interfaces
A1 andA2, andB with interfacesB1 andB22. All four ad-
dresses are bound to the one SCTP association. For several
possible reasons (e.g., path diversity, policy based routing,
load balancing), we assume in this model that the data traffic
fromA toB1 is locally routed throughA1, and fromA toB2
throughA2.

2.1 Model Description

We now present a generalized timeline of SCTP behaviour
during changeover in figure 2. This timeline is an excerpt
from an association and is based on the example scenario
described in [8] . The vertical lines in the timeline repre-
sent interfacesB1, A1, A2 andB2. The numbers along the
lines represent time periods or moments. Each arrow depicts
the departure of a packet from one interface and its arrival
at the destination. The labels on the arrows are either SCTP
Transmission Sequence Numbers (TSN) or labels of the form
STC(TGS � TGE). SCTP transmits data and control infor-
mation in transport layer entities calledchunks. Each DATA
chunk carries a unique TSN, as against the sequence num-
bering scheme in TCP, which assigns a sequence number per
byte. Assuming one chunk per packet, every packet in the ex-
ample corresponds to one TSN. A number represents the TSN
of the chunk in the packet being transmitted. SCTP uses cu-
mulative acks and selective acks in acknowledgments, where
the selective acks indicate the TSNs received out of order.
Such selective acks in SCTP, which are sent in SACK chunks,
are calledgap acks. A labelSTC(TGS � TGE) represents a
packet carrying a SACK chunk with cumulative ackTC , and
gap ack for TSNsTGS throughTGE. C1 is thecwndatA for
destinationB1, andC2 is thecwndatA for destinationB2.
C1 andC2 are denoted in terms of MTUs, not bytes.

2More precisely,A1, A2, B1 andB2 are IP addresses associated with
link layer interfaces. Here we assume only one address per interface, so
address and interface are used interchangeably.

Some parameters used in the model are described below. The
rest of the notation is described in Section 2.2.

� C1; C2 : Congestion windows at A forB1 andB2, re-
spectively

� tc : Changeover time - Moment after a changeover when
senderA starts sending packets to new primary destina-
tionB2

� t2 : Time when fast retransmission (incorrectly) starts.

� G1 : Number of Transmission Sequence Numbers
(TSNs) sent in initial group transmitted to destination
B1 in the time intervalf0; tcg.

� K + 1 : First TSN to be fast retransmitted (incorrectly)
byA.

At t = 0, hostA starts to transmitG1 TSNs (TSN 1 through
G1) to destination addressB1. By time tc the transport layer
at hostA hasG1 TSNs outstanding. This group of TSNs (1
throughG1) is referred to as theinitial group. Note that these
TSNs are outstanding at the transport entity at hostA and
could be buffered anywhere along the end-to-end path, even
at interfaceA1. By time tc, A has changed its primary desti-
nation toB2. At the instantt = tc, A starts transmitting new
data toB2 through interfaceA2. tc can also be thought of as
the time elapsed from the transmission of the first outstanding
TSN on destinationB1 to the time of transmission of the first
TSN on destinationB2 after changeover. Note that the SCTP
receiver normally responds with delayed SACKs, but imme-
diately returns a SACK whenever reordering is observed.

The critical instant in the scenario, denotedt2, occurs when
A receives the fourth missing report [11, 13]. At this instant,
TSNsK + 1 throughG1 get marked for retransmission. Due
to the receipt of a SACK acking TSNG1 + 4, (at t2) C2 al-
lows oneMTU sized chunk to be transmitted, hence TSN
K + 1 gets retransmitted to destinationB2. According to
RFC2960, “... when its peer is multi-homed, an endpoint
SHOULD try to retransmit a chunk to an active destination
transport address that is different from the last destination ad-
dress to which the DATA chunk was sent.” Since the original
transmission of TSNK+1 went toB1, the retransmission of
TSNK+1 is sent toB2. The value ofK is estimated and its
relevance to thecwndovergrowth is explained in Section 2.2.

The retransmission of TSNK + 1 at t = t2 is a consequence
of the fourth missing report (SACK received on interfaceA2
at t = t2) carrying cumulative ackK. Since TSNsG1 + 1
throughG1 + 4 reached hostB by time t1, the SACK also
carries a gap ack for TSNsG1 + 1 throughG1 + 4, resulting
in the marking of TSNsK+1 throughG1 for retransmission.
The cumulative ackK is an indication that the receiverB has
receivedK TSNs in-sequenceby time t1. This in-sequence

data is clearly the data received byB on the interfaceB1 by
time t1.

