
Causing Remote Hosts to Renege 
 
 

Nasif Ekiz 
F5 Networks 
Seattle, WA 

n.ekiz@f5.com 
 

Paul D. Amer 
Computer and Information Sciences 

Department 
University of Delaware 

Newark, DE 
amer@udel.edu 

Fan Yang 
Computer and Information Sciences 

Department 
University of Delaware 

Newark, DE 
yangfan@udel.edu

 
 

Abstract— Reneging occurs when a data receiver first 
selectively acknowledges data, and later discards that data from 
its receiver buffer before delivery to the receiving application. 
The consequences of reneging on operating systems and active 
transport connections are unknown. This paper investigates if 
reneging helps an operating system to resume its operation, and 
if a reneged TCP connection can complete a data transfer. To 
document consequences of reneging, we inspect operating 
systems and TCP connections after reneging occurs. To cause 
reneging, we present a tool that exhausts system resources by 
filling TCP receive buffers of a remote host with out-of-order 
data on multiple TCP connections. FreeBSD, Solaris and 
Windows were reneged, and their consequences of reneging are 
reported herein. 

Keywords— End-host behavior; protocol measurement; 
reneging; SACK; Selective Acknowledgment; TCP 

I. MOTIVATION  

Transmission Control Protocol (TCP) [13] uses sequence 
numbers and cumulative acknowledgments (ACKs) to achieve 
reliable data transfer. Sequence numbers help a TCP data 
receiver sort and reorder arriving data segments. Data arriving 
in expected order, i.e., ordered data, are cumulatively ACKed 
to the data sender. With receipt of an ACK, the data sender 
assumes the data receiver accepts responsibility of delivering 
the ACKed data to the receiving application, and deletes all the 
ACKed data from its send buffer, potentially even before that 
data are delivered to the receiving application. 

The Selective Acknowledgment Option (SACK), specified 
in RFC2018 [11], extends TCP’s cumulative ACK mechanism 
by allowing a data receiver to ack arrived out-of-order data to 
the data sender. The intent is that SACKed data do not need to 
be retransmitted during loss recovery. Prior research [1, 3, 8] 
shows that SACK improves TCP throughput when multiple 
losses occur within the same window. 

Data reneging (or simply reneging) occurs when a data 
receiver first SACKs data, and later discards that data from its 
receiver buffer prior to delivering it to the receiving application 
or socket buffer. TCP is designed to tolerate reneging. 
Specifically RFC2018 states: “The SACK option is advisory” 
and “the data receiver is permitted to later discard data which 
have been reported in a SACK option”. Reneging might 

happen, for example, when an operating system needs to 
recapture previously allocated memory, say to avoid a 
deadlock or to protect the operating system against a denial-of-
service attack (DoS). Reneging is possible in FreeBSD, Linux, 
Mac OS X, Solaris and Windows. 

The consequences of reneging on operating systems and 
active transport connections are unknown. To understand the 
consequences of reneging, one must answer the following two 
questions. 

(1) Does reneging help an operating system avoid crashing, 
thereby resuming normal operation? If yes, we can conclude 
that reneging is a useful and essential mechanism. If a machine 
still cannot resume normal operation (i.e., it crashes) after 
reneging, then why bother implementing reneging?  And why 
bother designing transport protocols to support reneging? 

(2) Can an active TCP connection complete a data transfer 
successfully when some out-of-order data are reneged? In 
general, a TCP data sender does not have a mechanism to infer 
reneging. To tolerate reneging, a sender is expected to discard 
its SACK scoreboard upon a retransmission timeout, and 
retransmit all bytes starting from the left edge of the window 
[11]. If a TCP sender does not tolerate reneging properly, 
reneging may cause a data transfer to fail. 

To answer (1) and (2), one should analyze a reneging host 
and its connections before, during and after reneging. 
Unfortunately  reneging is uncommon, and monitoring 
connections waiting for reneging to happen is impractical. 
Instead of waiting for this rare event, a tool to cause reneging 
on a remote host can be developed to investigate its 
consequences in a lab-controlled environment. Using such a 
tool, remote hosts with different operating systems can be 
analyzed in detail. 

