Causing Remote Hosts to Renege

Nasif Ekiz Paul D. Amer Fan Yang
F5 Networks Computer and Information Sciences Computer and Information Sciences
Seattle, WA Department Department
n.ekiz@f5.com University of Delaware University of Delaware
Newark, DE Newark, DE

amer@udel.edu

Abstract— Reneging occurs when a data receiver first
selectively acknowledges data, and later discardéat data from
its receiver buffer before delivery to the receivig application.
The consequences of reneging on operating systemsdaactive
transport connections are unknown. This paper invefgates if
reneging helps an operating system to resume its eftion, and
if a reneged TCP connection can complete a data tnafer. To
document consequences of reneging, we inspect opéarg
systems and TCP connections after reneging occur$o cause
reneging, we present a tool that exhausts systemsmurces by
filing TCP receive buffers of a remote host with at-of-order
data on multiple TCP connections. FreeBSD, Solarisand
Windows were reneged, and their consequences of eging are
reported herein.

Keywords— End-host behavior; protocol
reneging; SACK; Selective Acknowledgment; TCP

measurement;

l. MOTIVATION

Transmission Control Protocol (TCP) [13] uses segee
numbers and cumulative acknowledgments (ACKSs) toeae
reliable data transfer. Sequence numbers help a T&R
receiver sort and reorder arriving data segmendsa Rrriving
in expected order, i.e., ordered data, are cumelstiACKed
to the data sender. With receipt of an ACK, theadsgnder
assumes the data receiver accepts responsibilileldfering
the ACKed data to the receiving application, anieétés all the
ACKed data from its send buffer, potentially eveidoe that
data are delivered to the receiving application.

The Selective Acknowledgment Option (SACK), specifi
in RFC2018 [11], extends TCP’s cumulative ACK meatkm
by allowing a data receiver to ack arrivaat-of-order data to
the data sender. The intent is that SACKed datacdameed to
be retransmitted during loss recovery. Prior regedt, 3, 8]

shows that SACK improves TCP throughput when migtip

losses occur within the same window.

yangfan@udel.edu

happen, for example, when an operating system néeds
recapture previously allocated memory, say to avaid
deadlock or to protect the operating system againkgnial-of-
service attack (DoS). Reneging is possible in F&2BLinux,
Mac OS X, Solaris and Windows.

The consequences of reneging on operating systachs a
active transport connections are unknown. To utaedsthe
consequences of reneging, one must answer thevinfotwo
questions.

(1) Does reneging help an operating system avaishang,
thereby resuming normal operation? If yes, we aamclude
that reneging is a useful and essential mechatismmachine
still cannot resume normal operation (i.e., it bhesy after
reneging, then why bother implementing renegingd A&vhy
bother designing transport protocols to supporegary?

(2) Can an active TCP connection complete a datesfer
successfully when some out-of-order data are rafieda
general, a TCP data sender does not have a mechemisfer
reneging. To tolerate reneging, a sender is exgdoteliscard
its SACK scoreboard upon a retransmission timeaui]
retransmit all bytes starting from the left edgettod window
[11]. If a TCP sender does not tolerate renegingp@ry,
reneging may cause a data transfer to fail.

To answer (1) and (2), one should analyze a regegist
and its connections before, during and after rewegi
Unfortunately reneging is uncommon, and monitoring
connections waiting for reneging to happen is irfcal.
Instead of waiting for this rare event, a tool suse reneging
on a remote host can be developed to investigate it
consequences in a lab-controlled environment. Usinch a
tool, remote hosts with different operating systeca®m be
analyzed in detail.

Our preliminary investigation of various TCP
implementations revealed that reneging in gensratheduled

Data reneging (or simply reneging) occurs when tadato happen (a) when system resources such as main

receiver first SACKs data, and later discards ttza from its
receiver buffer prior to delivering it to the redeig application
or socket buffer. TCP is designed to tolerate rameg
Specifically RFC2018 statesTHe SACK option is advisory”
and ‘the data receiver is permitted to later discard data which
have been reported in a SACK option”. Reneging might

memory/network buffers become scarce, or (b) whetroé

order data sit in a receive buffer for long timeheut being
delivered to a receiving application [7]. To causeeging, a
tool can exhaust system resources by filing TCPeiwe

buffers of a remote host only with out-of-order adahus
simulating both (a) and (b).

