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Abstract—We introduce Non-Renegable Selective Acknowl-
edgments (NR-SACKs) to MPTCP, and investigate their im-
pact in situations where an MPTCP receiver never discards
received out-of-order data from the MPTCP receive buffer
(i.e., never renegs). NR-SACKs not only allow an MPTCP
receiver to report the reception of out-of-order data, but also
allow an MPTCP sender to free reported out-of-order data
in the MPTCP send buffer sooner than the advance of the
MPTCP level cumulative acknowledgement (DATA ACK). We
implemented NR-SACKs in the Linux kernel. Experiments
show that (i) the MPTCP data transfers with NR-SACKs
never perform worse than those without NR-SACKs, and (ii)
NR-SACKs improve throughput in MPTCP when the total
congestion window (cwnd) of all subflows is greater than the
MPTCP send buffer size (i.e., the send buffer size is the
bottleneck).
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I. INTRODUCTION

Multipath reliable data transfer has received a lot of recent
attention as seen by extensions to TCP and SCTP to support
multihoming. However, extensions to TCP [12], [13], [14]
have never been implemented nor deployed [9]. SCTP’s
extension, called Concurrent Multipath Transmission (CMT)
[2], is implemented but not widely deployed since many
Internet middle-boxes by default block SCTP-PDUs.

In both TCP and SCTP, a receiver informs a sender
about the reception of out-of-order data through SACKs,
but the receiver is permitted to later discard the SACKed
data [7]. Discarding data that has been previously SACKed
is known as reneging. Because of the possibility of reneging,
a sender needs to keep SACKed data in the send buffer until
they are cumulatively acknowledged (cum-acked). Both TCP
and SCTP are designed to tolerate reneging. This design
has been challenged [5] since (i) reneging rarely occurs
in practice, and (ii) even when it does occur, reneging
alone generally does not help the operating system resume
normal operation when the system is starving for memory.
Non-Renegable Selective Acknowledgments (NR-SACKs)
[3] allow a receiver to convey non-renegable information of
received out-of-order data back to the corresponding sender.
NR-SACKs allow that sender to remove NR-SACKed data
from the send buffer sooner than the arrival of corresponding

cum-acks. NR-SACKs have been introduced to both SCTP
and SCTP with CMT, and results show that NR-SACKs not
only reduce sender’s memory requirements, but also improve
the end-to-end throughput under certain conditions [4], [6].

The IETF has created a multipath working group to
specify a standard for Multipath TCP (MPTCP). MPTCP
provides an ability to simultaneously transmit data over
multiple TCP paths between peers [1].

In this work, we introduce NR-SACKs to MPTCP and
investigate their impact in situations where an MPTCP
receiver never discards out-of-order data in the MPTCP
receive buffer (i.e., never renegs). This paper is organized
as follows. Section II explains data sequencing in MPTCP,
and describes a problem, called GapAck-Induced send buffer
blocking [10], in MPTCP data transfers when the total
cwnd size of all subflows are greater than the MPTCP send
buffer size. Section III introduces our proposed modified
MP CAPABLE and DSS option for MPTCP to support NR-
SACKs, and briefly explains sender and receiver side NR-
SACK processing details. Section IV elaborates our test-
bed topology and experimental parameters (e.g., delay, loss
rate and send buffer size). Section V analyzes the results
for MPTCP data transfers with NR-SACKs vs. without NR-
SACKs. Section VI concludes our work.

II. GAPACK-INDUCED SEND BUFFER BLOCKING IN
MPTCP UNORDERED DATA TRANSFER

In MPTCP, each subflow is a standard TCP connection
with its own sequence number space. An MPTCP level
sequence number space, based on a Data Sequence Number
(DSN), additionally numbers bytes at the MPTCP level. A
single MPTCP send buffer and a single MPTCP receive
buffer are shared among all subflows, while each subflow
has its own receive buffer to hold subflow level out-of-order
data (since each subflow TCP receiver must deliver subflow
level data in-order to the MPTCP receive buffer).