Our preliminary investigation of various TCP 
implementations revealed that reneging in general is scheduled 
to happen (a) when system resources such as main 
memory/network buffers become scarce, or (b) when out-of-
order data sit in a receive buffer for long time without being 
delivered to a receiving application [7]. To cause reneging, a 
tool can exhaust system resources by filling TCP receive 
buffers of a remote host only with out-of-order data thus 
simulating both (a) and (b).  



 
Fig. 1. Causing a remote host to renege 

Our tool to cause a remote host to renege is called 
CauseReneg. Fig. 1 depicts CauseReneg's architecture. In this 
work, we present CauseReneg, its application on FreeBSD, 
Solaris, and Windows, and consequences of reneging on those 
operating systems. 

The rest of this paper is organized as follows. Section II 
details our tool to cause remote hosts to renege. The 
consequences of reneging on various operating systems are 
presented in Section III. Finally, Section IV concludes our 
work. 

II. A TOOL TO CAUSE RENEGING 

CauseReneg is hostile to the victim’s operating system, and 
falls into the category of a denial-of-service attack (DoS) tool. 
CauseReneg exhausts a victim’s resources by filling its TCP  
receive buffer almost fully with out-of-order data. A victim’s 
TCP allocates main memory and network buffers to store that 
out-of-order data in a receive buffer (a.k.a., reassembly queue). 
Since out-of-order data cannot be delivered to the receiving 
application, resources are utilized for the entire time the out-of-
order data sit in the receive buffer. 

To further exhaust main memory and network buffers, 
CauseReneg establishes n parallel TCP connections to a victim. 
As n increases, a victim uses more and more main memory and 
network buffers. If all goes as expected, eventually reneging 
occurs and the main memory used for out-of-order data is 
reclaimed back to the victim’s operating system. 

We implemented CauseReneg using the TCP Behavior 
Inference Tool (TBIT) [12] which can be downloaded from 
[4]. CauseReneg initiates n CauseReneging TBIT tests to 
establish n TCP connections in parallel with a victim. The 
number of parallel TCP connections (n) used by CauseReneg 
tool is variable and changes with a victim’s main memory, 
available network buffers, and operating system. The 
CauseReneging TBIT test is shown in Fig. 2 and operates as 
follows: 

CauseReneging 
1. TBIT establishes a connection with SACK-Permitted 

option and Initial Sequence Number (ISN) 10000 
2. Victim replies with SACK-Permitted option 
3. TBIT sends in-order segment (10001-10006)  
4. Victim acks the in-order data with ACK (10006) 
5. TBIT skips sending 1455 bytes (10006-11461) and starts 

sending m consecutive out-of-order segments each 1460 
bytes to exhaust main memory 

6. Victim acks the out-of-order data with SACKs 

7. TBIT sends a 10 byte out-of-order segment after x 
seconds 

8. Victim acks the out-of-order data with a SACK 
9. TBIT sends m+1 in-order data segments to complete the 

data transfer 
10. Victim acks the in-order data with ACKs/SACKs 
11. TBIT sends three RSTs to abort the connection 

 

 
Fig. 2. The CauseReneging TBIT test with m=40 

Now let us explain the CauseReneging TBIT test in detail. 
First, a TCP connection is established to a victim with 3-way 
handshake (step #1, #2, and #3) with SACK-Permitted option. 
A 5 byte in-order data is sent to the victim along with the ACK 
(step #3) that establishes the connection. Next, the victim’s 
receive buffer is filled with m out-of-order segments (step #5) 
based on the receiver’s advertised window (step #2). 

As more TCP connections to the victim are established, we 
expect reneging to happen. Let us assume that reneging 
happens after y seconds. In (step #7), a 10 byte out-of-order 
data is sent after x seconds. The x second value (step #7) is set 
to a value greater than y to detect reneging using the response 
SACK (step #8). If that response SACKs only 10 bytes of out-
of-order data as shown in Fig. 2, one can conclude reneging 
had occurred. 