Following the retransmission of TSNK+1, the SACK for the
original transmission of TSNK + 1 arrives atA. Since host
A now considers TSNK+1 to be outstanding on destination
B2, the receipt of this SACK incorrectly increasesC2, and
allows TSNsK+2 andK+3 to be retransmitted. The receipt
of a SACK for TSNK + 1 immediately after TSNK + 1 is
retransmitted is not a coincidence. At timet1 when hostB
sends a SACK with a cumulative ack ofK acking the receipt
of TSNG1 + 4, TSNK + 1 is concurrently being received
on interfaceB1. Immediately after the receipt of TSNK +
1 on interfaceB1, hostB sends a SACK with cumulative
ackK + 1. Consequently, the sequence of events at hostA

is the receipt of a SACK with cumulative ackK (which is
also the fourth missing report for TSNsK + 1 throughG1)
followed by a SACK with cumulative ackK + 1. As shown,
this behaviour continues until the SACKs for all the original
transmissions toB1 (up to TSNG1) have been received at
hostA.

2.2 Analytic Results

We will now estimate thecwnd overgrowth ofC2, and the
number of unnecessary retransmissions. The parameters used
in the following analysis are:

L1F ; L2F : Maximum Transmission Unit (MTU) sizes on
forward pathsA1 toB1 andA2 toB2, respectively
B1F ; B2F : End-to-End available bandwidths [9] on forward
pathsA1 toB1 andA2 toB2, respectively
e : Delay experienced by a packet along a path, given by:

e =
X

i = each hop

(prop)i + (proc)i + (queue)i + (trans)i

(1)
whereprop = propagation delay,proc = processing delay,
queue = queueing delay, andtrans = transmission delay.

eF : Delay experienced by a data packet, along the
forward path.Assumption:Each data packet isMTU sized,
therefore,eF is estimated by:

eF =
X

i = each hop in forward path

�
(prop)i + (proc)i
+(queue)i +

L
Bi

(2)

where, L is the MTU of the path, andBi is available
bandwidth at hopi.
e1F ; e2F : Delays experienced by a data packet on forward
pathsA1 toB1 andA2 toB2, respectively,

1 G
1 +1

SY ([G1
+1] - [G1 +1])*

K+1

S G
1 +5

G1

G
1 +2

(C2 = G1 -K+1)

B1 A1 A2 B2

Sender
A

Receiver
B

Receiver
B

(C2=2) tc

K+2
SK+2 ([G

1 +1] – [G
1 +4])

K
SK ([G

1 +1] - [G
1 +X])*SK+1 ([G

1 +1] - [G
1 +4])

t1

(C2 = 2) t2

e1F

(C2 = 3)

(C2 = 4)

2

0

SK ([G1
+1] - [G1

+4])t1

G
1 +4

G
1 +3

G
1 +5

G1 - 1
S G

1 -1 ([G
1 +1] - [G

1 +5])

(C2 = G1 -K+2)

t2

* X = 3 if TSN K is received after TSN (G1+ 3), i.e.,
{ e1F + (K-1)d1F } > { t c+ 2e2F + e2R }

2 otherwise
Y = ceiling {(tc+ e2F - e1F) / d1F}

d1F
d2F

e2F

e1R

e2R

d2F

New transmissions,
limited by Max.Burst

K+1 (rtx)K+2, K+3 (rtx)
K+4, K+5 (rtx)

G
1 (rtx)

(G1 TSNs being
transmitted)

Figure 2: General timeline for the problem

eR : Delay experienced by a pure SACK packet, along
the reverse path.Assumption:that transmission delays for
pure SACK packets are negligible, therefore,eR is estimated
by:

eR =
X

i = each hop in reverse path

(prop)i + (proc)i + (queue)i

(3)
e1R; e2R : Delays experienced by a pure SACK packet on
reverse pathsB1 toA1 andB2 toA2, respectively.

d : Minimum delay observed between consecutive packets
transmitted along a same path by the receiver of the packets.
This delay is dictated by end-to-end available bandwidth of
the path, which is determined by the hop with the minimum
available bandwidth on the path (in other words, the path
bottleneck).d is given by:

d =
L

mini = each hopfBig
(4)

where, L is the MTU of the path, andBi is available
bandwidth at hopi.

d1F ; d2F : Minimum delays between consecutive data
packets fromA1 to B1 observed atB1, and fromA2 to B2

observed atB2, respectively.
d1R; d2R : Minimum delays between consecutive SACK
packets fromB1 to A1 observed atA1, and fromB2 to A2
observed atA2, respectively.

