

LEVERAGING INNOVATIVE TRANSPORT LAYER SERVICES

FOR IMPROVED APPLICATION PERFORMANCE

by

Preethi Natarajan

A dissertation submitted to the Faculty of the University of Delaware in

partial fulfillment of the requirements for the degree of Doctor of Philosophy in

Computer & Information Sciences

February 2009

Copyright 2009 Preethi Natarajan

All Rights Reserved

LEVERAGING INNOVATIVE TRANSPORT LAYER SERVICES

FOR IMPROVED APPLICATION PERFORMANCE

by

Preethi Natarajan

Approved: __

 B. David Saunders, Ph.D.

 Chair of the Department of Computer and Information Sciences

Approved: __

 Tom Apple, Ph.D.

 Dean of the College of Arts and Sciences

Approved: __

 Debra Hess Norris, M.S.

 Vice Provost for Graduate and Professional Education

 I certify that I have read this dissertation and that in my opinion it meets

the academic and professional standard required by the University as a

dissertation for the degree of Doctor of Philosophy.

Signed: __

 Paul D. Amer, Ph. D.

 Professor in charge of dissertation

 I certify that I have read this dissertation and that in my opinion it meets

the academic and professional standard required by the University as a

dissertation for the degree of Doctor of Philosophy.

Signed: __

 Adarshpal S. Sethi, Ph.D.

 Member of dissertation committee

 I certify that I have read this dissertation and that in my opinion it meets

the academic and professional standard required by the University as a

dissertation for the degree of Doctor of Philosophy.

Signed: __

 Phillip T. Conrad, Ph. D.

 Member of dissertation committee

 I certify that I have read this dissertation and that in my opinion it meets

the academic and professional standard required by the University as a

dissertation for the degree of Doctor of Philosophy.

Signed: __

 Stephan Bohacek, Ph. D.

 Member of dissertation committee

 I certify that I have read this dissertation and that in my opinion it meets

the academic and professional standard required by the University as a

dissertation for the degree of Doctor of Philosophy.

Signed: __

 Randall R. Stewart

 Member of dissertation committee

 v

ACKNOWLEDGMENTS

I am most grateful to my advisor, Professor Paul Amer, for his

incomparable guidance and patience over the past years. He provided an apt

environment to learn and hone my skills, and always showed enthusiasm to help

improvise my ideas, paper drafts, and presentation slides. His “hands off” approach to

advising has been both a challenging and a rewarding experience. Thanks to Prof.

Amer, I would cherish my metamorphosis at PEL.

I am thankful to my committee members: Prof. Stephan Bohacek, Prof.

Phillip Conrad, Prof. Adarsh Sethi and Randall Stewart for reviewing and suggesting

improvements to this work. Special thanks to Randall Stewart and Prof. Phillip Conrad

for commuting significant distances to be on my committee. I am also thankful to Fred

Baker for his excellent advice during my internship at Cisco Systems and later.

I am fortunate to have worked with a set of brilliant people at PEL. I thank

Armando Caro and Janardhan Iyengar for their patient responses and insightful

discussions during their stay at PEL and in the subsequent years. I thank Jon Leighton

for his shrewd comments, draft reviews, and also for the interesting discussions on a

wide range of topics from gun control to non-profit organizations. Nasif Ekiz and

Ertugrul Yilmaz have made my PEL years more fun and memorable. I thank Nasif,

Ertugrul, and Joe Szymanski for the many times they rebooted machines and restarted

experiments on my behalf.

 vi

I would like to acknowledge the financial support that made this

dissertation possible. This research was sponsored in part by the U.S. Army Research

Laboratory, and by Cisco System’s University Research Program.

This dissertation would not have been possible without the support from

family and friends. My parents, Raju and Gowri, were steadfast on giving me good

education, even if it meant pushing their needs to the back burner. Raju never ceases to

be a source of inspiration, and made me realize the significance of planning ahead.

Gowri taught me the importance of hard work and commitment. I am eternally

indebted to them for their emotional support, and am looking forward to spending

more time with them in the coming years.

Finally, I thank my confidant and husband, Prasanna, for his rock solid

backing during my PhD years. He helped me stay effective, focused, and balanced in

many ways, including relocating his job, feeding me during deadlines, and forfeiting

even college football to chauffeur me to the lab ☺. I cannot even imagine pulling

through the last few years without him by my side.

 vii

TABLE OF CONTENTS

LIST OF FIGURES... xi

LIST OF TABLES .. xiv

ABSTRACT.. xv

Chapter

1. INTRODUCTION .. 1

1.1 Dissertation Scope ... 1

1.1.1 Issue (1): Web over Multistreamed Transport 1

1.1.2 Issue (2): Reneging and Selective Acks... 2

1.1.3 Issue (3): CMT during Path Failures ... 3

1.2 An SCTP Primer .. 4

1.2.1 SCTP Multistreaming ... 4

1.2.2 SCTP Multihoming... 5

1.2.3 Concurrent Multipath Transfer ... 6

1.3 Dissertation Overview.. 7

2. HTTP OVER MULTISREAMED TRANSPORT... 10

2.1 Introduction... 10

2.2 Head-of-line Blocking .. 11

2.2.1 Model for HTTP 1.1, and HOL Blocking.. 11

2.2.2 Browsing Conditions in Developing Regions 14

2.3 Design of HTTP over SCTP Streams ... 16

2.4 Implementation in the Apache Web Server ... 19

2.4.1 Apache Architecture... 19

 viii

2.4.2 Adapting Apache.. 20

2.5 Implementation in the Firefox Web Browser... 20

2.5.1 Adapting NSPR.. 21

2.5.2 Adapting the HTTP Module ... 22

2.6 Evaluation Preliminaries ... 28

2.6.1 Nature of Web Workloads .. 28

2.6.2 Experimental Setup .. 29

2.7 Single TCP Connection vs. Single Multistreamed SCTP Association 30

2.7.1 Experiment Parameters... 30

2.7.2 Results: Page Rendering Times... 31

2.7.3 Results: Response Times for Pipelined Objects 34

2.7.4 Concurrent Rendering and Progressive Images 38

2.7.5 SCTP Implementation and Concurrent Rendering 40

2.8 Multiple TCP Connections vs. Single Multistreamed SCTP Association 40

2.8.1 Background.. 41

2.8.2 In-house HTTP 1.1 Client... 42

2.8.3 Experiment Parameters... 44

2.8.4 Results: HTTP Throughput .. 46

2.9 Conclusion, Ongoing and Future Work .. 58

2.9.1 IETF Internet Draft .. 59

2.9.2 SCTP-enabled Apache and Firefox ... 59

2.9.3 Minimizing Resource Requirements .. 60

2.9.4 Impact on Developing Regions ... 61

2.10 Related Work... 62

3. NON-RENEGABLE SACKS (NR-SACKS) FOR SCTP................................ 64

3.1 Introduction... 64

3.2 Problem Description... 65

3.2.1 Background.. 66

3.2.2 Unordered Data Transfer using SACKs .. 67

 ix

3.2.3 Implications to CMT .. 70

3.3 Solution: Non-renegable Selective Acks ... 70

3.3.1 NR-SACK Chunk Details ... 71

3.3.2 Unordered Data Transfer using NR-SACKs.................................... 73

3.4 Evaluation Preliminaries ... 75

3.4.1 Simulation Setup .. 75

3.4.2 Metric: Efficient Retransmission Queue Utilization 79

3.4.3 Retransmission Queue Utilization during Loss Recovery................. 80

3.5 Results... 81

3.5.1 Retransmission Queue Utilization ... 82

3.5.2 Send Buffer Blocking in CMT .. 85

3.6 Conclusion, Ongoing and Future Work .. 91

3.6.1 IETF Internet Draft .. 92

3.6.2 NR-SACKs Implementation in FreeBSD... 92

4. CMT PERFORMANCE DURING FAILURE.. 94

4.1 Motivation ... 94

4.2 CMT Performance during Path Failure ... 95

4.2.1 Failure Detection in CMT ... 96

4.2.2 Receive Buffer Blocking in CMT.. 96

4.2.3 Rbuf Blocking during Path Failure .. 97

4.3 CMT with Potentially Failed Destination State ..102

4.3.1 Details of CMT-PF..102

4.3.2 CMT-PF Data Transfer during Failure ...104

4.4 CMT vs. CMT-PF Evaluations during Failure ...104

4.4.1 Evaluations during Permanent Failure ..106

4.4.2 Evaluations during Short-term Failure..109

4.5 CMT vs. CMT-PF Evaluations during Congestion.....................................111

 x

4.5.1 Simulation Setup ...114

4.5.2 Evaluations during Symmetric Loss Conditions..............................116

4.5.3 Evaluations during Asymmetric Loss Conditions............................120

4.6 Conclusion, Ongoing and Related Work..122

4.6.1 CMT-PF Implementation in FreeBSD..123

4.6.2 CMT-PF Applicability during Mobile Handovers126

5. SUMMARY AND CONCLUSIONS...127

5.1 Issue (1): Web over Multistreamed Transport..127

5.2 Issue (2): Reneging and Selective Acks ...128

5.3 Issue (3): CMT during Path Failures..128

REFERENCES..130

 xi

LIST OF FIGURES

Figure 1.1: Multistreamed Association between Hosts A and B................................... 5