To mimic an RFC2018 conformant SACK implementation, 
m+1 in-order segments are retransmitted (step #9) next, 
assuming a retransmission timeout value of x seconds. Recall 
that a TCP data sender is expected to discard SACK 
scoreboard at a retransmission timeout and retransmit bytes at 
the left edge of the window as specified in RFC2018. If 
reneging had happened, ACKs (step #10) will increase steadily 
after each in-order retransmission (step #9) as shown in Fig. 2. 
If reneging did not happen, the first ACK (step #10) will 
acknowledge all out-of-order data at once. 

CauseReneg is a generic tool that can cause reneging on 
victims  running on various operating systems. Minimal 
changes needed are to set the m value (step #5, #9) and x value 



(step #7) in the CauseReneging test, and the number of parallel 
TCP connections n that change dynamically from victim to 
victim. These values are determined by the victim’s operating 
system, available main memory, and network buffers. 

To establish the TCP connections, CauseReneg needs the 
victim to have an accessible port.  A victim’s server socket 
must be listening on the port to accept incoming TCP 
connections. Today, the majority of ports are blocked by 
firewalls for security. Web servers on the contrary remain 
accessible. Therefore CauseReneg was designed to attack a 
victim which deploys a web server (step #3 in Fig. 2 sends the 
first 5 bytes of a HTTP GET request).  

To cause reneging, we installed Apache 2.2 in all potential 
victims. By default, Apache supports at most 256 TCP 
simultaneous connections. A busy web server with thousands 
of TCP connections is a stronger candidate to renege. To 
simulate a busy web server, we increased the default limit to 
2000 simultaneous connections which turned out to be enough 
to cause all victims to renege. 

Fig. 3 presents our experimental design. CauseReneg can 
attack victims regardless of their operating systems when a 
web server (e.g., Apache) is running. A packet capture utility, 
tcpdump [14], records TCP traffic between CauseReneg and a 
victim for later offline analysis. By analyzing the recorded 
TCP traffic, we can detect reneging instances as detailed in [6]. 

Reneging is possible in FreeBSD, Linux, Mac OS X, 
Solaris and Windows. In Mac OS X, reneging is not possible 
by default, but can be turned on by a system administrator by 
enabling the sysctl net.inet.tcp.do_tcpdrain. We attempted to 
cause reneging on the following operating systems in which 
reneging is possible by default: FreeBSD 8.1, Linux 2.6.31, 
Solaris 11, Windows Vista and Windows 7. We excluded Mac 
OS X since reneging is not possible by default. 

III.  RESULTS 

Four out of the five operating systems (victims) tested were 
successfully reneged. We failed to cause a Linux 2.6.31 victim 
to renege. Linux implements dynamic right-sizing (DRS) 
where the receiver’s window (rwnd) dynamically changes 
based on the receiver’s estimate of the sender’s congestion 
window (cwnd) [9]. A data receiver increases rwnd when in-
order data are received meaning the cwnd is increased. The 
initial advertised rwnd in Linux is 5840 bytes. CauseReneging 
sends only 5 bytes in-order data (step #3). Therefore, rwnd is 
not increased and limits CauseReneg to send 4380 (5840 – 
1460) bytes of out-of-order data to a Linux victim. 

In Linux, reneging is expected when the memory allocated 
for receive buffer exceeds the memory limit available to the 
receive buffer. The minimum size of the receive buffer is 
specified with net.ipv4.tcp_rmem sysctl and is initialized to 
4096 bytes. Apparently, sending 4380 bytes of out-of-order 
data was not enough to exceed the memory limit available to 
the receive buffer. Thus, DRS prohibited CauseReneg to send 
more out-of-order data to trigger reneging. As a result, 
CauseReneg was unable to cause reneging in Linux. 

 
Fig. 3. Experimental design 

The consequences of causing FreeBSD, Solaris, and 
Windows to renege are presented in subsections A, B and C, 
respectively. 