TBIT sends a 10 byte out-of-order segment after

Attacker Victim (Remote Host) seconds
Ll g 8. Victim acks the out-of-order data with a SACK
e S ——— | n 9. TBIT sendsm+1 in-order data segments to complete the
K N2 data transfer
10. Victim acks the in-order data with ACKs/SACKs
CauseReneg 11. TBIT sends three RSTs to abort the connection
Fig. 1. Causing a remote host to renege TBIT Victim

Our tool to cause a remote host to renege is calle(® SYN(SACK-0K SN 10000)
CauseReneg. Fig. 1 depicts CauseReneg's architettuthis
work, we present CauseReneg, its application oreB%®,
Solaris, and Windows, and consequences of renagirthose

2. SYN-ACK (SACK-OK)
3. GET / SEQ 10001-10006 (5)
4. ACK 10006

5.SEQ 11461-12921 (1460)

operating systems. SEQ 12921-14381 (1460)
6. ACK 10006, SACK 11461- 12921

o ACK 10006, SACK 11461-14381

The rest of this paper is organized as follows.ti8edI o

details our tool to cause remote hosts to renedee T g qgs01.60861(1450)
consequences of reneging on various operating ragstae

—_
P —
—
J—
 —

presented in Section Ill. Finally, Section IV cambs our > ACK 10006, SACK 11461- 69861
JE——
|

[J

\
J——
—_—

work. x seconds {
7.SEQ 69861-69871 (10)

Il A TooL To CAUSE RENEGING 8. ACK 10006, SACK 69861- 69871
' 9. SEQ 10006-11466 (1460)

CauseReneg is hostile to the victim’s operatingesysand SEQ 11466-12926 (1460)
falls into the category of a denial-of-service ckt§DoS) tool. .

L]
SEQ, 68406-69866 (1460)

10. ACK 11466, SACK 69861- 69871
ACK 12926, SACK 69861- 69871

CauseReneg exhausts a victim’'s resources by filimg CP

receive buffer almost fully with out-of-order da#.victim's

TCP allocates main memory and network buffers doesthat

out-of-order data in a receive buffer (a.k.a., seatbly queue).

Since out-of-order data cannot be delivered tordemiving Fig. 2. The CauseReneging TBIT test witk40

application, resources are utilized for the erttire the out-of-

order data sit in the receive buffer. Now let us explain the CauseReneging TBIT testataitl
First, a TCP connection is established to a viatiith 3-way

To further exhaust main memory and network buffersy;ngshake (step #1, #2, and #3) with SACK-Permitfatibn.
CauseReneg establisheparallel TCP connections to a victim. p g byte in-order da’Ea is’sent to the victim alovith the ACK

As nincreases, a victim uses more and more main mear®y (giep #3) that establishes the connection. Next, vibtim’s
network buffers. If all goes as expected, everjusheging receive buffer is filled withm out-of-order segments (step #5)

occurs and the main memory used for out-of-ordda d& pased on the receiver's advertised window (step #2)
reclaimed back to the victim’s operating system.

ACK 69866
11.RST

. . . As more TCP connections to the victim are estabtishve
We implemented CauseReneg using the TCP Behavugxpect reneging to happen. Let us assume that irgneg
Inference Tool (TBIT) [12] which can be download#dm nhappens aftey seconds. In (step #7), a 10 byte out-of-order
[4]. CauseReneg initiates CauseReneging TBIT tests 10 a4 js sent after seconds. The second value (step #7) is set
establishn TCP connections in .parallel with a victim. The {5 5 value greater thanto detect reneging using the response
number of parallel TCP connectiony (Used by CauseReneg gack (step #8). If that response SACKs only 10 byi€out-

tool is variable and changes with a victim's maiemory, of-order data as shown in Fig. 2, one can concheseging
available network buffers, and operating system.e Thpaq occurred. ’