Assumption: The reverse path does not change the de-
lay between SACKs. In other words, the forward path’s
bottleneck dictates the rate at which SACKs are transmitted
and then received, not the reverse path’s bottleneck. There-
fore, the delay observedbetweenSACKs is the same as the
delay observed between the data packets. In other words,

d1R = d1F ; and d2R = d2F (5)

Packet transmission on path 2 starts at timetc; it takes some
time for the fourth legitimate missing report to reach the
senderA. This time instant is shown in figure 2 ast2, which
is given by:

t2 = tc + 2e2F + 2e2R + d2F (6)

t1 is the instant when this fourth legitimate missing report
leavesthe receiverB throughB2, and is given by:

t1 = t2 � e2R = tc + 2e2F + e2R + d2F (7)

As shown in figure 2, we assume that the SACK received at
t2 onA2 contains the highest cumulative ack received byA

so far3.

LetK be defined as the TSN that was most recently cumula-
tively acked atA prior to timet2. In other words,K is the
last TSN that reached the receiverB onB1 at t1, where,

K = d t1�e1F
d1F

e

= d tc+2e2F+e2R+d2F�e1F
d1F

e
(8)

The result is that TSNs(K + 1) throughG1 will be retrans-
mitted on Path 2 and the total number of unnecessary retrans-
missions =maxf0; G1� (K +1)+ 1g = maxf0; G1�Kg.
Thecwndovergrowth forC2 will be maxf0; G1 �Kg.

2.3 Discussion

For an AIMD (Additive Increase Multiplicative Decrease)
congestion control algorithm, around refers to the period
from the transmission ofcwndamount of data to the receipt of
acks for that data. After receipt of these acks, the next round
starts as the sender transmitscwnd+1 amount of data. In our
general model, the period betweent = 0 andt = tc repre-
sents the beginning of such a round when the sender transmits
G1 amount of data. This transmission of data may or may not
be in a burst, but the receiver receives the data with packet
interarrival times of at leastd1F on interfaceB1 sinced1F
is the delay due to the available bandwidth of the bottleneck
link on path 1. Thus, in our model, we assume that TSNs are
received on interfacesB1 andB2 uniformly with interarrival
timesd1F andd2F , respectively.

If K � G1, then all of the original transmissions toB1 are
received by hostB by timet1. Hence, the SACK received by
hostA at timet2 would carry a cumulative ack ofG1+4 and
no gap acks. In this case, no unnecessary retransmission and
no TCP-unfriendlycwndgrowth occurs.

On the other hand, ifK < G1, thenK is the last TSN cu-
mulatively acked prior to timet2. Consequently,K+1 is the
first TSN to be retransmitted incorrectly, andC2 overgrows
by G1 � K. A higher value ofK results in a higher cumu-
lative ack atA at t2, hence fewer retransmissions and con-
sequently less error inC2. Similarly, asK decreases, more
unnecessary retransmissions occur, and the error inC2 also
increases.

From equation (8),K decreases with an increase ind1F , or
a decrease ind2F . Further,K decreases with an increase in

3This assumption is made for simplicity of analysis. If this assumption
does not hold, thecwndovergrowth will be lesser byd e2R�e1R

d1F
e.

e1F , or a decrease ine2F . These relationships betweenK
and the characteristics of the two paths imply thatwhen a
changeover is made to a higher quality path, there is a like-
lihood of TCP-unfriendly cwnd growth and unnecessary re-
transmissions, and the bigger the improvement in quality that
the new path provides, the larger the TCP-unfriendly growth
and number of incorrect retransmissions will be.

3 ANALYTIC RESULTS: VALIDATION
AND VISUALIZATION

It is clear from the analytic results derived in Section 2.2 that
cwndovergrowth occurs if the sender has more thanK pack-
ets outstanding at the time of changeover. The value ofK,
given by equation (8), is thus pivotal in quantifyingcwnd
overgrowth. We first validate this analytical value ofK using
ns-2 simulations in Section 3.1. We then estimate the value
of K using the model under various network and changeover
conditions in Section 3.2.

3.1 Analytic Results: Validation

We now validate the analytical value ofK derived in Sec-
tion 2.2 through simulations using the SCTP module for ns-2
which was developed in the Protocol Engineering Lab at the
University of Delaware [1, 10]. The topology is the same as
in figure 1. The simulations do not have any cross traffic,
hence the end-to-end available bandwidths on each of paths 1
and 2 is equal to the minimum of link capacities on the cor-
responding path. Each of paths 1 and 2 has three links - two
edge links and one core link. The edge links have a capac-
ity of 10Mbps and propagation delay of 1ms. The available
bandwidths of the paths, i.e., the capacities of the core links
are chosen randomly between 10Kbps and 1Mbps. The prop-
agation delays of the core links are chosen randomly between
25ms and 50ms. The sender’s sending window is fixed at
20KB by setting the receiver’s advertised window to 20KB.
We fix the sending window to make it easier to extract param-
eters from the traces. Changeover occurs at time 5 seconds.