Figure 1.2: Example Multihomed Topology.. 6

Figure 1.3: Dissertation Structure ... 8

Figure 2.1: Model for HTTP 1.1 Persistent, Pipelined Transfer 12

Figure 2.2: Internet Connectivity via VSAT Link .. 14

Figure 2.3: Design of HTTP over SCTP Streams.. 18

Figure 2.4: Modifications to Firefox HTTP Module .. 23

Figure 2.5: Emulation Setup ... 30

Figure 2.6: Page Rendering Times (N=10) .. 32

Figure 2.7: PPage Values for N=10 ... 37

Figure 2.8: Concurrent Rendering of Progressive Images (56Kbps.1080ms; 4.3% loss)

.. 39

Figure 2.9: HTTP Throughput (Object Size = 5K) .. 45

Figure 2.10: RTO Expirations on Data at Server (Object Size = 5K)......................... 49

Figure 2.11: Fast Retransmits during SACK Recovery (Object Size = 5K) 53

Figure 2.12: SYN or SYN-ACK Retransmissions (Object Size = 5K) 55

 xii

Figure 2.13: HTTP Throughput (Object Size = 10K) .. 56

Figure 2.14: RTO Expirations on Data at Server (1Mbps.200ms; Object Size = 10K) 57

Figure 3.1: Transport Layer Send Buffer... 66

Figure 3.2: Unordered SCTP Data Transfer using SACKs .. 68

Figure 3.3: NR-SACK Chunk for SCTP ... 72

Figure 3.4: Unordered SCTP Data Transfer using NR-SACKs.................................. 73

Figure 3.5: Topology for SCTP Experiments (Topology 1)....................................... 76

Figure 3.6: Topology for CMT Experiments (Topology 2).. 78

Figure 3.7: RtxQ Utilization during Loss Recovery in SCTP..................................... 82

Figure 3.8: RtxQ Utilization in SCTP.. 83

Figure 3.10: RtxQ Evolution in CMT-SACKs... 86

Figure 3.11: RtxQ Evolution in CMT-NR-SACKs .. 86

Figure 3.12: RtxQ Evolution in CMT-SACKs (~1.5 sec) .. 87

Figure 3.13: Mean Number of RTOs during Heavy Cross-traffic in CMT.................. 89

Figure 3.14: CMT-SACKs vs. CMT-NR-SACKs Throughput 90

Figure 3.15: CMT-SACKs vs. CMT-NR-SACKs Average RtxQ Size 90

Figure 4.1: Failure Detection in CMT ... 96

Figure 4.4: CMT-PF Reduces Rbuf Blocking during Failure 105

Figure 4.5: Topology for Failure Experiments... 106

 xiii

Figure 4.6: CMT vs. CMT-PF during Permanent Failure... 107

Figure 4.7: CMT vs. CMT-PF under Varying PMR Values..................................... 109

Figure 4.8: CMT vs. CMT-PF during Short-term Failure .. 110

Figure 4.9: CMT vs. CMT-PF under Varying Rbuf Sizes .. 111

Figure 4.10: CMT Data Transfer during no Rbuf Blocking...................................... 113

Figure 4.11: CMT-PF1 Data Transfer during no Rbuf Blocking 113

Figure 4.12: CMT-PF2 Data Transfer during no Rbuf Blocking 114

Figure 4.13: Topology for Non-failure Experiments.. 115

Figure 4.15: CMT vs. CMT-PF Goodput Ratios during Symmetric Loss and

Asymmetric RTT Conditions.. 118

Figure 4.16: CMT vs. CMT-PF Rbuf Blocking Durations 119

Figure 4.18: CMT vs. CMT-PF during Asymmetric Loss Conditions 121

Figure 4.19: Emulation Topology for CMT vs. CMT-PF Experiments 123

Figure 4.20: CMT vs. CMT-PF during Permanent Path Failure 124

Figure 4.21: CMT vs. CMT-PF during Symmetric Loss Conditions 125

 xiv

LIST OF TABLES

Table 4.1: CMT vs. CMT-PF Mean Consecutive Data Timeouts on Path 2 139

Table 4.2: CMT vs. CMT-PF Mean Number of Transmissions................................ 140

 xv

ABSTRACT

We investigate three issues related to the transport layer, and address these

issues using the innovative transport layer services offered by the Stream Control

Transmission Protocol (SCTP) [RFC4960].

In the first issue, we explore the benefits from SCTP’s multistreaming

service for HTTP-based applications. The current web transport – TCP, offers a

sequential bytestream, and in-order data delivery within the bytestream. Transferring

independent web objects over a single TCP connection results in head-of-line (HOL)

blocking, and worsens web response times. On the contrary, transferring these objects

over different SCTP streams eliminates inter-object HOL blocking. We propose a

design for HTTP over SCTP streams, and implement this design in the open source

Apache web server and Firefox browser. Using emulation, we show that persistent and

pipelined HTTP 1.1 transfers over a single multistreamed SCTP association improves

web response times when compared to similar transfers over a single TCP connection.

The difference in TCP vs. SCTP response times increases and is more visually

perceivable in high latency and lossy browsing condition, as found in the developing

world.

The current workaround to improve an end user’s perceived WWW

performance is to download an HTTP transfer over multiple TCP connections. While

we expect multiple TCP connections to improve HTTP throughput, emulation results

show that the competing and bursty nature of multiple TCP senders degrade HTTP

performance especially in end-to-end paths with low bandwidth last hops. In such

 xvi

browsing conditions, a single multistreamed SCTP association not only eliminates HOL

blocking, but also boosts throughput compared to multiple TCP connections.

In the second issue, we explore how SCTP’s (or TCP’s) SACK mechanism

degrades end-to-end performance when out-of-order data is non-rengable. Using

simulation, we show that SACKs result in inevitable send buffer wastage, which

increases as the frequency of loss events and loss recovery durations increase. We

introduce a fundamentally new ack mechanism, Non-Renegable Selective

Acknowledgments (NR-SACKs), for SCTP. An SCTP receiver uses NR-SACKs to

explicitly identify some or all out-of-order data as being non-renegable, allowing a

sender to free up send buffer sooner than if the data were only SACKed. Simulation

comparisons show that NR-SACKs enable more efficient utilization of a transport

sender’s memory, and also improve throughput in Concurrent Multipath Transfer

(CMT) [Iyengar 2006].

The third issue explores CMT performance during path failures. Using

simulation, we demonstrate how CMT suffers from significant “rbuf blocking” which

degrades performance during permanent and short-term path failures. To improve

performance, we introduce a new destination state called the “Potentially Failed” (PF)

state. CMT’s failure detection and (re)transmission policies are augmented to include

the PF state, and the modified CMT is called CMT-PF. Using simulation, we

demonstrate that CMT-PF outperforms CMT during failures − even under aggressive

failure detection thresholds. We also show that CMT-PF performs on par or better but

never worse than CMT during non-failure scenarios. In light of these findings, we

recommend CMT be replaced by CMT-PF in existing and future CMT implementations

and RFCs.

 1

Chapter 1

INTRODUCTION

1.1 Dissertation Scope

This dissertation investigates three issues related to the transport layer, and

addresses these issues to improve application performance. While these issues are

explored using the Stream Control Transmission Protocol (SCTP) [RFC4960],

different subsets of the proposed ideas and performance conclusions would be

applicable to any reliable transport that provides services similar to SCTP. The rest of

this section outlines the three issues.

1.1.1 Issue (1): Web over Multistreamed Transport

Transport layer multistreaming is the ability of a transport protocol to

support multiple streams, where each stream is a logical data flow with its own

sequencing space. Within each stream, the transport receiver delivers data in-sequence

to the application, without regard to the relative order of data arriving on other

streams. This property makes streams ideal for transferring independent web objects.

When each web object is transmitted on a different stream, the processing and display

of one object does not depend on the successful transfer and delivery of other object(s).

The current web transport – TCP, does not support transport layer

multistreaming. At the time TCP was designed, congestion and flow control were the

crucial transport layer services required by network applications. Later, when HTTP’s

 2

design required a reliable transport protocol, TCP was the only available option and

was ‘chosen’ for HTTP transfers. However, transferring independent web objects over

TCP results in sub-optimal response times, since, a TCP connection (i) offers a single

sequential bytestream to the application, and (ii) provides in-order delivery within the

bytestream ─ if a piece of one web object is lost in the network, successively

transmitted web objects will not be delivered to the client until the lost piece is

retransmitted and received.