CauseReneging TBIT test is shown in Fig. 2 and aipsras

follows: To mimic an RFC2018 conformant SACK implementation,
i m+1 in-order segments are retransmitted (step #9), next
~ CauseReneging _assuming a retransmission timeout value aconds. Recall
option and Initial Sequence Number (ISN) 10000 scoreboard at a retransmission timeout and retiaistes at
2. Victim replies with SACK-Permitted option the left edge of the window as specified in RFC20If8
3. TBIT sends in-order segment (10001-10006) reneging had happened, ACKs (step #10) will in@edsadily
4. Victim acks the in-order data with ACK (10006) after each in-order retransmission (step #9) awsho Fig. 2.
5. TBIT skips sending 1455 bytes (10006-11461) andssta If reneging did not happen, the first ACK (step ¥Mall

sendingm consecutive out-of-order segments each 146@cknowledge all out-of-order data at once.
bytes to exhaust main memory

6. Victim acks the out-of-order data with SACKs CauseReneg is a generic tool that can cause rgnegin

victims ~ running on various operating systems. Khial
changes needed are to setrthealue (step #5, #9) andvalue

(step #7) in the CauseReneging test, and the nuaofitparallel
TCP connections that change dynamically from victim to
victim. These values are determined by the victiopgrating
system, available main memory, and network buffers.

To establish the TCP connections, CauseReneg ribeds
victim to have an accessible port. A victim's sersocket
must be listening on the port to accept incomingPTC
connections. Today, the majority of ports are bémtkoy
firewalls for security. Web servers on the contragmain
accessible. Therefore CauseReneg was designedattk at
victim which deploys a web server (step #3 in Riggends the
first 5 bytes of a HTTP GET request).

To cause reneging, we installed Apache 2.2 inatibtial
victims. By default, Apache supports at most 256 PTC
simultaneous connections. A busy web server widushnds
of TCP connections is a stronger candidate to ®en&g
simulate a busy web server, we increased the ddfeil to
2000 simultaneous connections which turned oukternough
to cause all victims to renege.

Fig. 3 presents our experimental design. CauseReaerg
attack victims regardless of their operating systemhen a
web server (e.g., Apache) is running. A packet waptitility,
tcpdump [14], records TCP traffic between CauseBemal a
victim for later offline analysis. By analyzing thecorded
TCP traffic, we can detect reneging instances teldé in [6].

Attacker

Victim (Remote Host)

100Mbps

FreeBSD 7.1

CauseReneg | tcpdump Web Server

TBIT
@ Listening TCP

TCP
TCP

TCP

n connections § ¢ nconnections
Tcp

TCP

TCP
TCP

Fig. 3. Experimental design

The consequences of causing FreeBSD, Solaris, and
Windows to renege are presented in subsections andC,
respectively.

A. Causing a FreeBSD Host to Renege

A victim running FreeBSD 8.1, and Apache 2.2 was
attacked. The victim had ~500MB physical memory.oTw
attacks were performed. The first crashed the systhe
second caused reneging.

In FreeBSD, a TCP reassembly queue is bounded by at

Reneging is possible in FreeBSD, Linux, Mac OS X,most net.inet.tcp.reassmaxglen (“Maximum number of TCP

Solaris and Windows. In Mac OS X, reneging is nosgible

by default, but can be turned on by a system adtnaior by
enabling the syscthet.inet.tcp.do_tcpdrain. We attempted to
cause reneging on the following operating systemsvhich

reneging is possible by default: FreeBSD 8.1, Lirdu&.31,

Solaris 11, Windows Vista and Windows 7. We exctuitac

OS X since reneging is not possible by default.

I1l. RESULTS

Four out of the five operating systems (victimstee were
successfully reneged. We failed to cause a Lin6x32.victim
to renege. Linux implements dynamic right-sizing RE)
where the receiver's window (rwnd) dynamically cpes
based on the receiver's estimate of the sendergesiion
window (cwnd) [9]. A data receiver increases rwnidew in-
order data are received meaning the cwnd is ineceabhe
initial advertised rwnd in Linux is 5840 bytes. GaReneging
sends only 5 bytes in-order data (step #3). Thezefovnd is
not increased and limits CauseReneg to send 43840 (5
1460) bytes of out-of-order data to a Linux victim.