A. Causing a FreeBSD Host to Renege 

A victim running FreeBSD 8.1, and Apache 2.2 was 
attacked. The victim had ~500MB physical memory. Two 
attacks were performed. The first crashed the system, the 
second caused reneging. 

In FreeBSD, a TCP reassembly queue is bounded by at 
most net.inet.tcp.reass.maxqlen (“Maximum number of TCP 
segments per individual Reassembly queue”) out-of-order 
segments. The default value is 48 segments. CauseReneg can 
fill a reassembly queue almost fully with out-of-order data 
since the victim’s advertised TCP receive window of 65535 
bytes is less than the reassembly queue limit. 

Another sysctl, net.inet.tcp.reass.maxsegments (“Global 
maximum number of TCP segments in Reassembly queue”), 
defines a global limit for all segments in all connections’ 
reassembly queues. FreeBSD assigns 1/16th of total mbuf 
clusters to net.inet.tcp.reass.maxsegments. After that limit is 
reached, arriving out-of-order segments are dropped. That limit 
for the attacked victim was 1060. The 
net.inet.tcp.reass.overflows (“Global number of TCP Segment 
Reassembly Queue Overflows”) sysctl reports the total number 
of dropped out-of-order segments. The 
net.inet.tcp.reass.cursegments (“Global number of TCP 
Segments currently in Reassembly Queue”) sysctl reports the 
total number of segments in all reassembly queues. Fig. 4 will 
contain an example output. 

In FreeBSD, reneging happens if the page replacement 
daemon (vm_pageout) invokes the vm_pageout_scan() 
function. When the available main memory goes low, and 
hard-coded or tunable paging thresholds are exceeded, 
vm_pageout_scan() is invoked to scan main memory to free 
some pages. If the memory shortage is severe enough, the 
largest process is also killed [2]. 

Attacks. In the first attack (A), CauseReneg established a 
variable number of parallel TCP connections. The goal was to 
exhaust the victim’s main memory as much as possible and 
trigger reneging. Table I presents the memory statistics when n 
parallel TCP connections were established. Each TCP 



connection exhausts ~2.8MB of main memory. While we 
expected reneging to happen with increased memory usage, 
instead the victim crashed! More precisely, when the number 
of parallel connections exceeded 1241, the victim crashed with 
the following panic messages: (a) “Approaching the limit on 
PV entries, consider increasing either the 
vm.pmap.shpgperproc (“Page share factor per proc”) or the 
vm.pmap.pv_entry_max (“Max number of PV entries”) 
tunable”, and (b) “panic: get_pv_entry: increase 
vm.pmap.shpgperproc”. The panic messages are related to 
mapping of physical/virtual addresses of pages. 

To track the number of connections causing the victim 
crash, CauseReneg attacked the victim with the following 
configuration: n=1300, m=1, x=240 seconds. Each TCP 
connection sent only 1 out-of-order segment to the victim. Fig. 
4 shows the statistics for TCP reassembly queue size when 
1241 parallel TCP connections were established to the victim 
just before crashing ( net.inet.tcp.reass.cursegments:1059 (line 
4) + net.inet.tcp.reass.overflows: 182 (line 2) = 1241). 

TABLE I.  MEMORY USAGE FOR N PARALLEL TCP CONNECTIONS 

n Parallel TCP Connections Memory Usage 

1 3MB 
2 6MB 

4 11MB 

8 22MB 

200 558MB 

400 1127MB 

800 2267MB 

1241 3418MB 

 
In the second attack (B), to cause the page replacement 

daemon to call the vm_pageout_scan() function, a user process 
that consumes a specified amount of main memory is executed 
along with CauseReneg. If the memory shortage is severe 
enough due to the user process’ excessive memory allocation, 
and the victim goes low on main memory, the page 
replacement daemon is expected to kill the process using the 
largest memory (in that case, the user process) and renege. 

The second attack was performed for two cases: (B1) 
reneging was enabled (net.inet.tcp.do_tcpdrain=1), and (B2) 
reneging was disabled (net.inet.tcp.do_tcpdrain=0) at the 
victim. 