When an application writes a stream of bytes to an
MPTCP send buffer, MPTCP numbers each byte with a
DSN. When bytes are then sent on a particular subflow, they
are encapsulated into TCP-PDUs with MPTCP information
placed in the TCP option field. When a TCP-PDU is received
in-order at subflow level, the payload is delivered to the



Figure 1. Timeline of an Unordered MPTCP Data Transfer

Figure 2. Timeline of an Unordered MPTCP Data Transfer with NR-SACKs

MPTCP receive buffer immediately. The MPTCP level cum-
ack number, called DATA ACK, advances if the delivered
data are also in-order at the MPTCP level.

The subflow receiver cum-acks those delivered data by a
regular TCP cum-ack, and places the current DATA ACK
in the TCP option field. An application consumes in-order
data from the MPTCP receive buffer. Currently, an MPTCP
sender only frees data from the MPTCP send buffer when
they have been cum-acked by DATA ACK received on any
subflow [1].

Data often arrive out-of-order at an MPTCP receive buffer
because of loss and/or asymmetric RTTs of the subflows.
In a heterogeneous network when different subflows have

different characteristics (i.e., loss and RTT), the amount of
out-of-order data arriving at the MPTCP receiver side can
be significant.

In current MPTCP standard, an MPTCP receiver cannot
report the reception of out-of-order data to an MPTCP
sender. If an MPTCP receiver never renegs (as is the case
in Linux kernel MPTCP implementation [8]), an MPTCP
sender does not need to maintain the received out-of-order
data in the send buffer.

Consider a scenario where an MPTCP receiver never
renegs. In Figure 1, two subflows have been established.
After some initial period of data transfer (not shown), as-
sume both subflows have reached their congestion avoidance



phase, and they have roughly the same RTT and the same
MSS of 1400 bytes. The MPTCP send buffer, denoted by
the shaded rectangular box, can hold up to 11200 bytes of
application data. The entire send buffer is equally divided
into 8 pieces (each 1400 bytes) and each piece is denoted
by its starting Data Sequence Number (DSN) inside a small
rectangular box.

The timeline slice shown in Figure 1 starts at a point
in the data transfer when both subflows have cwnd = 4.
When bytes are then to be transmitted on a subflow, they
are encapsulated into TCP-PDUs which are denoted by both
the respective subflow’s TCP sequence number (S) and the
DSN of the first byte of the payload. Each ack contains not
only a subflow cum-ack number (A) and SACKs (if any), but
also a DATA ACK (DA). TCP-PDU S: 7001 (DSN: 14001)
of subflow 1 is assumed lost.

Upon reception of the first ack (A: 26401 (DA: 14001))
on subflow 2, the MPTCP sender could in theory continue
to transmit new data on subflow 2, since subflow 2 has
available cwnd (i.e. cwnd − numpacket in flight > 0).
However, the MPTCP send buffer does not have any new
data. Actually, before the ack of the retransmission of TCP-
PDU S: 7001 (DSN: 14001) arrives at the MPTCP sender,
even though data corresponding to DSNs 19601 - 25200
have been successfully received by the MPTCP receiver,
the MPTCP sender cannot free these data from the send
buffer since the DATA ACK does not advance. This scenario
illustrates GapAck-Induced send buffer blocking (hereafter
called send buffer blocking). Send buffer blocking occurs
when the total cwnds of all subflows are greater than the
MPTCP send buffer size. Send buffer blocking prevents the
MPTCP sender from fully utilizing the cwnds of subflows.

In the case where an MPTCP receiver never renegs, this
simple timeline illustrates the following:

• After bytes have been received out-of-order by an
MPTCP receiver, maintaining these data in the MPTCP
send buffer is unnecessary, i.e., a waste of memory.

• When send buffer blocking occurs, the MPTCP send
buffer size becomes a bottleneck of throughput.