In Linux, reneging is expected when the memorycaited
for receive buffer exceeds the memory limit avddato the
receive buffer. The minimum size of the receiveféufis
specified with net.ipvd.tcp_rmem sysctl and is initialized to
4096 bhytes. Apparently, sending 4380 bytes of dwtrder
data was not enough to exceed the memory limitlaai to
the receive buffer. Thus, DRS prohibited CauseRe¢aegend
more out-of-order data to trigger reneging. As &uite
CauseReneg was unable to cause reneging in Linux.

segments per individual Reassembly queue”) outrdé&o
segments. The default value is 48 segments. CansgR=n
fill a reassembly queue almost fully with out-ofler data
since the victim’'s advertised TCP receive window66635
bytes is less than the reassembly queue limit.

Another sysctl, net.inet.tcp.reass.maxsegments (“Global
maximum number of TCP segments in Reassembly glueue”
defines a global limit for all segments in all ceotions’
reassembly queues. FreeBSD assigns ™/a6 total mbuf
clusters tonet.inet.tcp.reass.maxsegments. After that limit is
reached, arriving out-of-order segments are droppkdt limit
for the attacked victim was 1060. The
net.inet.tcp.reass.overflows (“Global number of TCP Segment
Reassembly Queue Overflows”) sysctl reports tha tmimber
of dropped out-of-order segments. The
net.inet.tcp.reass.cursegments (“Global number of TCP
Segments currently in Reassembly Queue”) sysctirtephe
total number of segments in all reassembly quetigs.4 will
contain an example output.

In FreeBSD, reneging happens if the page replacemen
daemon {m pageout) invokes the vm pageout scan()
function. When the available main memory goes land
hard-coded or tunable paging thresholds are exdeede
vm _pageout_scan() is invoked to scan main memory to free
some pages. If the memory shortage is severe endhgh
largest process is also killed [2].

Attacks. In the first attack (A), CauseReneg established a
variable number of parallel TCP connections. Thel geas to
exhaust the victim’'s main memory as much as passilld
trigger reneging. Table | presents the memorystiesi whem
parallel TCP connections were established. Each TCP

connection exhausts ~2.8MB of main memory. While we

expected reneging to happen with increased memsaga)
instead the victim crashed! More precisely, whes tlumber
of parallel connections exceeded 1241, the victiastted with
the following panic messages: (a) “Approaching lih@t on
PV entries, consider increasing either
vm.pmap.shpgperproc (“Page share factor per proc”) or the
vm.pmap.pv_entry max (“Max number of PV entries”)
tunable”, and (b) “panic: get_pv_entry: increase
vm.pmap.shpgperproc”. The panic messages are delate
mapping of physical/virtual addresses of pages.

To track the number of connections causing theimict

crash, CauseReneg attacked the victim with theoviatg
configuration: n=1300, m=1, x=240 seconds. Each TCP
connection sent only 1 out-of-order segment tovibeém. Fig.
4 shows the statistics for TCP reassembly queue \stzen
1241 parallel TCP connections were establishedheovictim
just before crashingrfet.inet.tcp.reass.cursegments: 1059 (line
4) + net.inet.tcp.reass.overflows: 182 (line 2) = 1241).

TABLE I. MEMORY USAGE FOR N PARALLELTCP CONNECTIONS
n Parallel TCP Connections Memory Usage
1 3MB
2 6MB
4 11MB
8 22MB
200 558MB
400 1127MB
800 2267MB
1241 3418MB

In the second attack (B), to cause the page raplace
daemon to call them_pageout_scan() function, a user process
that consumes a specified amount of main memoexeésuted
along with CauseReneg. If the memory shortage i®ree
enough due to the user process’ excessive memiogaton,

the

[nekiz@muscat ~]$ sysctl -a | grep tcp.reass
net.inet.tcp.reass.overflows: 182

net.inet.tcp.reass.maxqlen: 48
net.inet.tcp.reass.cursegments:
net.inet.tcp.reass.maxsegments:

1059

1
2
3
4
5 1060

Fig. 4. Statistics for TCP reassembly queue size (attack A)

For attack (B1l), CauseReneg attacked the victimh wit
n=20, m=40, x=180 seconds. When 20 parallel connections
were established, 800 out-of-order segments wethdarr CP
receive buffersriet.inet.tcp.reass.cursegments. 800). Next, the
user process was run to allocate 2GB of main memory
FreeBSD allocated ~1.5GB of main memory to the user
process before the user process was killed by thge p
replacement daemon. At this point, reneging wasebaad and
net.inet.tcp.reass.cursegments. 0 confirmed that reneging did
occur.