Results. For attack (A) although memory consumption was 
high (3533MB: 3418MB for the TCP connections + 115MB 
for the kernel), reneging did not occur. The reason is that the 
paging thresholds were not exceeded. If reneging happened, 
FreeBSD would reclaim ~3MB of main memory (all available 
space for out-of-order data). Since each TCP connection 
established consumes ~2.8MB, reclaimed memory would be 
consumed for only one new TCP connection. Eventually, the 
machine crashes. We conclude that reneging does not benefit 
FreeBSD for such an attack. 

 
Fig. 4. Statistics for TCP reassembly queue size (attack A) 

For attack (B1), CauseReneg attacked the victim with 
n=20, m=40, x=180 seconds. When 20 parallel connections 
were established, 800 out-of-order segments were in the TCP 
receive buffers (net.inet.tcp.reass.cursegments: 800). Next, the 
user process was run to allocate 2GB of main memory. 
FreeBSD allocated ~1.5GB of main memory to the user 
process before the user process was killed by the page 
replacement daemon. At this point, reneging was expected and 
net.inet.tcp.reass.cursegments: 0 confirmed that reneging did 
occur. 

Attack (B2) was performed with the same steps as attack 
(B1). When the user process was terminated by the page 
replacement daemon, the out-of-order segments were still in 
the TCP receive buffers (net.inet.tcp.reass.cursegments: 800) 
confirming that reneging did not happen. 

Both attacks (B1) and (B2) also were analyzed using the 
RenegDetect tool [6] which identifies reneging and non-
reneging connections. 

The FreeBSD victim was reneged with the attack (B1). 
Now, we answer the following questions to gain insight to the 
consequences of reneging: (1) Does reneging help an operating 
system to resume its operation? (2) Can a reneged TCP 
connection complete its data transfer? 

(1) After attack (B1), the FreeBSD victim kept running 
normally. As stated before, only ~3MB of main memory (the 
maximum amount possible for the victim) used for the network 
buffers was reclaimed back to the operating system. Since the 
memory shortage caused by the attack was severe, the largest 
process (~1.5GB) was killed. We believe the amount of main 
memory used for network buffers is negligible compared to the 
process using the most memory. We argue that the current 
handling of reneging is not useful, and reneging should be 
turned off by default in FreeBSD as in Mac OS X. 

To answer (2), we needed to test if the TCP data senders 
tolerate reneging properly as specified in RFC2018. Recall that 
a TCP sender needs to discard its SACK scoreboard at a 
retransmission timeout, and start sending bytes at the left edge 
of the window. Otherwise, reneging may cause a data transfer 
to stall and/or fail. 

FreeBSD employs a global reneging strategy that all TCP 
connections with out-of-order data are reneged simultaneously. 
If TCP connections with out-of-order data from various TCP 
data senders were established to the FreeBSD victim before the 
attack (B1), those TCP connections would renege too. To test 
if RFC2018 conformant tolerating reneging is implemented, a 
5MB file was transferred using secure shell (ssh) to the 
FreeBSD victim from various operating systems: FreeBSD 8.0, 
Linux 2.6.24, Mac OS X 10.8.0, NetBSD 5.0.2, OpenBSD 4.8, 
OpenSolaris 2009, Solaris 11, Windows XP, Windows Vista, 
and Windows 7. 



To create out-of-order data for those transfers, Dummynet 
[5] was configured on the FreeBSD victim to drop 15-20% of 
the TCP PDUs. The traffic between a TCP data sender and the 
FreeBSD victim was recorded for reneging analysis. Once a 
data transfer started, the FreeBSD victim was reneged using 
the attack (B1).  Then we observed if the file transfer 
experiencing reneging would be completed. In all data 
transfers, reneging was detected by analyzing the recorded 
traffic using RenegDetect, and we confirmed that all of the 
TCP data senders completed the data transfer successfully.  
The conclusion is that RFC2018 conformance is implemented 
in all TCP stacks tested. 