Though it is believed that transport layer streams can improve web

response times [Gettys 2002], no experimentation or analysis exists to support this

hypothesis. This dissertation provides some of the analysis. When we started working

on this issue, SCTP was the only transport that supported multistreaming. Hence, this

dissertation considers SCTP streams for HTTP transfers. More recently, [Ford 2007]

proposed the Structured Stream Transport (SST) protocol that functions similar to

SCTP (discussed in Chapter 2).

1.1.2 Issue (2): Reneging and Selective Acks

Reliable transport protocols (such as TCP and SCTP) employ two kinds of

data acknowledgment mechanisms: (i) cumulative acks indicate data that has been

received in-sequence, and (ii) selective acks (SACKs) indicate data that has been

received out-of-order. While cum-acked data is a receiver’s responsibility, SACKed

data is not. SACKed out-of-order data is implicitly renegable; that is, a receiver may

SACK data and later discard it. The possibility of reneging, however remote, forces a

transport sender to maintain copies of SACKed data in the send buffer until they are

cum-acked.

 3

Data that has been delivered to the application, by definition, is non-

renegable by the transport receiver. Unlike TCP which never delivers out-of-order data

to the application, SCTP’s multistreaming and unordered data delivery services result

in out-of-order data being delivered to the application and thus becoming non-

renegable. Interestingly, TCP and SCTP implementations can be configured such that

the receiver is not allowed to and therefore never reneges on out-of-order data.

This dissertation investigates the negative effects of the SACK mechanism

when out-of-order data is non-renegable. While non-renegable out-of-order data is

possible in both TCP and SCTP, note that the possibility is innate to SCTP due to

SCTP’s out-of-order data delivery services. Therefore, our investigations focus on

SCTP.

1.1.3 Issue (3): CMT during Path Failures

A host is multihomed if it can be addressed by multiple IP addresses

[RFC1122], as is the case when the host has multiple network interfaces. Multiple

active interfaces also suggest the simultaneous existence of multiple paths between the

multihomed hosts. CMT [Iyengar 2006] exploits these multiple paths for simultaneous

transfer of new data between end hosts, and increases a network application’s

throughput. [Iyengar 2006] evaluated CMT over paths with asymmetric delay and loss

characteristics. But [Iyengar 2006] did not consider path failures, which is the scope of

our work.

Both TCP and UDP are unaware of multihoming. Hence, [Iyengar 2006]

used the multihomed-aware transport protocol – SCTP, to perform CMT at the

transport layer. Since this research is a continuation of [Iyengar 2006], our

investigations also use SCTP. Incidentally, SCTP also supports path failure detection.

 4

1.2 An SCTP Primer

SCTP was originally developed to carry telephony signaling messages over

IP networks. With continued work, SCTP evolved into a general purpose transport

protocol with advanced delivery options [RFC4960]. Similar to TCP, SCTP provides a

reliable, full-duplex, congestion and flow-controlled connection, called an association.

An SCTP packet, or more generally, protocol data unit (PDU), consists of one or more

concatenated building blocks called chunks: either control or data. For the purposes of

reliability and congestion control, each data chunk in an association is assigned a

unique Transmission Sequence Number (TSN). Since chunks are atomic, TSNs are

associated with chunks of data, as opposed to TCP which associates a sequence

number with each data octet in the bytestream.

Unlike TCP, SCTP offers innovative transport layer services such as

multihoming and multistreaming.

1.2.1 SCTP Multistreaming

An SCTP stream is a unidirectional data flow within an SCTP association.

Independent application objects can be transmitted in different streams to maintain their

logical separation during transfer and delivery. All SCTP streams within an association

are subject to shared congestion control, and thus SCTP’s multistreaming adheres to

TCP’s fairness principles.

Figure 1.1 illustrates a multistreamed association between hosts A and B.

In this example, host A uses three output streams to host B (numbered 0 to 2), and has

only one input stream from host B (numbered 0). The number of input and output

streams in an SCTP association is negotiated during association setup. SCTP uses

Stream Sequence Numbers (SSNs) to preserve data order within each stream.

 5

However, maintaining order of delivery between transport protocol data units (TPDUs)

transmitted on different streams is not a constraint. That is, data arriving in-order

within an SCTP stream is delivered to an application without regard to data arriving on

other streams.

Figure 1.1: Multistreamed Association between Hosts A and B

1.2.2 SCTP Multihoming

To benefit from network interface redundancy and provide end-to-end

network fault tolerance, SCTP supports multihoming at the transport layer. An SCTP

endpoint may bind to multiple IP addresses during association initialization. Referring

to Figure 1.2, let us contrast SCTP with TCP to further explain SCTP’s multihoming

feature. Four distinct TCP connections are possible between Hosts A and B: (A1,B1),

(A1,B2), (A2,B1), (A2,B2). SCTP, on the other hand, is not forced to choose a single IP

address on each host. Instead, a single SCTP association could consist of two sets of IP

addresses, which in our example would be: ({A1,A2}, {B1,B2}). Each endpoint chooses

a single destination address as a primary destination address, which is used for

 6

transmission of new data. Note that a single port number is used at each endpoint

regardless of the number of IP addresses.

Figure 1.2: Example Multihomed Topology

SCTP monitors the reachability of each destination address through two

mechanisms: acks of data and periodic probes known as heartbeats. Failure in reaching

the primary destination results in failover, where an SCTP endpoint dynamically

chooses an alternate destination to transmit the data, until the primary destination

becomes reachable again.

1.2.3 Concurrent Multipath Transfer

Multihoming among networked machines and devices is a technologically

feasible and increasingly economical proposition. Multihomed nodes may be

simultaneously connected through multiple end-to-end paths to increase resilience to

path failure. For instance, users may be simultaneously connected through dial-

up/broadband, or via multiple wireless technologies such as 802.11b and GPRS.

Concurrent Multipath Transfer (CMT) [Iyengar 2006] is an experimental extension to

SCTP that assumes multiple independent paths, and exploits these paths for

simultaneous transfer of new data between end hosts. A naïve version of CMT, where

a data sender simply transfers new data over multiple paths, increases data reordering

and adversely affects performance. [Iyengar 2006] investigates these negative effects

 7

and proposes algorithms and retransmission policies that improve application

throughput.

1.3 Dissertation Overview

A structural overview of the dissertation is shown in Figure 1.3. The three

issues are discussed in Chapters 2, 3 and 4, respectively. The references cited for each

chapter represent the author’s publications for each topic.

Chapter 2 presents our work on the first issue – web over multistreamed

SCTP. The chapter proposes a design for HTTP over SCTP streams, and discusses our

efforts to implement the design in the popular Apache web server and Firefox browser.

Using emulation, we show that persistent and pipelined HTTP 1.1 transfers over a

single multistreamed SCTP association improves web response times when compared

to similar transfers over a single TCP connection. The difference in TCP vs. SCTP

response times increases and is more visually perceivable in high latency and lossy

browsing condition, as found in the developing world.

The current workaround to improve an end user’s perceived WWW

performance is to download an HTTP transfer over multiple TCP connections. While

we expect multiple TCP connections to improve HTTP throughput, emulation results

show that the competing and bursty nature of multiple TCP senders degrade HTTP

performance especially in end-to-end paths with low bandwidth last hops. In such

browsing conditions, a single multistreamed SCTP association not only eliminates HOL

blocking, but also boosts throughput compared to multiple TCP connections. These

experiments were performed as part of this author’s summer 2008 internship at Cisco

Systems.

 8

Our body of work in HTTP over SCTP has triggered significant interest in

the area. The Protocol Engineering Lab has secured additional funding from Cisco

Systems to pursue some of the ongoing and future work discussed in Chapter 2.

Figure 1.3: Dissertation Structure

Chapter 3 discusses the second issue – how the existing SACK mechanism

degrades end-to-end performance when out-of-order data is non-rengable. Using

simulation, we show that SACKs result in inevitable send buffer wastage, which

increases as the frequency of loss events and loss recovery durations increase. We

introduce a fundamentally new ack mechanism, Non-Renegable Selective

Acknowledgments (NR-SACKs), for SCTP. An SCTP receiver uses NR-SACKs to

explicitly identify some or all out-of-order data as being non-renegable, allowing a

sender to free up send buffer sooner than if the data were only SACKed. Simulation

 9

comparisons show that NR-SACKs enable more efficient utilization of a transport

sender’s memory. Further investigations show that NR-SACKs also improve

throughput in CMT. The final section of Chapter 3 discusses ongoing activity,

including our efforts within the IETF to standardize NR-SACKs for SCTP, and at UD

to implement NR-SACKs in FreeBSD SCTP.