Attack (B2) was performed with the same steps &xlat
(B1). When the user process was terminated by tmge p
replacement daemon, the out-of-order segments wstdran
the TCP receive buffersét.inet.tcp.reass.cursegments. 800)
confirming that reneging did not happen.

Both attacks (B1) and (B2) also were analyzed usiy
RenegDetect tool [6] which identifies reneging andn-
reneging connections.

The FreeBSD victim was reneged with the attack (B1)
Now, we answer the following questions to gainghsito the
consequences of reneging: (1) Does reneging hetparating
system to resume its operation? (2) Can a reneged T
connection complete its data transfer?

(1) After attack (B1), the FreeBSD victim kept rimmp
normally. As stated before, only ~3MB of main meyn¢he
maximum amount possible for the victim) used far tietwork
buffers was reclaimed back to the operating sysf&inte the
memory shortage caused by the attack was severdartest
process (~1.5GB) was killed. We believe the amainnain
memory used for network buffers is negligible conegiato the
process using the most memory. We argue that thertu

and the victim goes low on main memory, the pagéandling of reneging is not useful, and reneginguih be

replacement daemon is expected to kill the processy the
largest memory (in that case, the user process)eratje.

turned off by default in FreeBSD as in Mac OS X.
To answer (2), we needed to test if the TCP datdess

The second attack was performed for two cases: (BIplerate reneging properly as specified in RFC2®ReR:all that

reneging was enablede.inet.tcp.do_tcpdrain=1), and (B2)
reneging was disablednef.inet.tcp.do_tcpdrain=0) at the
victim.

a TCP sender needs to discard its SACK scoreboara a
retransmission timeout, and start sending bytébeateft edge
of the window. Otherwise, reneging may cause a ttatesfer
to stall and/or fail.

Results.For attack (A) although memory consumption was

high (3533MB: 3418MB for the TCP connections + 1M
for the kernel), reneging did not occur. The reaisothat the
paging thresholds were not exceeded. If renegimpérzed,
FreeBSD would reclaim ~3MB of main memory (all dable
space for out-of-order data). Since each TCP cdiumec
established consumes ~2.8MB, reclaimed memory wbeld
consumed for only one new TCP connection. Eventutie
machine crashes. We conclude that reneging doebemafit
FreeBSD for such an attack.

FreeBSD employs a global reneging strategy that @p
connections with out-of-order data are reneged Isimeously.
If TCP connections with out-of-order data from wais TCP
data senders were established to the FreeBSD Jietfore the
attack (B1), those TCP connections would renege Toatest
if RFC2018 conformant tolerating reneging is impéaered, a
5MB file was transferred using secure shell (sah)the
FreeBSD victim from various operating systems: B&ie 8.0,
Linux 2.6.24, Mac OS X 10.8.0, NetBSD 5.0.2, OpebBES8,
OpenSolaris 2009, Solaris 11, Windows XP, Windovista/
and Windows 7.

To create out-of-order data for those transfersmmynet 1 21:06:43.572124 IP 128.4.30.32.20005 > 128.4.30.29.80:
. S 2 P 2881168401:2881169861(1460) ack 128403387 win 21900
[5] was configured on the FreeBSD victim to drop2[B%6 of 3 21:06:43.572768 IP 128.4.30.29.80 > 128.4.30.32.20005:
. 4 . ack 2881110006 win 64240 <nop,nop,sack 1 {2881111461:2881169861}>
the TCP PDUs. The traffic between a TCP data semultthe 5 ;.05.35 570360 12 125.4.30.52.20005 > 128 .4.30.26.60:

FreeBSD victim was recorded for reneging analy@'ece a 6 P 2881169861:2881169871(10) ack 128403387 win 21900
7 21:09:43.579739 IP 128.4.30.29.80 > 128.4.30.32.20005:

data transfer started, the FreeBSD victim was rethagsing g . ack 2881110006 win 64240 <nop,nop,sack 1 (2881169861:2881169871}>
tehxi)eﬁtetﬁili(ng(B:-e)h eg;genW(\;\ijeld Otk;zer\ég(rjnpllfetteh de. fIILe :Iflte; da Ellg 5. Tcpdump output of a TCP connection from renegingciton Solaris
transfers, reneging was detected by analyzing ¢oerded

traffic using RenegDetect, and we confirmed thatoélthe Instead of reneging out-of-order data, we believeetier
TCP data senders completed the data transfer sfiches option would be to RESET the connection when rewgds
The conclusion is that RFC2018 conformance is impleted caused by either a terminated TCP connection (dulods

in all TCP stacks tested. recovery) or a DoS attack. With that change, all ibsources
used for the TCP connection would be released, kaiter
B. Causing a Solaris Host to Renege utilized.

In Solaris, if out-of-order data sit in the TCP ssambly _
queue for at least 100 seconds (i.e., the defamalssembly C. Causing Windows Hosts to Renege

timer timeout value), a receiver would renege andy@ the Dave MacDonald, author of Microsoft Windows 2000
entire reassembly queue. Reneging, in such castcps the TCP/IP Implementation Details [10], stated thatt¥iand its
operating system against DoS attacks. successors implement reneging as a protection mescha

@gainst DoS attacks. Reneging happens when the memo
consumption of total TCP reassembly data in refatm the
global memory limits is significant.

Attack. Reneging in Solaris is expected to happen 10
seconds after the arrival of out-of-order data €e&eneging
TBIT test step #5). To force the reassembly quéemertto
expire, we setx > 100 seconds. The number of parallel To investigate the consequences of reneging, CauseR
connections) and out-of-order segmentsn) can be set attacked Windows victims (Vista and 7) by incregsihe
arbitrarily since reneging in Solaris only depends x. number of parallel connections to make the memory
CauseReneg attacked the victim witk20, n=40, x=180 consumption of the total reassembly data so sigmifi that
seconds. The value of was set to 40 purposefully to explain reneging is triggered. The Vista and Windows 7iwisthad
reneging using Fig. 2. With this configuration, eging was 2GB and 1GB physical memory, respectively. Bothtinis
expected to happen before the 10 byte out-of-cddém were deployed Apache 2.2.

sent (step #7).
(step #7) Attacks. The initial advertised window (rwnd) in both

Results. A Solaris 11 victim with 1024MB physical Vista and Windows 7 is 64240 bytes. This valugesponds
memory and running Apache 2.2 was tested. As esgect to 44 * 1460 byte TCP PDUs. Based on the initiaiaywvthem
reneging happened when the TCP reassembly quews tinvalue, the number of out-of-order segments, in the
expired after 100 seconds for the out-of-order datat (Step CauseReneging test (step #5) is set to 43 to fithe
#5) in Fig. 2. A tcpdump output of th& @arallel connection is reassembly queue almost fully with out-of-orderaddh the
shown in Fig. 5. Afterx=180 seconds, 10 byte out-of-order attacks, the number of parallel connections estaddl to the
data (69861-69871) were sent (lines 5, 6). Theyr§ACK victim (n) and the x seconds (step #7) values in the
evidenced reneging since only 10 out-of-order bytese CauseReneging test were variable.
selectively acknowledged (69861-69871) (lines 7 A8)er the

in-order received data, the victim's ACKs (step ¥lGere Results. First, the Vista victim was attacked by
steadily increased as expected. (step ¥ CauseReneg using=43, x=200. Table Il presents the results