B. Causing a Solaris Host to Renege 

In Solaris, if out-of-order data sit in the TCP reassembly 
queue for at least 100 seconds (i.e., the default reassembly 
timer timeout value), a receiver would renege and purge the 
entire reassembly queue. Reneging, in such case, protects the 
operating system against DoS attacks. 

Attack.  Reneging in Solaris is expected to happen 100 
seconds after the arrival of out-of-order data (CauseReneging 
TBIT test step #5). To force the reassembly queue timer to 
expire, we set x > 100 seconds. The number of parallel 
connections (n) and out-of-order segments (m) can be set 
arbitrarily since reneging in Solaris only depends on x. 
CauseReneg attacked the victim with n=20, m=40, x=180 
seconds. The value of m was set to 40 purposefully to explain 
reneging using Fig. 2. With this configuration, reneging was 
expected to happen before the 10 byte out-of-order data were 
sent (step #7). 

Results. A Solaris 11 victim with 1024MB physical 
memory and running Apache 2.2 was tested. As expected, 
reneging happened when the TCP reassembly queue timer 
expired after 100 seconds for the out-of-order data sent (step 
#5) in Fig. 2. A tcpdump output of the 6th parallel connection is 
shown in Fig. 5. After x=180 seconds, 10 byte out-of-order 
data (69861-69871) were sent (lines 5, 6). The reply SACK 
evidenced reneging since only 10 out-of-order bytes were 
selectively acknowledged (69861-69871) (lines 7, 8). After the 
in-order received data, the victim’s ACKs (step #10) were 
steadily increased as expected. 

We believe reneging in Solaris is used as a mechanism to 
protect against DoS attacks. In loss recovery, a TCP sender is 
expected to retransmit a lost segment r times (e.g., 
TcpMaxDataRetransmissions in Windows Server 2003 defines 
r=5 by default). After r retransmissions, a TCP sender would 
terminate a TCP connection. The loss recovery period takes 1-
2 minutes assuming back to back timeouts, an initial 
retransmission timeout value (RTO) of 1 second, and r=5. 
When out-of-order data sit in the reassembly queue for at least 
100 seconds (the default reassembly queue timer value) at the 
Solaris receiver, one can infer that either the TCP sender 
terminated the connection or the host is under a DoS attack 
where the out-of-order data intentionally exhaust host’s 
resources. Therefore, cleaning the reassembly queue seems a 
useful mechanism in both cases. 

 
Fig. 5. Tcpdump output of a TCP connection from reneging attack on Solaris 
11 

Instead of reneging out-of-order data, we believe a better 
option would be to RESET the connection when reneging is 
caused by either a terminated TCP connection (due to loss 
recovery) or a DoS attack. With that change, all the resources 
used for the TCP connection would be released, and better 
utilized. 

C. Causing Windows Hosts to Renege 

Dave MacDonald, author of Microsoft Windows 2000 
TCP/IP Implementation Details [10], stated that Vista and its 
successors implement reneging as a protection mechanism 
against DoS attacks. Reneging happens when the memory 
consumption of total TCP reassembly data in relation to the 
global memory limits is significant. 

To investigate the consequences of reneging, CauseReneg 
attacked Windows victims (Vista and 7) by increasing the 
number of parallel connections to make the memory 
consumption of the total reassembly data so significant that 
reneging is triggered. The Vista and Windows 7 victims had 
2GB and 1GB physical memory, respectively. Both victims 
deployed Apache 2.2. 

Attacks. The initial advertised window (rwnd) in both 
Vista and Windows 7 is 64240 bytes.  This value corresponds 
to 44 * 1460 byte TCP PDUs. Based on the initial rwnd, the m 
value, the number of out-of-order segments, in the 
CauseReneging test (step #5) is set to 43 to fill each 
reassembly queue almost fully with out-of-order data. In the 
attacks, the number of parallel connections established to the 
victim (n) and the x seconds (step #7) values in the 
CauseReneging test were variable. 