Chapter 4 presents our work on the third issue – CMT performance during

path failures. Using simulation, we demonstrate how CMT suffers from significant

“rbuf blocking” which degrades performance during permanent and short-term path

failures. To improve performance, we introduce a new destination state called the

“Potentially Failed” (PF) state. CMT’s failure detection and (re)transmission policies

are augmented to include the PF state, and the modified CMT is called CMT-PF. Using

simulation, we demonstrate that CMT-PF outperforms CMT during failures − even

under aggressive failure detection thresholds. We also show that CMT-PF performs on

par or better but never worse than CMT during non-failure scenarios. In light of these

findings, we recommend CMT be replaced by CMT-PF in existing and future CMT

implementations and RFCs. Chapter 4 finishes with a discussion of our on-going effort

to implement CMT-PF in FreeBSD SCTP.

Finally, Chapter 5 summarizes our contributions, and concludes this

dissertation.

 10

Chapter 2

HTTP OVER MULTISREAMED TRANSPORT

This chapter discusses the first problem – HTTP over SCTP streams.

Sections 2.1 and 2.2 explain the head-of-line (HOL) blocking problem and its negative

consequences in HTTP over TCP. Section 2.3 describes our design of HTTP over

multistreamed SCTP. Sections 2.4 and 2.5 discuss HTTP over SCTP implementation

specifics in the Apache web server and Firefox web browser, respectively. Section 2.6

explains evaluation preliminaries and Sections 2.7 and 2.8 present results. Section 2.9

concludes and presents ongoing and future work. Section 2.10 discusses related work.

2.1 Introduction

HTTP [RFC2616] requires a reliable transport protocol for end-to-end

communication. While historically TCP has been used for this purpose, HTTP does not

require TCP. A TCP connection offers a single sequential bytestream to a web server.

In the case of HTTP 1.1 with persistence and pipelining, the independent HTTP

responses are serialized and sent sequentially over a single connection (i.e., one TCP

bytestream). In addition, a TCP connection provides in-order delivery within the

bytestream ─ if a TPDU containing HTTP response i is lost in the network, successive

TPDUs containing HTTP responses i+n (n≥1) will not be delivered to the web client

until the lost TPDU is retransmitted and received. This situation, known as head-of-

line (HOL) blocking, occurs because TCP cannot logically separate independent HTTP

responses in its transport and delivery mechanisms.

 11

Transport layer multistreaming is the ability of a transport protocol to

support multiple streams, where each stream is a logical data flow with its own

sequencing space. Within each stream, the transport receiver delivers data in-sequence

to the application, without regard to the relative order of data arriving on other

streams. SCTP [RFC4960] is a standardized reliable transport protocol which provides

multistreaming. Independent HTTP responses transmitted over different streams of an

SCTP association can be delivered to the web browser without HOL blocking.

While most web users in developed nations experience excellent browsing

conditions, a large and growing portion of WWW users in developing nations

experience high end-to-end delays and loss rates. In such network conditions, persistent

and pipelined HTTP 1.1 transfers over TCP suffer from exacerbated HOL blocking,

resulting in poor browsing experience (discussed in the next section). In this work, we

evaluate multistreamed web transport’s ability to reduce HOL blocking and improve a

web user’s browsing experience in developing regions.

2.2 Head-of-line Blocking

This section introduces a model for persistent and pipelined HTTP 1.1

transfer to formulate head-of-line (HOL) blocking. This section also discusses various

factors that aggravate HOL blocking.

2.2.1 Model for HTTP 1.1, and HOL Blocking

We consider the following model to understand HOL blocking in an HTTP

1.1 persistent, pipelined transfer containing N embedded objects (Figure 2.1).

 12

Figure 2.1: Model for HTTP 1.1 Persistent, Pipelined Transfer

obji = object i, 0 ≤ i ≤ N. obj0 denotes index.html, obj1..N denote N

embedded objects in index.html.

reqi = time when the web client generates the HTTP GET request for obji,

and writes the request to the transport layer.

 13

obji
k
 = k

th
 piece of obji, 0 ≤ k ≤ M; obji

0
 denotes the response header, and

obji
1..M

 denote the different pieces of obji. Note that M depends on the size of obji. In

our emulations, we assume all objects are the same size (M).

rspi
k
 = time when transport delivers obji

k
 to the web client.

reni
k
 = time when web client renders obji

k
 on user’s monitor.

proci
k
 = (reni

k
 – rspi

k
) denotes the web client’s processing time (e.g.,

decoding, decompression, rendering) for obji
k
.

In HTTP over TCP, if obji
k
 is lost and recovered after x time units, pieces

of objj (j > i) could be HOL blocked for x time units. Assuming the web client is

currently rendering obji
k-1

, if (x < proci
k-1

), this instance of HOL blocking does not

affect response time for objj+1. Otherwise, the HOL blocking increases obji+1’s

response time by (x - proci
k-1

) time units [Diot 1999]. Thus, the duration of HOL

blocking depends on the loss recovery period, x.

In both TCP and SCTP, the duration of loss recovery based on

retransmission after 3 duplicate acks (fast retransmit) takes ~1 round-trip time (RTT),

and retransmission after timeout expiration (timeout retransmit) takes between the

initial retransmission timeout value (RTO) of 3 seconds and the maximum of (1RTT,

min RTO (1 second)) [RFC2988]. Note that the loss recovery period increases as the

path’s RTT increases. Also, the frequency of HOL blocking increases as the loss rate

on the end-to-end path increases. Intuitively, HOL blocking would be exacerbated over

a high RTT, lossy path.

Apart from end-to-end path characteristics, individual object sizes also

influence the degree of HOL blocking. As object size increases, the probability that a

 14

piece of the object is lost also increases. Hence, a large object in a pipelined transfer is

more likely to block delivery of subsequent objects than a smaller object would.

2.2.2 Browsing Conditions in Developing Regions

Unlike web users in developed nations, a large and growing portion of

WWW users in developing regions experience Internet delays ranging from 100’s of

milliseconds to a few seconds. Such high delays transpire from low bandwidth and/or

high propagation delay last hops, such as VSAT/3G/GPRS links.

Figure 2.2: Internet Connectivity via VSAT Link

Due to a multitude of factors, VSAT solutions (Figure 2.2) are the most

cost-effective and efficient method of providing Internet connectivity for commercial

customers, governments and consumers in developing nations and other areas where a

land-based infrastructure does not exist [WiderNet, CAfrica, Tarahaat, VSAT-

 15

systems]. The successful deployment of VSAT systems and services in more than 120

countries provides communities with access to information, knowledge, education and

business opportunities, and has been crucial in the communities’ socio-economic

development [Rahman 2002].

The propagation delay from ground station to geostationary satellite to

ground station is ~280ms [Gurtov 2004, RFC2760]. Therefore, the delay over a VSAT

link increases the RTT by ~560ms. The bandwidth-limited VSAT link is most likely the

bottleneck in the transmission path. Any resulting queuing and/or processing delays

within the satellite further increase the RTT. The delay caused by shared channel access

over a VSAT link can sometimes increase the RTT on the order of few seconds

[RFC3135].

GPRS and 3G links are characterized by variable and high latencies; the

RTTs in such networks can vary between a few hundreds of milliseconds to 1 second

[Chakravorty 2002, Chan 2002, RFC3481]. The proliferation of mobile phones in

developing regions, and the increasing use of web browsers and other web applications

on mobile phones is another example of web transfers over high latency paths. High

Speed Download Packet Access (HSDPA) technology is the successor to 3G, and is

emerging from research to deployment. HSDPA offers improved broadband Internet

access (~1Mbps per user per cell), and is targeted as a viable option for regular Internet

connectivity to both residential and mobile customers. However, channel access and/or

propagation delay on an HSDPA link adds ~80ms to the path RTT [Jurvansuu 2007],

which is significantly higher than current wired last hop delays.

In addition to propagation delays, sub-optimal traffic routing increases

latency of Internet traffic in developing nations [Baggaley 2007, Cottrell 2006]. For

 16

example, sub-optimal routing for intra-African traffic results in Internet traffic

traversing multiple VSAT links, and/or being routed through North America or

Europe, leading to RTTs as high as 2.5 seconds [PingER]. Furthermore, Internet traffic

to/from developing regions traverses through lossy paths, and experiences significant

end-to-end loss rates [Cottrell 2006, PingER].

Online U.S. shoppers consider 4 seconds as the maximum acceptable page

download time before potentially abandoning a retail site [Akamai 2006]. Response

times above 4 seconds interrupt the user experience, causing the user to leave the site

or system. While web users over high latency and lossy paths in developing nations

must be more tolerant to response times, these users will prefer to use a system that

provides better browsing experience.

2.3 Design of HTTP over SCTP Streams

Several experts agree that the best transport scheme for HTTP would be

one that supports datagrams, provides TCP compatible congestion control on the entire

datagram flow, and facilitates concurrency in GET requests [Gettys 2002]. When we

started this work, SCTP was the only available multistreamed transport, and hence

became our default choice [Natarajan 2006a]. Afterward, [Ford 2007] proposed a new

TCP-based multistreamed web transport. This new transport protocol is similar to

SCTP and is discussed in Section 2.10.