Of 1000 simulation runs, 511 runs showed the occurrence of
incorrect fast retransmissions due to changeover. Only the
runs which showed these retransmissions could be used for
validation because to infer the value ofK from a simulation
run (denotedKsim), at least one such retransmission had to
occur. The first incorrect retransmission would correspond to
TSNKsim + 1.

We extracted the values of the parameterse1F , e1R, e2F , e2R,
d1F , d2F and tc from the traces for each of the 511 runs.

Feeding these parameters into equation (8) gave us the ana-
lytic value ofK (denotedKanal).

Simulation results show that of the 511 comparisons ofKsim

andKanal, 431 results agreed exactly. In the remaining 80
results that did not agree,Kanal was equal toKsim � 1.
This underestimation ofK by the analytic model could be
attributed to the assumption made in the derivation of ana-
lytic expression forK in Section 2.2, or to approximations
made in extracting the parameters from the traces.

The simulations thus agree with our analytic results.

3.2 Analytic Results: Visualization

In graphing the analytically derived value ofK, we reduce
the number of independent variables by making the following
assumptions so as to visualize the graphs better:

� Forward paths 1 and 2 have the sameMTU . Hence,
L1F = L2F = L

� The forward and reverse paths have the same propaga-
tion, processing and queueing delays. Using equations
(2) and (3),

eF = eR +
X

i = each hop in forward path

L

Bi
(9)

� The transmission delays at the other links along a path
are assumed negligible in comparison to the transmis-
sion delay at the bottleneck link. Using equation (4),

X
for i = each hop

L

Bi
�

L

mini = each hopfBig
= d

(10)

� Combining the above two assumptions, we get

eF = eR + dF = eR +
L

BF

(11)

For the forward paths 1 and 2, the equation 11 can be
rewritten as

e1F = e1R +
L

B1F
and e2F = e2R +

L

B2F
(12)

Figures 3.2 and 3.2 (left) graphK as a function ofB2F , for
fixed values ofB1F , e1R ande2R. In these 2-D graphs, the
changeover time,tc, is fixed at 10ms. Each 3-D graph in
figures 3.2 and 3.2 (right) picks one representative curve from

the corresponding 2-D graph (left), and shows the influence
of tc onK. These 3-D graphs thus showK as a function of
B2F andtc, for fixed values ofB1F , e1R ande2R.

The graphs are organized as follows:

� The results in figure 3.2 use the range 10kbps - 100kbps
for the available bottleneck bandwidthsB1F andB2F .
tc is set to 10ms in the 2-D graphs. The curve corre-
sponding toB1F = 50kbps is used as a representative
curve to show the influence oftc onK. tc varies over
10ms - 100ms in the 3-D graphs. Three combinations of
(e1R, e2R) are used: (50ms, 50ms), (50ms, 25ms), and
(25ms, 50ms).

� The results in figure 3.2 use the range 100kbps - 1Mbps
for the available bottleneck bandwidthsB1F andB2F .
tc is set to 10ms in the 2-D graphs. The curve corre-
sponding toB1F = 500kbps is used as a representative
curve to show the influence oftc onK. tc varies over
10ms - 100ms in the 3-D graphs. Three combinations of
(e1R, e2R) are used: (50ms, 50ms), (50ms, 25ms), and
(25ms, 50ms).

We split the range (10kbps - 1Mbps) into two subranges
(10kbps - 100kbps and 100kbps - 1Mbps), because the vari-
ation observed inK with bothB1F andB2F ranging from
10kbps to 1Mbps is large. We are thus able to visualize the
behaviour ofK over a large range of available bandwidths,
with the assumption that the available bandwidths of the two
paths are comparable.

In figure 3.2,K varies between 0 and 30, and mostly has a
value below 10. Remember that the smallerK is, the more
unnecessary retransmissions will occur, and the morecwnd
grows when it should not. Changes ine1R; e2R andtc seem
to have little influence onK, as compared to the variation due
to B1F ; B2F . That is because in this set, since the available
bandwidths are low, the total delay is dominated by transmis-
sion delay.

In figure 3.2,K varies between 0 and 40. The median value
of K in this set has increased from the first set. This in-
crease can be attributed to the greater range of the bottleneck
bandwidths. Another important factor can be understood by
considering equation (8). With an increase in the bottleneck
bandwidth, the value ofd1F decreases, consequently increas-
ing K. We also observe the increased influence ofe1R; e2R
and tc in this set of results, since the transmission delay is
lesser dominant in this set.

In both sets, we note thatK decreases with a decrease inB1F
or an increase inB2F , as is expected.