Results. First, the Vista victim was attacked by 
CauseReneg using m=43, x=200. Table II presents the results 
of the attacks. When n=100 or 200 parallel connections were 
established , reneging did not happen. When n=300 parallel 
connections were established, only the last 33 connections 
reneged. When the n=400, a similar behavior happened. The 
first 267 connections did not renege but the last 133 
connections did. This behavior implies that the memory 
consumption of total reassembly data in relation to the global 
memory limit is considered significant in Vista when the out-
of-order data in the reassembly queue is at least ~16MB (= 267 
(parallel connections) * 43 (out-of-order segments) * 1460 
bytes). 

To verify that the global memory limit for reneging is 
~16MB, another attack was performed with the configuration: 
n=600, m=20, x=200 seconds. With this configuration, roughly 
half of the rwnd was filled with out-of-order data. The 
observed behavior was consistent: only the last 25 of 600 
connections reneged, and the memory allocated to out-of-order 
data before reneging happened was again ~16MB (= 575 



(parallel connections) * 20 (out-of-order segments) * 1460 
bytes). 

TABLE II.  CAUSERENEG ATTACK ON VISTA VICTIM WITH VARIABLE 
NUMBER OF PARALLEL CONNECTIONS 

n parallel TCP connections Reneging 
100 No 
200 No 
300 Yes (33 connections renege) 
400 Yes (133 connections renege) 

 

Next, the Windows 7 victim was attacked by CauseReneg 
using m=43, x=200. Table III presents the results of the attacks. 
When n=100 parallel connections were established, reneging 
did not happen. When n=200 parallel connections were 
established, the first 133 connections did not renege but the last 
67 connections did. When n=300 parallel connections were 
established, the first 133 connections did not renege but the last 
167 connections did. This behavior implies that the memory 
limit for the reassembly queue for the Windows 7 victim was 
~8MB (= 133 (parallel connections) * 43 (out-of-order 
segments) * 1460 bytes). Recall that the Vista victim had a 
physical memory of 2GB whereas the Windows 7 victim’s 
memory was 1GB. The memory limit used for the reassembly 
data to trigger reneging in both systems was ~0.78% of the 
physical memory, and seems to scale with the physical 
memory. 

TABLE III.  CAUSERENEG ATTACK ON WINDOWS 7 VICTIM WITH 
VARIABLE NUMBER OF PARALLEL CONNECTIONS 

n parallel TCP connections Reneging 
100 No 
200 Yes (67 connections renege) 
300 Yes (167 connections renege) 

 
In conclusion, Windows Vista and 7 support reneging as a 

protection mechanism against DoS attacks, renege when the 
memory threshold for reassembly data is reached, and resume 
normal operation after reneging. 

IV.  CONCLUSIONS 

CauseReneg was used to attack FreeBSD, Solaris, and 
Windows.  Two attacks were performed on a FreeBSD victim. 
Initially, it was thought that an operating system starving for 
main memory would eventually crash. Our first attack (A) was 
such an example:  the victim crashed and reneging did not help 
the operating system resume normal operation. In the second 
attack, the page replacement daemon invoked drain routines, 
the victim reneged, and the OS resumed normal operation. On 
the other hand, attack (B2), where reneging was disabled for 
the second attack, demonstrated that FreeBSD could resume 
normal operation again without reneging. Thus, reneging did 
not benefit FreeBSD in either attack.  

The maximum amount of memory that can be allocated to a 
victim’s reassembly queues by reneging is limited to ~3MB 
(0.6% of the physical memory). That amount of memory seems 
negligible compared to the process using the most memory. 

We believe reneging alone does not help an OS resume normal 
operation, and the reassembly queues’ memory was wastefully 
purged. Therefore, we argue that reneging support should be 
turned off by default in FreeBSD as it is in Mac OS X. 

Both Solaris 11 and Windows (Vista and 7), use reneging 
as a protection mechanism against DoS attacks instead of using 
reneging to manage memory pressure situations. One key 
difference is that Solaris uses a reassembly queue timer to 
renege whereas Windows uses a memory threshold for the out-
of-order data for the same purpose. 