Apart from multistreaming, SCTP offers other features that are well suited

for a web transport. Unlike TCP, SCTP’s state transition does not require a

TIME_WAIT state [RFC793], since the Initiation and Verification tags help to

associate SCTP PDUs with the corresponding SCTP associations [RFC4960]. Note

that TCP’s TIME_WAIT state increases memory and processing overload at a busy

 17

web server [Faber 1999]. Also, SCTP’s COOKIE mechanism prevents SYN attacks,

and SCTP multihoming provides fault-tolerance and the possibility of multipath transfer

[Natarajan 2006a].

Two guidelines governed our HTTP over SCTP design:

• Make no changes to the existing HTTP specification, to reduce deployment

concerns.

• Minimize SCTP-related state information at the server so that SCTP

multistreaming does not further contribute to the server being a performance

bottleneck.

The independent nature of HTTP responses is most exploited by

downloading them on different SCTP streams. Accordingly, the important design

question to address was: which end (client or server) should decide the SCTP stream to

be used for an HTTP response? Having the web server manage the SCTP stream

scheduling is undesirable, as it involves maintaining additional state information at the

server. Further, the client is better positioned to make scheduling decisions that rely on

user perception and the operating environment. We therefore concluded that the client

should decide object scheduling on streams.

We considered two designs by which the client conveys the selected SCTP

stream to the web server: (1) the client specifies an SCTP stream number in the HTTP

GET request and the server sends the corresponding response on this stream, or (2) the

server transmits the HTTP response on the same stream number on which the

corresponding HTTP request was received. Design (1) requires just one incoming

stream and several outgoing streams at the server, but requires modifications to the

HTTP GET request specification. Design (2) requires the server to maintain as many

 18

incoming streams as there are outgoing streams, increasing the memory overhead at the

server. Every inbound or outbound stream requires additional memory in the SCTP

Protocol Control Block (PCB), and the amount of memory required varies with the

SCTP implementation. The reference SCTP implementation on FreeBSD (version 6.1),

requires 25 bytes for every inbound stream and 33 bytes for every outbound stream

[FreeBSD]. We considered this memory overhead per stream to be insignificant

compared to the effort to modify the HTTP specification, and chose option (2).

Figure 2.3: Design of HTTP over SCTP Streams

Figure 2.3 gives an overview of our HTTP over SCTP design. A web

client and server first negotiate the number of SCTP streams to use for the web

transfer. During association establishment, the web client requests m inbound and m

outbound streams. The INIT-ACK from the server carries the web server’s offer on the

number of inbound/outbound streams (n). After association establishment, the number

of inbound and number of outbound streams available for HTTP transactions, s =

 19

MIN(m,n). Note that an SCTP end point can initially offer a lower number of streams

and later increase the offer using the streams reset functionality [Stewart 2008a].

When a web server receives a request on an inbound SCTP stream a (a<

s), the server sends the corresponding response on the outbound stream a. If s <

number of pipelined requests, the web client must schedule the requests over the

available SCTP streams using a scheduling policy, such as round-robin.

2.4 Implementation in the Apache Web Server

We chose the popular open source Apache web server (version 2.0.55)

[Apache] for our task. In this section, we give an overview of Apache’s architecture,

and our adaptations [Natarajan 2006a].

2.4.1 Apache Architecture

The Apache HTTP server (httpd) has a modular architecture. The main

functions such as server initialization, HTTP request parsing, and memory management

are handled by the core module. Accessory functions such as request redirection,

authentication, dynamic content handling are performed by separate modules. The core

module relies on Apache Portable Runtime (APR), a platform independent API, for

network, memory and other system dependent functions.

Apache uses filters ─ functions through which different modules process

an incoming HTTP request (input filters) or an outgoing HTTP response (output

filters). The core module’s input filter calls APR’s read API to read HTTP requests.

During request processing, all state information related to the request are maintained in

a request structure. Once the response is generated, the core module’s output filter

calls APR’s send API for transmitting the response.

 20

Apache has a set of multi-processing architectures that can be enabled at

compile time. We considered the following architectures: (1) prefork ─ non-threaded

pre-forking server and (2) worker ─ hybrid multi-threaded multi-processing server.

With prefork, a configurable number of processes are forked during server

initialization, and are setup to listen for connections from clients. With worker, a

configurable number of server threads and a listener thread are created per process.

The listener thread listens for incoming connections from clients, and passes the

connection to a server thread for further processing. In both architectures, the server

processes or threads handle requests sequentially from a transport connection.

2.4.2 Adapting Apache

Apache’s core module and the APR were modified to support SCTP

streams. APR’s read and send API implementations were modified to read and transmit

data on a specific SCTP stream. Each time APR reads an HTTP request, the SCTP

input stream number is stored in the corresponding request structure, so that the

response can be written on the equivalent SCTP output stream.

Apache uses directives that allow a web administrator to configure various

parameters during server initialization. The syntax of the Listen directive was modified

so that a web admin can configure the transport protocol (TCP or SCTP) during

initialization.

2.5 Implementation in the Firefox Web Browser

We chose the Firefox (version 1.6a1) browser since it is a widely used

open-source browser. Firefox belongs to the Mozilla suite of applications which have a

layered architecture [Mozilla]. Mozilla applications such as Firefox and Thunderbird

 21

(mail/news reader), belong to the top layer, and rely on the services layer for access to

network and file I/O. The services layer uses platform independent APIs offered by the

Netscape Portable Runtime (NSPR) library.

Firefox has a multi-threaded architecture. To render a web page, the HTTP

module in the services layer parses the URL, uses NSPR to open a TCP connection to

the appropriate web server, and downloads the web page. While parsing the web page,

the HTTP module opens additional TCP connections as required, and pipelines HTTP

GET requests for the embedded objects.

Adapting Firefox to work over SCTP streams involved modifications to

both NSPR and the HTTP module.

2.5.1 Adapting NSPR

We first modified NSPR to create and setup an SCTP socket instead of a

TCP socket. During association establishment, NSPR requests a specific number of

SCTP input and output streams. Note that this request can be negotiated down by the

server. Therefore, after association establishment, NSPR queries SCTP for the number

of input/output streams available for HTTP transactions. Also, NSPR was modified to

include new SCTP related send and receive methods.

In the current implementation, HTTP request scheduling over SCTP

streams is handled within NSPR. Since the HTTP module is more knowledgeable about

the web page contents and user preferences, future implementations could consider

HTTP request scheduling at the HTTP module.

In current HTTP request scheduling, the requests are transmitted in a

round-robin fashion over SCTP streams. Other scheduling policies can also be

considered. For example, in a lossy network environment, such as wide area wireless

 22

connectivity through GPRS, a better scheduling policy might be ‘smallest pending

object first’ where the next GET request goes on the SCTP stream that has the smallest

sum of object sizes pending transfer. Such a policy reduces the probability of HOL

blocking among the responses downloaded on the same SCTP stream.

2.5.2 Adapting the HTTP Module

Modifying the HTTP module turned out to be more challenging than

expected, primarily due to Firefox’s assumptions about in-order data delivery within a

transport connection. Within the HTTP module, an nsHttpPipeline object is responsible

for sending pipelined requests and reading pipelined responses. As shown in Figure 2.4,

nsHttpPipeline creates an nsHttpTransaction object for each request. An

nsHttpTransaction object is associated with an nsHttpConnection object, which reads

the HTTP responses from NSPR. Since pipelined responses are read back-to-back,

nsHttpPipeline uses the response length information (available in the response header)

to distinguish the end of current response from the beginning of next response. In

effect, an nsHttpPipeline object assumes the following about a transport layer

connection:

1. All pieces of one response will be delivered before any piece of another

response is delivered. That is, pieces of responses will not be delivered in an

interspersed fashion.

2. Responses are delivered in the same sequence in which the pipelined

requests were transmitted.

These assumptions hold when the underlying transport is TCP – a reliable

protocol delivering in-order data to nsHttpPipeline. However, various factors result in

out-of-order response delivery in HTTP over SCTP streams.

 23

Figure 2.4: Modifications to Firefox HTTP Module

2.5.2.1 Factors Affecting Response Delivery in HTTP over SCTP streams

As mentioned in Section 2.4.1, the current Apache implementation reads

and processes requests in succession (one after the other) within a transport

connection. Therefore, Apache generates responses in the same sequence that it reads

requests, i.e., Apache’s response sequence (server_response) equals its request

sequence (server_request). Also, for the following discussions, let the HTTP module’s

transmitted request sequence be client_request, and the delivered response sequence be

client_response.