of the attacks. When=100 or 200 parallel connections were

We believe reneging in Solaris is used as a mesimatd established , reneging did not happen. WheB00 parallel
protect against DoS attacks. In loss recovery, B $€nder is connections were established, only the last 33 ections
expected to retransmit a lost segment times (e.g., reneged. When the=400, a similar behavior happened. The
TcpMaxDataRetransmissions in Windows Server 2003 defines first 267 connections did not renege but the la88 1
r=5 by default). Aftem retransmissions, a TCP sender wouldconnections did. This behavior implies that the mgm
terminate a TCP connection. The loss recovery gadkes 1- consumption of total reassembly data in relatiothts global
2 minutes assuming back to back timeouts, an linitiamemory limit is considered significant in Vista whthe out-
retransmission timeout value (RTO) of 1 second, &6l of-order data in the reassembly queue is at IE&MB (= 267
When out-of-order data sit in the reassembly qdeuat least (parallel connections) * 43 (out-of-order segments)]460
100 seconds (the default reassembly queue timee)yat the bytes).
Solaris receiver, one can infer that either the T&&Rder

terminated the connection or the host is under & Btiack To verity r;[hat thekglobal mfemor)(/j ””.“rf fr(])r renegirig
where the out-of-order data intentionally exhauststs ~16MB, another attack was performed with the camégon:

resources. Therefore, cleaning the reassembly gseems a 1-000,m=20,x=200 seconds. With this configuration, roughly
useful mechanism in both casgs. y 4 half of the rwnd was filled with out-of-order dat&he

observed behavior was consistent: only the lastoR%00
connections reneged, and the memory allocatedttofearder
data before reneging happened was again ~16MB & 57

(parallel connections) * 20 (out-of-order segments]460

bytes).

TABLE L. CAUSERENEG ATTACK ONVISTA VICTIM WITH VARIABLE
NUMBER OF PARALLEL CONNECTIONS
n parallel TCP connections Reneging
100 No
200 No
300 Yes (33 connections renege)
400 Yes (133 connections renege)

We believe reneging alone does not help an OS resiommal
operation, and the reassembly queues’ memory watefudy
purged. Therefore, we argue that reneging suppmtld be
turned off by default in FreeBSD as it is in Mac ®S

Both Solaris 11 and Windows (Vista and 7), use gange
as a protection mechanism against DoS attacksamhsteusing
reneging to manage memory pressure situations. Kawye
difference is that Solaris uses a reassembly quieuer to
renege whereas Windows uses a memory threshottdayut-
of-order data for the same purpose.

In Solaris, when out-of-order data sit in the reagsly

Next, the Windows 7 victim was attacked by Cause@en queue for at least 100 seconds, reneging is tiéget can be

usingm=43,x=200. Table Ill presents the results of the attacksinferred that the connection is either terminateg: do loss
When n=100 parallel connections were established, regeginrecovery or exhausts resources intentionally (a Bi&k). In
did not happen. Whem=200 parallel connections were both cases, instead of reneging, we contend tiratriating the
established, the first 133 connections did notgerisuit the last connection with RESETs would be a better optioncesin
67 connections did. When=300 parallel connections were RESETing releases all of the allocated resources.
established, the first 133 connections did notger®uit the last
167 connections did. This behavior implies that themory
limit for the reassembly queue for the Windows Gtim was
~8MB (= 133 (parallel connections) * 43 (out-of-erd
segments) * 1460 bytes). Recall that the Vistaiwidhad a
physical memory of 2GB whereas the Windows 7 vigim
memory was 1GB. The memory limit used for the reassy
data to trigger reneging in both systems was ~0.08%he
physical memory, and seems to scale with the pélysic

In Windows, reneging happens when the memory ahadca
for out-of-order data exceeds the memory threshokilable
for the reassembly data. The current renegingadmphtation
in Windows has a potential problem. The out-of-omkgta that
cause reaching the threshold are not renegedathsieis the
out-of-order data received afterwards that aregedeWere an
attacker to find out the memory threshold (as vekiliSection
111.C) and only send that amount of out-of-ordetaqall future
connections experiencing losses and receiving Hateer

memory. data afterwards would renege. A TCP data sendetdwoat
retransmit SACKed data until a retransmission timg&TO)
TABLE Ill. CAUSERENEG ATTACK ONWINDOWS 7 VICTIM WITH [11]. In such a case, losses would be recoverel RITOs

VARIABLE NUMBER OF PARALLEL CONNECTIONS resulting in increased transfer times (lower thiqug). The

n parallel TCP _connections Reneging quality of service for legitimate users would béueed, i.e.,
100 No data transfer times would increase. We introdueg type of
200 Yes (67 connections renege) ~ an attack as aeduction of service (RoS) attack. We believe
300 Yes (167 connections renege) that an RoS attack would be harder to detect cosdptr a

DoS attack since the service provided in not infged but

In conclusion, Windows Vista and 7 support renegisgp ~ Only slowed down.

protection mechanism against DoS attacks, renegm whe
memory threshold for reassembly data is reached resume
normal operation after reneging.