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

K

B2F

B2F (in kbps) vs K (e1R = 50 ms, e2R = 50ms, tc = 10ms)

B1F=10kbps
B1F=30kbps
B1F=50kbps
B1F=70kbps

B1F=100kbps

K as a function of B2F and tc (e1R=50ms, e2R=50ms, B1F=50kbps)

K

10
20

30
40

50
60

70
80

90
100 10 20 30 40 50 60 70 80 90 100

0

5

10

15

B2F (kbps)

tc (ms)

K

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

K

B2F

B2F (in kbps) vs K (e1R = 50 ms, e2R = 25ms, tc = 10ms)

B1F=10kbps
B1F=30kbps
B1F=50kbps
B1F=70kbps

B1F=100kbps

K as a function of B2F and tc (e1R = 50ms, e2R = 25ms, B1F = 50kbps)

K

10
20

30
40

50
60

70
80

90
100 10 20 30 40 50 60 70 80 90 100

0

5

10

15

B2F (kbps)

tc (ms)

K

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

K

B2F

B2F (in kbps) vs K (e1R = 25 ms, e2R = 50ms, tc = 10ms)

B1F=10kbps
B1F=30kbps
B1F=50kbps
B1F=70kbps

B1F=100kbps

K as a function of B2F and tc (e1R = 25ms, e2R = 50ms, B1F = 50kbps)

K

10
20

30
40

50
60

70
80

90
100 10 20 30 40 50 60 70 80 90 100

0

5

10

15

B2F (kbps)

tc (ms)

K

Figure 3: Graphing K analytically: 10kbps� B1F ; B2F � 100kbps

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700 800 900 1000

K

B2F

B2F (in kbps) vs K (e1R = 50ms, e2R = 50ms, tc = 10ms)

B1F=100kbps
B1F=300kbps
B1F=500kbps
B1F=700kbps

B1F=1Mbps

100 200 300 400 500 600 700 800 9001000 10 20 30 40 50 60 70 80 90 1000

5

10

15

20

25

0

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000

K

B2F

B2F (in kbps) vs K (e1R = 50ms, e2R = 25ms, tc = 10ms)

B1F=100kbps
B1F=300kbps
B1F=500kbps
B1F=700kbps

B1F=1Mbps

K as a function of B2F and tc (e1R = 50ms, e2R = 25ms, B1F = 500kbps)

K

100
200

300
400

500
600

700
800

900
1000 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

B2F (kbps)

tc (ms)

K

0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

K

B2F

B2F (in kbps) vs K (e1R = 25ms, e2R = 50ms, tc = 10ms)

B1F=100kbps
B1F=300kbps
B1F=500kbps
B1F=700kbps

B1F=1Mbps

K as a function of B2F and tc (e1R = 25ms, e2R = 50ms, B1F = 500kbps)

K

100
200

300
400

500
600

700
800

900
1000 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

B2F (kbps)

tc (ms)

K

Figure 4: Graphing K analytically: 100kbps� B1F ; B2F � 1Mbps

4 PROPOSED SOLUTION:
CHANGEOVER AWARE CONGESTION
CONTROL

As mentioned earlier, the TCP-unfriendlycwndgrowth and
incorrect retransmissions during changeover occur due to cur-
rent inadequacies of SCTP - (i) the sender is unable to distin-
guish SACKs for transmissions from SACKs for retransmis-
sions, and (ii) the sender’s congestion control mechanism is
unaware of the occurrence of a changeover, and hence is un-
able to identify reordering introduced due to changeover. Ad-
dressing either of these inadequacies will solve the more im-
portant problem of TCP-unfriendlycwndgrowth. TheRhein
Algorithm [8] solves the problem by addressing (i). In this
section, we propose solutions which solve the problem by ad-
dressing (ii). In other words, the following solutions intro-
ducechangeover awarenessin the sender’s congestion con-
trol mechanism.

Thecwndovergrowth occurs due to the sender misinterpret-
ing SACK feedback, and incorrectly sending fast retransmis-
sions. Changeover aware congestion control (CACC)algo-
rithms curb the TCP-unfriendlycwndgrowth by eliminating
these improper fast retransmissions. The key in a CACC al-
gorithm is maintaining state at the sender for each destination
when changeover happens. On receipt of a SACK, the sender
selectively increases the missing report count for TSNs in the
retransmission list, thus preventing incorrect fast retransmis-
sions.

Section 4.1 describes theConservative CACC (C-CACC)al-
gorithm which has the disadvantage that in the face of loss,
a significant number of TSNs could potentially wait for a
retransmission timeout when they could have been fast re-
transmitted. In Section 4.2, we describe theSplit Fast Re-
transmit CACC (SFR-CACC)algorithm which alleviates this
disadvantage. We verify the effectiveness of the SFR-CACC
algorithm through simulation in Section 4.3. In Section 5,
we discuss the advantages of the CACC algorithms over the
Rhein algorithm in solving thecwndovergrowth problem.