 24

2.5.2.1.1 Non HOL Blocked Requests

Loss of HTTP requests transmitted on stream i, does not prevent delivery

of successfully received requests on stream j. During request losses, server_request will

be different from client_request. Therefore, the generated server_response, and

client_response will be different from client_request, violating nHttpPipeline’s

assumption (2).

2.5.2.1.2 Non HOL Blocked Responses

At Firefox’s SCTP layer, the loss of a response on stream i, does not

prevent delivery of successfully received responses on stream j. During response losses,

client_response can be different from client_request, also violating nsHttpPipeline’s

assumption (2).

2.5.2.1.3 Interaction between Apache and FreeBSD SCTP

SCTP preserves message boundaries. At Apache, data in each write()

translates to an application message, and this message is delivered in its entirety to the

receiving application. SCTP fragments a message into Path MTU (PMTU) sized

TPDUs before transmission. SCTP’s fragmentation and reassembly process is designed

such that all message fragments must be assigned consecutive Transmission Sequence

Numbers (TSNs). Therefore, all message fragments must be transmitted sequentially.

The receiving SCTP uses the (i) (B)eginning fragment bit, (ii) sequential TSNs, and (iii)

(E)nding fragment bit for correct reassembly [RFC4960]. In effect, SCTP’s

fragmentation and reassembly creates dependencies in message transmission. A

fragment of message i+1 cannot be transmitted until all fragments of message i have

been transmitted.

 25

Apache’s request processing rate is often higher than SCTP’s data

transmission rate, especially when SCTP’s data transmission is limited by low

bandwidth/high latency links and/or packet losses. In such scenarios, as long as the

SCTP socket’s send buffer allows, Apache writes multiple HTTP responses on the

socket, and these responses await transmission at the SCTP send buffer. If Apache

writes a 100K response on stream i followed by a 1K response on stream j, SCTP will

not transmit the 1K response until all fragments of the 100K response are successfully

transmitted. Note that the transmission time of the 100K response increases in low

bandwidth/high latency/high loss scenarios. Since the 100K and 1K responses are self-

regulating, it is highly desirable that browser’s rendering of the 1K response does not

depend on transmission/arrival/rendering of the 100K response.

To overcome this issue, we relocated message fragmentation from the

SCTP layer to HTTP response fragmentation at Apache. Apache writes an HTTP

response as multiple application messages, such that, each message at the SCTP layer

results in a PMTU-sized TPDU, and is not fragmented further by SCTP. An application

can use either the SCTP_PEER_ADDR or the SCTP_STATUS socket options to get

the association’s PMTU [Stewart 2008b].

HTTP response fragmentation results in the following interesting

interaction between Apache and FreeBSD SCTP. The FreeBSD SCTP maintains a

queue of application messages for each outbound stream in an association. Note that

during HTTP response fragmentation, the messages in these queues translate to a piece

of an HTTP response. The FreeBSD SCTP transmits messages from the stream queues

in a round-robin fashion. If an SCTP association has m outbound streams, once an

application message from stream i’s queue is transmitted, a message from stream (i+1

 26

mod m)’s queue is considered for transmission. When Apache’s request processing rate

is higher than SCTP’s transmission rate, multiple SCTP stream queues contain

messages (pieces of HTTP responses) awaiting transmission. Due to FreeBSD SCTP’s

round-robin transmission, the HTTP response pieces are transmitted in an interspersed

fashion, and arrive in the same fashion at Firefox’s SCTP layer. In fact, even under no

loss conditions, delivery of a piece of response i can be followed by a piece of response

j, violating nsHttpPipeline’s assumption (1).

2.5.2.1.4 Web Server Architecture

Currently, Apache’s multi-threaded architecture dedicates a server thread

to each transport connection, and the server thread services requests in succession. We

envision a multi-threaded server architecture, where multiple server threads

concurrently serve requests on a transport connection [Natarajan 2006a]. To

understand our motivation for the new architecture, consider the following two cases:

(i) current architecture, where a single server thread serves responses 1 and 2 in

succession, and (ii) new architecture, where two server threads concurrently serve

responses 1 and 2. Note that the server communicates over a single SCTP association

in both cases. However, the concurrency in case (ii) causes the initial pieces of both

responses to be transmitted sooner (and rendered sooner by the client) than case (i).

We call case (ii) object interleaving and discuss its advantages in [Natarajan 2006a].

Now, assume that the web server does HTTP response fragmentation and

both responses are transmitted on the same SCTP stream. In case (i), the server writes

all pieces of response 1 on the stream before writing response 2. Therefore, all pieces

of response 1 are transmitted (and delivered) to Firefox before any piece of response 2.

However, in case (ii), the two server threads write concurrently over the same SCTP

 27

stream. Therefore, the response pieces can be transmitted and delivered in an

interspersed fashion at Firefox, violating nsHttpPipeline’s assumption (1).

2.5.2.2 Modifications to the HTTP Module

Based on our experience with Apache and Firefox, we feel that adapting

Apache and Firefox to handle object interleaving is a complex task, and it might be

easier to develop a new server and browser from the scratch. Nevertheless, we reiterate

that a multistreamed web transport opens up new possibilities such as object

interleaving, which can further improve HTTP performance.

In our Firefox adaptation over SCTP, nsHttpPipeline’s assumptions on

response delivery are similar as before, but, this time the assumptions are w.r.t. an

SCTP stream instead of a transport connection. nsHttpPipeline assumes that, within an

SCTP stream, (1) all pieces of one response will be delivered in-order, before any piece

of another response is delivered, and (2) responses are delivered in the same sequence

in which the pipelined requests were transmitted.

The HTTP module was modified as follows (Figure 2.4):

• nsHttpConnection maintains a table data structure as shown in Figure 2.4. Each

entry in the table is a set of {SCTP stream number, queue of requests

(nsHttpTransactions objects) transmitted over the stream}.

• After transmitting a request over an SCTP output stream, nsHttpConnection

appends the corresponding nsHttpTransaction object to the tail of the stream’s

queue.

• Whenever data can be read from the SCTP socket, NSPR first notifies

nsHttpConnection about the SCTP input stream number. NSPR uses the

 28

MSG_PEEK flag and/or SCTP’s extended receive information structure

[Stewart 2008b] to gather this information.

• Once nsHttpConnection knows the SCTP input stream, nsHttpConnection

associates the received piece of response to the nsHttpTransaction at the head

of the stream’s queue.

• When the nsHttpTransaction object is read completely, nsHttpConnection

deletes this transaction from the head of the stream queue, so that the next

piece of response on the stream is delivered to the new head of queue.

2.6 Evaluation Preliminaries

The SCTP-enabled Apache and Firefox were used to evaluate

improvements to web users’ browsing experience in Internet conditions found in the

developing world. This section discusses evaluation preliminaries such as the nature of

web workloads and experimental setup.

2.6.1 Nature of Web Workloads

Several web characterization studies have identified certain key properties

of the WWW. These properties have led to a better understanding of WWW’s nature,

and the design of more efficient algorithms for improved WWW performance.

Using server logs from six different web sites, Arlitt et. al. identified

several key web server workload attributes that were common across all six servers

[Arlitt 1997]. Their work also predicted that these attributes would likely “persist over

time”. Of these attributes, the following are most relevant to our study: (i) both file size

and transferred file size distributions are heavy-tailed (Pareto), and (ii) the median

transferred file size is small (≤5KB). A similar study conducted several years later

 29

confirmed that the above two attributes remained unchanged over time [Williams

2005]. Also [Williams 2005] found that the mean transferred file size had slightly

increased over the years, due to an increase in the size of a few large files. Other

studies such as [Houtzager 2003, Williamson 2003] agree on [Arlitt 1997]’s findings

regarding transferred file size distribution and median transferred file size.

These measurement studies lead to a consensus that unlike bulk file or

multimedia transfers, HTTP transfers are short-lived flows, where, a typical web object

consists of a small number of TPDUs and can be transferred in a few RTTs.

2.6.2 Experimental Setup

The emulations were performed on the FreeBSD platform which had the

kernel-space reference SCTP implementation. The experimental setup, shown in Figure

2.5 uses three nodes running FreeBSD 6.1: (i) a node running the in-house TCP or

SCTP HTTP 1.1 client, (ii) a server running Apache, and (iii) a node running

Dummynet [Rizzo 1997] connecting the server and client. Dummynet’s traffic shaper

configures a full-duplex link between client and server, with a queue size of 50 packets

in each direction. Both forward and reverse paths experience Bernoulli losses with loss

rates varying from 0%-10% ─ typical of the end-to-end loss rates observed in

developing regions [Cottrell 2006, PingER].

FreeBSD TCP’s default initial cwnd is 4MSS [FreeBSD, RFC3390]. The

recommended initial cwnd in SCTP is 4MSS as well. FreeBSD TCP implements packet

counting, while SCTP implements Appropriate Byte Counting (ABC) with L=1

[RFC4960, RFC3465]. Additionally, FreeBSD TCP implements Limited Transmit

[RFC3042], which enhances loss recoveries for flows with small cwnds. Both

transports implement SACKs and delayed acks.