When we compare reneging in Solaris vs. Windows,
Solaris’s approach seems to be a better proteotiEchanism:
only the DoS connections are penalized.

In conclusion, when an OS is starving for memory,

IV. CONCLUSIONS .
reneging alone does not help the system resume ahorm

CauseReneg was used to attack FreeBSD, Solaris,
Windows. Two attacks were performed on a FreeBBbnv.
Initially, it was thought that an operating syststarving for
main memory would eventually crash. Our first dttés) was
such an example: the victim crashed and renegithgat help
the operating system resume normal operation. énstétond
attack, the page replacement daemon invoked daaitines,
the victim reneged, and the OS resumed normal bperadn
the other hand, attack (B2), where reneging waabtbs for
the second attack, demonstrated that FreeBSD aeslgdme
normal operation again without reneging. Thus, garg did
not benefit FreeBSD in either attack.

The maximum amount of memory that can be alloctited
victim’'s reassembly queues by reneging is limited~BMB
(0.6% of the physical memory). That amount of mgnsmems
negligible compared to the process using the masnony.

ap@eration. Therefore, we argue that reneging stighmuld be
turned off for systems employing that type of rengg
Reneging in Solaris and Windows protects the systgainst
DoS attacks. We argue that type of protection seefal to
operating systems, but we believe that a betteroagh would
be to RESET the connection under the attack insifad
reneging.

REFERENCES

M. Allman, C. Hayes, H. Kruse, and S. OstermanrGCPTperformance
over satellite links,” in Proceedings of the 5Stlkehmational Conference
on Telecommunication Systems, 1997, pp. 456—469.

M. Bruning, “A comparison of Solaris, Linux, andeeBSD Kernels”,
http://hub.opensolaris.org/bin/view/Community+Greagvocacy/solari
s-linux-freebsd

(1]

(2]

(3]

(4]
(5]
(6]
(7]
(8]

R. Bruyeron, B. Hemon, and L. Zhang, “Experimetasi with TCP
selective acknowledgment,” ACM SIGCOMM
Communication Review, vol. 28, no. 2, p. 54, 1998.
CauseReneg, http:// http://pel.cis.udel.edu/CausefRear
Dummynet, http://info.iet.unipi.it/~luigi/dummynet/

N. Ekiz and P. D. Amer, “A model for detecting tsport layer data
reneging,” in The 8th International Workshop ontBeols for Future,
Large-Scale & Diverse Network Transports, 2010.

N. Ekiz, “Transport layer reneging”, PhD Disserati Computer and
Information Science Department, University of Dedagy 2012.

K. Fall and S. Floyd, “Simulation-based comparisofisTahoe, Reno
and SACK TCP,” ACM SIGCOMM Computer Communicatioauiew,
vol. 26, no. 3, pp. 5-21, Jul. 1996.

Computer

(9]

(10]

(11]

(12]

(23]
(14]

M. Fisk and W. Feng, “Dynamic right-sizing: TCP Wleontrol
adaptation,” in Supercomputing (SC01), 2001, pi3. 1-

D. MacDonald and W. Barkley, “Microsoft Windows ZDOTCP/IP
implementation details”, http://microsoft.techndtrosoft.com/en-
us/library/bb726981.aspx

M. Mathis, J. Mahdavi, S. Floyd, and A. RomanowCH selective
acknowledgment options”, RFC2018, 1996.

J. Pahdye and S. Floyd, “On inferring TCP behaVie€M SIGCOMM
Computer Communication Review, vol. 31, no. 4, pp7—-298, Oct.
2001.

J. Postel, “Transmission control protocol”’, RFC79331.

Tcpdump, www.tcpdump.org