4.1 Conservative CACC

As mentioned previously, C-CACC maintains state at the
sender when changeover happens, on a per-destination ba-
sis. This state is used to conservatively increment missing
report counts for TSNs. This conservative approach prevents
incorrect triggering of fast retransmissions, thus eliminating
thecwndovergrowth problem.

As was discussed in Section 2.1, the receiver could observe
reordering of TSNs due to changeover. According to C-

CACC, the sender uses state maintained for the current pri-
mary destination to identify SACKs that are sent by the re-
ceiver after the receiver observes this reordering. The state is
constituted by two variables per-destination:

1. CHANGEOVERACTIVE- a flag which indicates the oc-
curence of a changeover.

2. next tsn at change- the next TSN to be used by the
sender, at the moment of changeover.

The algorithm is described in figure 5. On changeover,
the sender sets the state as described4. The sender
is considered to be inactive changeoverstate until the
CHANGEOVERACTIVEflag is cleared. The flag is cleared
when a SACK which cumulatively acks TSNs up to and
including next tsn at changeis received. At that time, all
TSNs which were sent to the receiver before changeover oc-
curred at the sender have been received, andreordering due to
changeover no longer happens. This period during which the
sender is in active changeover state is referred to as theactive
changeover period, and the outstanding TSNs which have not
yet been acked at the sender at the moment of changeover
constitute thechangeover range.

During the changeover period, receipt of a SACK that reports
a TSN greater than or equal tonext tsn at changeindicates to
the sender that reordering has been observed at the receiver.
Since this reordering is likely due to changeover, the sender
does not increment missing report counts for TSNs in the
changeover range, thus preventing the incorrect fast retrans-
missions.

C-CACC is conservative because when reordering due to
changeover is observed at the receiver and consequently re-
ported to the sender, the sender conservatively chooses to
not increment missing reports forany TSN in the changeover
range. In the face of loss, the sender will not perform fast
retransmission on any TSN in the changeover range. The
TSNs in the changeover range would thus have to wait for
retransmission timeouts to be retransmitted. Furthermore, C-
CACC does not take into account the possibility of multiple
changeovers at the sender.

4.2 Split Fast Retransmit CACC (SFR-CACC)

To alleviate the limitations of C-CACC, note that the re-
ordering observed during changeover happens because TSNs
which are supposed to reach the receiverin-sequenceend
up reaching the receiver inconcurrent groups, in-sequence
within each group. With this observation, we reason that the

4Unless explicitly stated, the variables used in the CACC algorithms refer
to the state for the current primary destination, from the sender’s viewpoint.

On changeover, the sender maintains the following state for the new primary destination:
1) SetCHANGEOVERACTIVEto 1, indicating that a changeover has occured.
2) Store the next TSN to be sent innext tsn at change.

On receipt of a SACK,
1) If the cumulative ack in the SACK is� thenext tsn at change,

theCHANGEOVERACTIVEflag is cleared.
2) The following algorithm dictates when the missing report count for a TSN

t should be incremented in accordance with [13, 11], and when the count
should not be incremented:

if (CHANGEOVERACTIVE== 1) and
(the SACKreportsat least one TSN� next tsn at change)

then
if (t � next tsn at change)
then

Increment missing report count fort according to [13, 11];
else

Do not increment missing report count fort;
else

Increment missing report count fort according to [13, 11];

Figure 5: Conservative CACC Algorithm

fast retransmit algorithm can be applied independently within
each group. That is, on the receipt of a SACK, if the sender
can estimate the TSN(s) that causes this SACK to be sent
from the receiver, the sender can use the SACK to increment
missing report countswithin the causative TSN(s)’s group.

In SFR-CACC, four variables for each destination are intro-
duced:

1. CHANGEOVERACTIVE- a flag which indicates the oc-
currence of a changeover.

2. CYCLINGCHANGEOVER- a flag which indicates
whether the change of primary is the first changeover
to this destination address during an active changeover.
This flag helps determine changeovers cycling through
destination address space.

3. next tsn at change- the next TSN to be used by the
sender, at the moment of changeover.

4. caccsawnewack- a temporary flag, used during SACK
processing to estimate the causative TSN(s)’s group.

SFR-CACC is broken up into three logical parts. SFR-
CACC(1) is very similar to the initial part of C-CACC algo-
rithm, except for theCYCLINGCHANGEOVERflag which
we will discuss shortly. SFR-CACC(2) and SFR-CACC(3)
specify sender actions on receipt of a SACK.