 30

Figure 2.5: Emulation Setup

2.7 Single TCP Connection vs. Single Multistreamed SCTP Association

This section compares an HTTP 1.1 persistent, pipelined transfer over a

single TCP connection vs. over a single multistreamed SCTP association. The impact

of multiple transport connections is discussed in Section 2.8.

2.7.1 Experiment Parameters

Every pipelined transfer comprises of an index.html with N equal sized

embedded objects of following sizes: 3KB, 5KB, 10KB, and 15KB. The number of

embedded objects (N) varies: 5, 10, and 15. We believe these values reflect current

trends in web pages. For example, the number of embedded images in web pages of

online services such as maps.google.com and flickr.com vary from 8 to 20. At both

client and server nodes, we assume that the transport layer send and receive buffers are

not the bottlenecks; they are large enough to hold all data of pipelined transfer.

 31

The following high latency browsing environments are considered for

evaluation [Cottrell 2006, PingER]. Results for other high latency environments such

as High Speed Download Packet Access (HSDPA) links are available in [Natarajan

2007].

• 1Mbps link with 350ms RTT (1Mbps.350ms): User in South Asia, accessing a

web server in North America over a land line.

• 1Mbps link with 850ms RTT (1Mbps.850ms): User in Africa, sharing a VSAT

link to access a web server in North America.

• 1Mbps link with 1100ms RTT (1Mbps.1100ms): User in Africa, sharing a

VSAT link to access a web server within Africa. The web traffic traverses at

least 2 VSAT links; the RTT over each VSAT link is ~550ms.

2.7.2 Results: Page Rendering Times

A web page is considered completely downloaded when Firefox receives

the last piece of pipelined transfer from the transport layer (Figure 2.1). The web page

is completely rendered when Firefox processes and draws this last piece on the user’s

screen. In HTTP over TCP (HTTP/TCP), the last piece of data always belongs to the

last pipelined object, whereas in HTTP over SCTP streams (HTTP/SCTP), the last

piece of data could belong to any pipelined object. In both schemes, rendering the last

piece of an object depends on the throughput of the underlying transport connection.

Using terminology defined in Section 2.2 (see Figure 2.1), page rendering

time is defined as the time from when the browser sends the first GET request

(index.html), to the time when the last piece of the web page is painted on the screen.

Page rendering time (T) =)(0reqrenM

N
−

 32

(a): 1Mbps.350ms

(b): 1Mbps.850ms

(c): 1Mbps.1100ms

Figure 2.6: Page Rendering Times (N=10)

 33

Our initial hypotheses about SCTP and TCP’s page rendering times were

as follows:

• Both SCTP and TCP have similar values for their initial cwnd, and employ

delayed acks with a 200ms timer. Therefore, we expected both TCP and

SCTP’s page rendering times to be identical when no losses occur.

• Though SCTP and TCP congestion control are similar, minor differences enable

better loss recovery and increased throughput in SCTP [Alamgir 2002]. Unlike

TCP whose SACK info is limited by the space available for TCP options, the

size of SCTP’s SACK chunk is larger (only limited by the path MTU), and

therefore at times contains more information about lost TPDUs than TCP’s

SACK. Also, FreeBSD’s SCTP stack implements the Multiple Fast Retransmit

algorithm (MFR), which reduces the number of timeout recoveries at the sender

[Caro 2006]. Therefore, as loss rates increase, we expected the enhanced loss

recovery features to help SCTP outperform TCP.

Figure 2.6 shows the page rendering times for N=10, averaged over 50

runs with 95% confidence. Similar results for N=5 and 15 can be found in [Natarajan

2007]. Interestingly, in all 3 graphs, the results for the no loss case contradict (i), and

TCP’s rendering times are slightly (but not perceivably) better than SCTP’s. Detailed

investigation revealed the following difference between the FreeBSD 6.1 SCTP and

TCP implementations. SCTP implements Appropriate Byte Counting (ABC) with L=1.

During slow start, a sender increments cwnd by 1MSS bytes for each delayed ack. The

TCP stack does packet counting which results in a more aggressive cwnd increase

when the client acks TCP PDUs smaller than 1MSS (such as HTTP response headers).

 34

We expect SCTP to perform similar to TCP when the TCP stack implements ABC with

L=1.

As the loss rate increases, SCTP’s enhanced loss recovery offsets the

difference in SCTP vs. TCP cwnd evolution. SCTP begins to perform better; the

difference even more pronounced for transfers containing larger objects (10K and

15K). For the 1Mbps.1100ms case, the difference between SCTP and TCP page

rendering times for 10K and 15K transfers is ~6 seconds at 3% loss, and as high as ~15

seconds at 10% loss. For the same types of transfers, the difference is ~8-10 seconds

for 10% loss in 1Mbps.350ms scenario. Similar trends are observed in results for N=5

and 15 as well [Natarajan 2007].

To summarize, SCTP’s page rendering times are comparable to TCP’s

during no loss, and SCTP’s enhanced loss recovery enables faster page rendering times

during lossy conditions. More importantly, the absolute page rendering time difference

increases, and is more visually perceivable as the end-to-end delay, loss rate, and

pipelined transfer size increase.

2.7.3 Results: Response Times for Pipelined Objects

Persistent and pipelined HTTP 1.1 transfers over a single TCP connection

results in sequential rendering at Firefox � even if Firefox’s TCP layer has downloaded

all objects in the pipelined transfer, these independent objects are delivered to Firefox

only in a sequential manner, such that Firefox processes and renders at most one object

at a time. Packet losses cause HOL blocking and further delay the sequential delivery of

independent objects. On the other hand, SCTP streams provide concurrency in the

transfer and delivery of independent objects � an SCTP receiver can deliver object i+1

to Firefox even before object i is completely delivered as long as these two objects are

 35

transmitted over different SCTP streams. This concurrency enables Firefox to render

multiple objects in parallel, a.k.a., concurrent rendering.

While browsers have to open multiple TCP connections to achieve

concurrent rendering, concurrent rendering is innate to a multistreamed web transport.

The browser tunes the concurrency level by simply adjusting the number of streams. An

SCTP association with one stream provides the same concurrency as a single TCP

connection, and results in sequential rendering. An SCTP association with two streams

provides twice as much concurrency as sequential rendering. A multistreamed

association provides maximum concurrency for a pipelined transfer when the number

of streams equals the number of objects in the transfer. Note that concurrent rendering

remains unaffected by a further increase in concurrency.

In our initial investigations, we discovered that a multistreamed web

transport enables concurrent rendering even during no losses. Irrespective of packet

losses, the interaction between Apache’s HTTP response fragmentation and FreeBSD

SCTP (Section 2.5.2.1.3) causes Firefox’s SCTP layer to receive pieces of multiple

objects in an interleaved fashion. The SCTP receiver delivers these pieces of multiple

objects in an interspersed fashion to Firefox, resulting in concurrent rendering even

during no losses. During packet losses, SCTP streams eliminate or reduce HOL

blocking, thus increasing the degree of concurrent rendering. Concurrent rendering is

demonstrated in a number of movies available online at [Movies].

To reiterate, the fundamental difference between sequential and concurrent

rendering is that in sequential rendering, a piece of object i is rendered only after

objects 1 through i-1 are completely rendered, whereas in concurrent rendering,

pipelined objects are displayed independent of each other. We use the following metric

 36

to capture the concurrency and progression in the appearance of all pipelined objects

on the user’s screen. Recall terminology from Section 2.2,

req0 = time when browser sends HTTP GET request for

index.html.

(Preni – req0) = time elapsed from the beginning of the page download

(req0) to the earliest time when at least P% of object i is rendered.

PPage is defined as the time elapsed from the beginning of page download

to the earliest time when at least P% of all pipelined objects are rendered on the screen,

i.e., PPage = MAX [(Preni – req0); 1≤ i≤ N]

Figure 2.7 plots the 25%Page, 50%Page, 75%Page and 100%Page values for

N=10, averaged over 50 runs. Transfers over SCTP consider maximum concurrency,

i.e., enough SCTP streams are opened so that every pipelined object is downloaded on

a different stream. Results for N=5 and 15 can be found in [Natarajan 2007]. As

expected, 100%Page values for both concurrent (solid points connected by dotted lines)

and sequential (hollow points connected by dashed lines) rendering equal the

corresponding transport’s page rendering times (T). Also, the PPage times in

concurrent rendering are spread out vs. clustered together in sequential rendering.

Concurrent rendering’s dispersion in PPage values signifies the parallelism in the

appearance of all 10 pipelined objects.