III. NON-RENEGABLE SELECTIVE ACKNOWLEDGMENTS
(NR-SACKS) FOR MPTCP

We propose using NR-SACKs to enable an MPTCP
receiver to inform an MPTCP sender about the reception
and ”non-renegability” of out-of-order data.

A. Modified Multipath Capable (MP CAPABLE) and Data
Sequence Signal (DSS) Options supporting NR-SACKs

Because of page limit, the details of the proposed modified
MP CAPABLE and DSS options which support NR-SACKs
can be found on our lab website at http://www.eecis.udel.
edu/∼amer/PEL/.

B. MPTCP Unordered Data Transfer with NR-SACKs

Figure 2 is analogous to Figure 1’s example, this time
using NR-SACKs. The MPTCP sender and receiver are
assumed to have negotiated using NR-SACKs. As in Figure
1, TCP-PDU S: 7001(DSN: 14001) of subflow 1 is presumed
lost. Notice that, the first three acks on subflow 1 and the
first four acks on subflow 2 carry NR-SACK information.
When the first ack on subflow 2 arrives, the MPTCP
sender is informed that data corresponding to DSNs from
(14001 + 5600) to (14001 + 7000 − 1) have been received
and are non-renegable. The MPTCP sender immediately
frees these NR-SACKed data from the MPTCP send buffer,
allowing the application to write new data to the MPTCP
send buffer. This new data is transmitted on subflow 2 which
has available cwnd. Then the first ack on subflow 1 arrives,
but its NR-SACK information is same as the first ack of
subflow 2. On the reception of the second, third and fourth
acks, more new data are transmitted on subflow 2.

Figure 2 illustrates the following observations on MPTCP
data transfers with NR-SACKs:

• The MPTCP send buffer only contains necessary data,
thus, NR-SACKs allow a more efficient MPTCP send
buffer usage.

• Although subflow 1 is blocked due to the loss, new
application data can still be transmitted on subflow 2.
NR-SACKs alleviate send buffer blocking hence higher
throughput is achieved than the scenario in Figure 1.

IV. EXPERIMENTAL SETUP

We extended the Linux kernel MPTCP implementation
[8] to support and process NR-SACKs at the data receiver
and data sender, respectively. The experiment evaluates the
performance of MPTCP data transfers (with two subflows)
with NR-SACKs vs. without NR-SACKs under various
conditions (path loss rate, delay and send buffer size).
The coupled congestion control option is disabled in this
evaluation since we want to focus on the impact of NR-
SACKs.

A. Test-bed Topology

Figure 3. Test-bed Topology

The test-bed (Figure 3) is composed of a Cisco Linksys
E1000 router and two laptops running Ubuntu 11.10. A
server is connected to the router with a tethered 100Mbps
Ethernet cable. A multihomed client is connected to the



router by both an Ethernet cable and a wireless link. To
prevent the link between the server and the router being
a bottleneck, the Ethernet cable connecting the client and
the router has a 10Mbps capacity, and 802.11b (maximum
raw data rate is 11Mbps) is used for the wireless link. An
MPTCP connection with two subflows is created. Subflow 1
is a TCP connection established over the wired-wired path,
and subflow 2 is a TCP connection established over the
wired-wireless path. The traffic is generated by moving a
1.46GB file from server to client with MPTCP.

B. Experimental Parameters

Before discussing about the experimental parameters,
consider a problem of the current scheduler of the Linux
MPTCP. When bytes are ready to send, a scheduler selects
which subflow to send these data. The current scheduler
selects the subflow with the shortest sample RTT (srtt)
among all subflows with available cwnd. In our test-bed,
if neither loss nor delay is introduced, the srtt of subflow
1 is always shorter than that of subflow 2. So subflow 1 is
selected to send data whenever it has available cwnd, while
subflow 2 is only selected when subflow 1 has no available
cwnd. Figure 4 shows the load sharing of subflows 1 and 2
during the first 100s of data transfer. We can see subflow 2
only carries a small portion of the load. This problem has
been reported in [15]. If only one subflow is used during
most of the data transfer, the receiver will seldom generate
NR-SACKs. To force the using of both subflows during the
data transfer, loss is introduced to both subflows. When loss
occurs on subflow 1, its cwnd reduces. At times, subflow 1
will have no available cwnd, and the scheduler will select
subflow 2. The current scheduler is obviously suboptimal,
our future work includes implementation and evaluation of
different scheduling policies for MPTCP [11].