In Solaris, when out-of-order data sit in the reassembly 
queue for at least 100 seconds, reneging is triggered. It can be 
inferred that the connection is either terminated due to loss 
recovery or exhausts resources intentionally (a DoS attack). In 
both cases, instead of reneging, we contend that terminating the 
connection with RESETs would be a better option since 
RESETing releases all of the allocated resources. 

In Windows, reneging happens when the memory allocated 
for out-of-order data exceeds the memory threshold available 
for the reassembly data.  The current reneging implementation 
in Windows has a potential problem. The out-of-order data that 
cause reaching the threshold are not reneged. Instead, it is the 
out-of-order data received afterwards that are reneged. Were an 
attacker to find out the memory threshold (as we did in Section 
III.C) and only send that amount of out-of-order data, all future 
connections experiencing losses and receiving out-of-order 
data afterwards would renege. A TCP data sender would not 
retransmit SACKed data until a retransmission timeout (RTO) 
[11]. In such a case, losses would be recovered with RTOs 
resulting in increased transfer times (lower throughput). The 
quality of service for legitimate users would be reduced, i.e., 
data transfer times would increase. We introduce that type of 
an attack as a reduction of service (RoS) attack. We believe 
that an RoS attack would be harder to detect compared to a 
DoS attack since the service provided in not interrupted but 
only slowed down. 

When we compare reneging in Solaris vs. Windows, 
Solaris’s approach seems to be a better protection mechanism: 
only the DoS connections are penalized.  

In conclusion, when an OS  is starving for memory, 
reneging alone does not help the system resume normal 
operation. Therefore, we argue that reneging support should be 
turned off for systems employing that type of reneging. 
Reneging in Solaris and Windows protects the system against 
DoS attacks. We argue that type of protection is essential to 
operating systems, but we believe that a better approach would 
be to RESET the connection under the attack instead of 
reneging. 

REFERENCES 
[1] M. Allman, C. Hayes, H. Kruse, and S. Ostermann, “TCP performance 

over satellite links,” in Proceedings of the 5th International Conference 
on Telecommunication Systems, 1997, pp. 456–469. 

[2] M. Bruning, “A comparison of Solaris, Linux, and FreeBSD Kernels”, 
http://hub.opensolaris.org/bin/view/Community+Group+advocacy/solari
s-linux-freebsd 



[3] R. Bruyeron, B. Hemon, and L. Zhang, “Experimentations with TCP 
selective acknowledgment,” ACM SIGCOMM Computer 
Communication Review, vol. 28, no. 2, p. 54, 1998. 

[4] CauseReneg, http:// http://pel.cis.udel.edu/CauseReneg.tar 

[5] Dummynet, http://info.iet.unipi.it/~luigi/dummynet/ 

[6] N. Ekiz and P. D. Amer, “A model for detecting transport layer data 
reneging,” in The 8th International Workshop on Protocols for Future, 
Large-Scale & Diverse Network Transports, 2010. 

[7] N. Ekiz, “Transport layer reneging”, PhD Dissertation, Computer and 
Information Science Department, University of Delaware, 2012. 

[8] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno 
and SACK TCP,” ACM SIGCOMM Computer Communication Review, 
vol. 26, no. 3, pp. 5–21, Jul. 1996. 

[9] M. Fisk and W. Feng, “Dynamic right-sizing: TCP flow-control 
adaptation,” in Supercomputing (SC01), 2001, pp. 1–3. 

[10] D. MacDonald and W. Barkley, “Microsoft Windows 2000 TCP/IP 
implementation details”, http://microsoft.technet.microsoft.com/en-
us/library/bb726981.aspx 

[11] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective 
acknowledgment options”, RFC2018, 1996. 

[12] J. Pahdye and S. Floyd, “On inferring TCP behavior,” ACM SIGCOMM 
Computer Communication Review, vol. 31, no. 4, pp. 287–298, Oct. 
2001.  

[13] J. Postel, “Transmission control protocol”, RFC793, 1981. 

[14] Tcpdump, www.tcpdump.org 

 