On receipt of a SACK that cumulatively acks up to and
including next tsn at change, the sender leaves the active
changeover state. In SFR-CACC(2) the sender estimates
the causative TSN(s)’s destination. The sender estimates the
causative TSN(s) as TSN(s) getting acked for the first time in
a SACK. TSNs sent to the same destination as the causative
TSN(s) form the causative TSN(s)’s group.

In SFR-CACC(3), the sender does not increment missing re-
port counts for TSNsoutsidethe causative TSN(s)’s group.
In other words, the sender applies the SACK selectively to
fast retransmitwithin the causative TSN(s)’s group. If more
than one group are being acked, then fast retransmit is con-
servatively applied only to TSNs in the current primary des-
tination’s group.

SFR-CACC does the in-group marking of TSNs only as long
as the sender does not changeover to a previously used des-
tination address which was already used during the current
active changeover period. If the sender starts to cycle through
destination address space, then the sender switches to a more
conservative behaviour of marking only TSNs in the lat-
est outstanding group. The protection from such cycling
changeovers is necessary because SFR-CACC assumes that
the latest outstanding TSNs were transmitted to the current

On changeover, for the new primary destination:
1) If CHANGEOVERACTIVEis 1, then there was a changeover to this

destination address earlier. The sender setsCYCLINGCHANGEOVERto 1,
indicating that this changeover is a cycling switch to the same destination address
during an active changeover.

2) The sender setsCHANGEOVERACTIVEto 1, indicating that a changeover
has occured.

3) The sender stores the next TSN to be sent innext tsn at change.

Figure 6: Split Fast Retransmit CACC Algorithm (Part 1)

primary. One could envision a scenario where the sender has
TSNs outstanding on two destination addresses,B1 andB2,
having performed changeover in that order. The sender then
performs a changeover back toB1, and a SACK acking both
TSNs from both groups is received. The sender could now
end up incorrectly fast retransmitting TSNs sent to destina-
tion B1, causingcwnd overgrowth on destinationB2 - pre-
cisely what we are trying to avoid. There may be other scenar-
ios where the original problem ofcwndovergrowth may oc-
cur due to cycling changeovers. For the moment, we have not
looked into cycling changeover in greater depth, and design
SFR-CACC to be conservative when a cycling changeover
occurs.

4.3 Simulations

Verification of the effectiveness of SFR-CACC was done
through ns-2 simulations. Using SFR-CACC under the same
conditions as in section 3.1 for whichcwndovergrowth was
observed, the simulations showed no unnecessary retransmis-
sions, orcwndovergrowth due to changeover.

5 CONCLUSION AND FUTURE WORK

Results from Section 3 suggest that the problem might not be
a “corner case”, since for a large range of network settings,
the value ofK, which governs the minimum packets required
to be outstanding at the time of changeover so as to observe
cwndovergrowth, is low. By approaching the problem from
different perspectives, the Rhein algorithm [8] and the CACC
algorithms all solve the problem of TCP-unfriendlycwnd
growth. The Rhein algorithm recognizes that this growth
occurs due to the sender’s inability to distinguish between
SACKs for original transmissions from SACKs for retrans-
missions. This algorithm does not solve the problem of un-
necessary fast retransmissions on a changeover. This algo-

rithm also adds the overhead of an extra chunk for every
SCTP packet.

The CACC algorithms maintain state information during a
changeover, and use this information to avoid incorrect fast
retransmissions. Consequently, these algorithms prevent the
TCP-unfriendlycwnd growth. These algorithms have the
added advantage that no extra bits are added to any packets,
and thus the load on the wire and the network is not increased.
One disadvantage of the CACC algorithms is that some of
the TSNs on the old primary are ineligible for fast retransmit.
Furthermore, complexity is added at the sender to maintain
and use the added state variables.

The fast retransmit algorithm is active on the changeover
range for a longer time in SFR-CACC than with C-CACC.
To quantify the number of TSNs which will be ineligible for
fast retransmit in the face of loss, let us assume that only one
changeover is performed and that SACKs are not lost. Under
these assumptions, potentially only the last four packets sent
to the old primary destination will be forced to be retransmit-
ted with an RTO instead of a fast retransmit. In other words,
under these assumptions, if a TSN is lost, and at least four
packets are successfully transmitted to the same destination
after the loss, then the TSN will be retransmitted via fast re-
transmit. With C-CACC however, any TSN in the changeover
range will require an RTO to recover from loss. C-CACC
is also incapable of handling multiple changeovers, whereas
SFR-CACC is equipped to do so.