Figure 4. Load Sharing of Two Subflows (no extra loss or delay)

In our experiments, four different delays {5ms, 10ms,
50ms, 500ms} and three different loss rates {0.5%, 1%,
5%} are configured on the outgoing direction of the server’s
Ethernet interface by using the Linux traffic control [16].

Figure 5. Throughput Gain with NR-SACKs (899KB, 700K, 449KB,
224KB, 112KB send buffer sizes)

Figure 6. Throughput Gain with NR-SACKs (74KB, 64KB, 56KB, 28KB
send buffer sizes)

The performance of NR-SACKs has been tested for Linux
MPTCP send buffers ranging in size from 14KB to 899KB.

V. RESULTS

To evaluate the performance of MPTCP data trans-
fers with NR-SACKs vs. without NR-SACKs precisely,
we employ the metric throughput gain defined in [6] as
(TNR−SACK − T )/T where TNR−SACK is the throughput
achieved with NR-SACKs and T is the throughput achieved
without NR-SACKs for an identical set of experimental
parameters (send buffer size, loss rate, bandwidth, and
delay). We also use a region of gain [6] defined as the
send buffer size interval, [a, b], where any send buffer size
between a and b results in an expected throughput gain of
at least 5%.

NR-SACKs require minimal additional processing time
at both end hosts and only a few extra bytes on the wire.
Thus, our first hypothesis was that these overheads would be
negligible, and that MPTCP data transfers with NR-SACKs
would always perform at least as well as those without
NR-SACKs. For clarity, Figures 5 and 6 only show the
throughput gain of part of the parameter combinations tested.



Figure 7. Retransmission Queue Evolution without NR-SACKs (899KB
send buffer size, 1% loss, 10ms delay)

Our first hypothesis is confirmed by both figures.
Importantly, as the MPTCP send buffer size decreases, we

observe increasing throughput gain with NR-SACKs from
Figures 5 and 6. Based on the previous discussion, NR-
SACKs can free received out-of-order data from the send
buffer prior sooner than the arrival of the corresponding
cum-ack. When send buffer blocking occurs, the total cwnds
of all subflows, and hence RtxQ, grow large enough to fill
the entire send buffer. NR-SACKs allow more new applica-
tion data be transmitted. Therefore, our second hypothesis
was that when send buffer blocking occurs, MPTCP data
transfers with NR-SACKs would outperform those without.

A. Retransmission queue evolution

To confirm our second hypothesis and gain insight into
the send buffer blocking, consider how the Retransmission
Queue (RtxQ) size varies over time. Figures 7 and 8 show
how the RtxQ size varies for send buffer sizes 899KB
and 28KB, respectively. In both figures, the loss rate and
delay on the outgoing direction of the server’s interface
are 1% and 10ms, respectively. In Figure 7, the RtxQ
size never reaches 899KB, thus no send buffer blocking
occurs and no significant throughput gain is expected by
using NR-SACKs (as confirmed in Figure 5). In Figure 8,
the RtxQ size frequently reaches 28KB each time causing
send buffer blocking. When send buffer blocking occurs,
significant throughput gain is expected by using NR-SACKs
(as confirmed in Figure 6). These results confirm our second
hypothesis.

B. Impact of Loss Rate

For a given bandwidth-delay combination, higher loss
rates result in smaller total cwnds (and hence smaller RtxQ
size). When send buffer blocking occurs, higher loss rates
result in more serious blocking than smaller loss rates. Addi-
tionally, higher loss rates make an MPTCP receiver generate
more NR-SACK information. Therefore, we hypothesized
that (i) the right edge of the region of gain would be smaller

Figure 8. Retransmission Queue Evolution without NR-SACKs (28KB
send buffer size, 1% loss, 10ms delay)

for a higher loss rate than for a smaller loss rate, and (ii)
in the region of gain, the maximum throughput gain of a
higher loss rate would be greater than that of a smaller loss
rate.

Figure 9. Throughput Gain with NR-SACKs (same delay different loss
rates)

These hypotheses are confirmed by Figure 9. As the loss
rate decreases, the right edge of region of gain moves to the
left and the maximum throughput gain in the region of gain
moves up. When the loss rate is 5%, the throughput gain can
reach as high as 70% under a 14KB MPTCP send buffer.

C. Impact of Delay

For a given bandwidth, longer delays result in greater
Bandwidth-Delay Product (BDP). When the BDP < MPTCP
send buffer size, no send buffer blocking occurs since
the total cwnd size is bounded by the BDP. Send buffer
blocking occurs only when BDP ≥MPTCP send buffer size.
Therefore, we hypothesized that the right edge of the region
of gain would be bigger for a longer delay than for a shorter
delay.

Our hypothesis is confirmed by Figure 10. We can see, as
the delay increases, the right edge of region of gain moves



Figure 10. Throughput Gain with NR-SACKs (same loss rate different
delay)

right. For all loss rates tested, we also observed that the
throughput gain with NR-SACKs is greater over a link with
a shorter delay (consistent with the results in [6]).

VI. CONCLUSIONS AND FUTURE WORK

In this work, we introduced NR-SACKs to MPTCP and
investigated their impact in situations where an MPTCP
receiver never renegs. We extended the Linux MPTCP
implementation to support NR-SACKs. Based on the ex-
periment, we concluded that (i) MPTCP data transfers
with NR-SACKs never perform worse than those without
NR-SACKs, and (ii) NR-SACKs can improve end-to-end
throughput in MPTCP when send buffer blocking occurs.
In an MPTCP connection with several high-BDP subflows,
send buffer blocking can occur and seriously decrease the
end-to-end throughput. NR-SACKs can alleviate the send
buffer blocking and achieve higher throughput. Based on
the argument that the design to tolerate reneging is wrong,
we recommend that NR-SACKs SHOULD be added to the
MPTCP standard.

We are currently implementing and evaluating different
scheduling policies for MPTCP, since the current Linux
MPTCP scheduler implementation is suboptimal and no
standard for scheduling policy is published.
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M. Tüxen, Evaluation of Concurrent Multipath Transfer over
Dissimilar Paths. 1st International Workshop on Protocols
and Applications with Multi-Homing Support, Singapore,
2011.

[11] F. Yang and P. Amer, Scheduling Policies for MPTCP (in
preparation).

[12] H. Hsieh and R. Sivakumar, pTCP: An End-to-end Transport
Layer Protocol for Striped Connections. IEEE International
Conference on Network Protocols, Paris, France, November
2002.

[13] K. Rojviboonchai, T. Osuga, and H. Aida, R-M/TCP: Protocol
for Reliable Multipath Transport Over the Internet. AINA
2005, Taiwan, 2005.

[14] M. Zhang, J. Lai, and A. Krishnamurthy, A Transport Layer
Approach for Improving End-to-end Performance and Ro-
bustness Using Redundant Paths. 2004 USENIX Annual
Technical Conference, Boston, MA, USA.

[15] S. Nguyen, X. Zhang, T. Nguyen and G. Pujolle, Evaluation
of Throughput Optimization and Load Sharing of Multipath
TCP in Heterogeneous Networks. WOCN 2011, New
Orleans, Louisiana, 2011.

[16] Linux Advanced Routing and Traffic Control. http://www.
lartc.org/.