We have implemented SFR-CACC in the NetBSD/FreeBSD
release for the KAME stack [2, 3]. The implementation uses
three flags and one TSN marker for each destination, as de-
scribed in Section 4.2. Approximately twenty lines ofC code
were needed to facilitate the SFR-CACC algorithm, most of
which will be executed only when a changeover is performed
in an association. Since the writing of this paper, we have
made modifications to the SFR-CACC algorithm presented

SFR-CACC (Part 2): On receipt of a SACK,
1) If the cumulative ack in the SACK is� next tsn at change,

theCHANGEOVERACTIVEandCYCLINGCHANGEOVER
flags are cleared for all destinations.

2) If (CHANGEOVERACTIVE== 1) and (the SACK contains Gap Acks)
then

for each destinationd
do

initialize d.caccsawnewack= 0;
done;

for each TSNt being acked, that has not been acked in any SACK so far
do

let d be the destination to which t was sent;
setd.caccsawnewack= 1;

done

SFR-CACC (Part 3): On receipt of a SACK (contd.),
3) The following algorithm dictates when the missing report count for a TSN

t should be incremented in accordance with [13, 11], and when the count
should not be incremented:

if (CHANGEOVERACTIVE== 1) and (CYCLINGCHANGEOVER== 0)
then

let countof newacksbe number of destinations for whichcaccsawnewackis set;
if (countof newacks== 1)
then /* SACK acks only one dest */

let d be the destination to whicht was sent;
if (d.caccsawnewack== 1)
then

Increment missing report count fort according to [13, 11];
else

Do not increment missing report count fort;
else /* Mixed SACK - SACK acks more than one dest */

if (t was sent to the current primary)
then

Increment missing report count fort according to [13, 11];
else

Do not increment missing report count fort;
else if (CHANGEOVERACTIVE== 1) and (CYCLINGCHANGEOVER== 1)
then /* Cycling observed, hence mark only in latest group */

if (t � next tsn at change)
then

Increment missing report count fort according to [13, 11];
else

Do not increment missing report count fort;
else /* Sender is not in changeover active state */

Increment missing report count fort according to [13, 11];

Figure 7: Split Fast Retransmit CACC Algorithm (Parts 2 and 3)

in Section 4.2. The modifications simplify the algorithm, and
handle cycling changeovers. We are currently proposing ad-
dition of the modified SFR-CACC algorithm to SCTP.

6 DISCLAIMER

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government.

7 ACKNOWLEDGMENTS

Thanks to Ivan Arias Rodriguez, Vern Paxson, Mark Allman,
Phillip Conrad and Johan Garcia for their comments and in-
puts.

References

[1] The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[2] The SCTP Homepage. http://www.sctp.org.

[3] Webpage of the KAME project. http://www.kame.net.

[4] E. Blanton and M. Allman. On Making TCP More Ro-
bust to Packet Reordering.ACM Computer Communi-
cation Review, Vol. 32(1), January 2002.

[5] R. Braden. Requirements for internet hosts–
communication layers. RFC1122, Internet Engineering
Task Force (IETF), October 1989.

[6] M. Allman et al. TCP Congestion Control. RFC2581,
Internet Engineering Task Force (IETF), April 1999.

[7] M. Gerla, S. S. Lee, and G. Pau. TCP Westwood Sim-
ulation Studies in Multiple-Path Cases. Proc. Interna-
tional Symposium on Performance Evaluation of Com-
puter and Telecommunication Systems (SPECTS) 2002,
San Diego, CA, July 2002.

[8] Janardhan R. Iyengar, Armando L. Caro Jr., Paul D.
Amer, Gerard J. Heinz, and Randall Stewart. SCTP
Congestion Window Overgrowth During Changeover.
Proc. SCI2002, Orlando, July 2002.

[9] M. Jain and C. Dovrolis. Pathload: A Measure-
ment Tool for End-to-End Available Bandwidth. Proc.
3rd Passive and Active Measurements Workshop, Fort
Collins, March 2002.

[10] Protocol Engineering Lab, University of Delaware.
SCTP Module for ns-2. http://pel.cis.udel.edu.

[11] R. Stewart, L. Ong, I. Arias-Rodriguez, K. Poon,
P. Conrad, A. Caro, and M. Tuexen. SCTP Im-
plementers Guide. Internet Draft: draft-ietf-tsvwg-
sctpimpguide-06.txt, Internet Engineering Task Force
(IETF), May 2002.(work in progress).

[12] R. Stewart and Q. Xie.Stream Control Transmission
Protocol (SCTP): A Reference Guide. Addison Wesley,
New York, NY, 2001.

[13] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang, and V. Paxson. Stream Control Transmis-
sion Protocol. Proposed standard, RFC2960, Internet
Engineering Task Force (IETF), October 2000.

[14] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP:
A Reordering-Robust TCP with DSACK. Technical Re-
port TR-02-006, International Computer Science Insti-
tute (ICSI), July 2002.