 37

(a): 1Mbps.350ms

(b): 1Mbps.850ms

(c): 1Mbps.1100ms

Figure 2.7: PPage Values for N=10

 38

Both sequential and concurrent rendering schemes’ values are comparable

at 0% loss. As loss rate increases, the difference in two rendering schemes’ PPage

values increase. In addition, we find that concurrent rendering displays 25%-50% of all

pipelined objects much sooner (relative difference ~4 – 2 times for 15K, 10K and 5K

objects) than sequential rendering. This result holds true for N=5 and 15 as well. In the

following subsection, we demonstrate how this result can be leveraged to significantly

improve response times for objects such as progressive images, whose initial 25%-50%

contain sufficient information for the human eye to perceive the object contents.

2.7.4 Concurrent Rendering and Progressive Images

Progressive images (e.g., JPEG, PNG) are coded such that the initial

TPDUs approximate the entire image, and successive TPDUs gradually improve the

image’s quality/resolution. Via simple experiments, we demonstrate how concurrent

rendering considerably improves user perception of progressive images. The example

web page consists of an initial 1K image of our lab’s logo, followed by 10 progressive

JPEG images of world leaders, each of size 10K.

Both Firefox over TCP (sequential) and Firefox over SCTP (concurrent)

download the example web page over a 56Kbps link with 1080ms RTT. The full page

downloads were captured as movies, and are available online at [Movies]. In the

snapshots shown in Figure 2.8, both sequential (left) and concurrent (right) runs

experienced ~4.3% loss. Both rendering schemes start the download at t=0s. At t=6s

(Figure 2.8a), the sequential scheme rendered a complete image followed by a good

quality 2nd image, and the concurrent scheme displayed a complete image on the

browser window.

 39

(a): t=6 seconds

(b): t=7 seconds

(c): t=12 seconds

Figure 2.8: Concurrent Rendering of Progressive Images (56Kbps.1080ms; 4.3% loss)

At t=7s (Figure 2.8b), sequential rendering displays 2 complete images, vs.

concurrent rendering’s 7 partial images, at least 4 of which are of good quality. At

 40

t=12s (Figure 2.8c), sequential rendering displays 4 complete images, whereas

concurrent rendering presents the user with all 10 images of good quality. With

concurrent rendering, the complete page is rendered only ~t=23s. From t=12s to 23s,

all 10 images get refined, but the value added by the refinement is negligible to the

human eye. Therefore, the user “perceives” all images to be complete by t=12s, while

the page rendering time is actually t=23s. In the sequential run, all 10 images do not

appear on the screen until t=26s.

2.7.5 SCTP Implementation and Concurrent Rendering

As mentioned earlier, our primary reason for choosing the FreeBSD

platform is the availability of the SCTP reference implementation on FreeBSD. Section

2.5.2.1.3 discussed the unique interaction between Apache server and FreeBSD

SCTP’s round-robin scheduling of application messages over stream send queues. This

interaction enabled concurrent rendering even during no packet losses, and increased

the degree of concurrent rendering during lossy conditions. Consequently, absence of

this interaction may lower the degree of concurrent rendering. For example, on

platforms where SCTP implementations do FIFO or some other scheduling of

application messages, concurrent rendering’s PPage values may not be as dispersed as

shown in Figure 2.7, but will be more dispersed than the corresponding values for

sequential rendering.

2.8 Multiple TCP Connections vs. Single Multistreamed SCTP Association

The current workaround to reduce HOL blocking and improve an end

user’s perceived WWW performance is to download an HTTP transfer over multiple

TCP connections. This section compares the two approaches proposed to improve

 41

HTTP performance � multiple TCP connections vs. a single multistreamed SCTP

association. Similar to Section 2.7, investigations here focus on browsing conditions

most likely to exist in the developing world.

2.8.1 Background

In congestion-controlled transports such as TCP and SCTP, the amount of

outstanding (unacknowledged) data is limited by the data sender’s cwnd. Immediately

after connection establishment, the sender can transmit up to initial cwnd bytes of

application data [RFC3390, RFC4960]. Until congestion detection, both TCP and

SCTP employ the slow start algorithm that doubles the cwnd every RTT.

Consequently, the higher the initial cwnd, the faster the cwnd growth and more data

gets transmitted every RTT. When an application employs N TCP connections, during

the slow start phase, the connections’ aggregate initial cwnd and their cwnd growth

increases N-fold. Therefore, until congestion detection, an application employing N

TCP connections can, in theory, experience up to N times more throughput than an

application using a single TCP connection.

When a TCP or SCTP sender detects packet loss, the sender halves the

cwnd, and enters the congestion avoidance phase [Jacobson 1988, RFC4960]. If an

application employing N TCP connections experiences congestion on the transmission

path, not all of the connections may suffer loss. If M of the N open TCP connections

suffer loss, the multiplicative decrease factor for the connection aggregate is (1 - M/2N)

[Balakrishnan 1998a]. If this decrease factor is greater than one-half (which is the case

unless all N connections experience loss, i.e., M<N), the connections’ aggregate cwnd

and throughput increase after congestion detection is more than N times that of a single

TCP connection.

 42

On the whole, an application employing multiple TCP senders exhibits an

aggressive sending rate, and consumes a higher share of the bottleneck bandwidth than

an application using fewer or single TCP connection(s) [Mahdavi 1997, Balakrishnan

1998a]. Multiple TCP connections’ aggressive sending behavior has been shown to

increase throughput for various applications so far. [Tullimas 2008] employs multiple

TCP connections to maintain the data streaming rate in multimedia applications.

[Sivakumar 2000] proposes the PSockets library, which employs parallel TCP

connections to increase throughput for data intensive computing applications.

Likewise, we expect multiple TCP connections to improve HTTP throughput.

2.8.2 In-house HTTP 1.1 Client

The original plan was to use the Apache web server and the Firefox

browser for the evaluations. But, following initial investigations, we decided to employ

a custom built HTTP 1.1 client instead of Firefox due to the following reason.

In Firefox, the number of open transport connections to a server/proxy can

be easily modified via user configuration. Firefox parses an URL, opens the first

transport connection to the appropriate web server, and retrieves index.html. After

parsing index.html, Firefox opens the remaining connection(s) to the server, and

pipelines further requests across all connection(s) in a round-robin fashion. Initial

investigations revealed that Firefox delays pipelining requests on a new transport

connection. Specifically, the first HTTP transaction on a transport connection is always

non-pipelined. After the successful receipt of the first response, subsequent requests on

the same transport connection are then pipelined. We believe this behavior is Firefox’s

means of verifying whether a server supports persistent connections [RFC2616 Section

8]. However, this precautionary behavior increases the per connection transfer time by

 43

at least 1 RTT, and packet losses during the first HTTP transaction further increase the

transfer time. Clearly, this behavior is detrimental to HTTP throughput over multiple

TCP connections. Also, this behavior interferes in the dynamics we are interested in

investigating – interaction between multiple TCP connections and HTTP performance.

Therefore, we developed a simple HTTP 1.1 client, which better models the general

behavior of HTTP 1.1 over multiple transport connections, and does not bias results

against multiple TCP connections.

The in-house client reproduces most of Firefox’s transaction model, except

that this client immediately starts pipelining on each new transport connection. The

client employs either TCP or SCTP for the HTTP transfer. While one or more TCP

connections are utilized for the HTTP 1.1 transfer, the complete page is downloaded

using a single multistreamed SCTP association with maximum concurrency (each

pipelined transaction is retrieved on a different SCTP stream). Additionally, the client

mimics all of Firefox’s interactions with the transport layer such as non-blocking

reads/writes, and disabling the Nagle algorithm [RFC896]. The following algorithm

describes the client in detail:

1. Setup a TCP or SCTP socket.

2. If SCTP, set appropriate data structures to request the required number of

input and output streams during association establishment.

3. Connect to the server.

4. Timestamp “Page Download Start Time”.

5. Request for index.html.

6. Receive and process index.html.

7. Make the socket non-blocking, and disable Nagle.

 44

8. While there are more transport connections to be opened:

8.1. Setup a socket (non-blocking, disable Nagle).

8.2. Connect to the server.

9. While the complete page has not been downloaded:

9.1. Poll for read, write, or error events on socket(s).

9.2. Transmit pending requests on TCP connections or SCTP

streams in a round-robin fashion.

9.3. Read response(s) from readable socket(s).

10. Timestamp “Page Download End Time”.

2.8.3 Experiment Parameters

The sample web page used in the emulations comprises an index.html with

10 embedded objects. All embedded objects are the same size – 5KB. The impact of

varying object sizes is discussed in Section 2.8.4.3.

Evaluations in Section 2.7 considered a 1Mbps last hop bandwidth, which

is deemed to be a costly, high-end option for an average user in the developing world.

Therefore, apart from a1Mbps last-hop, the following more limited last-hop bandwidths

found in developing regions are considered [Du 2006]: 64Kbps, 128Kbps, and

256Kbps. Also, the following end-to-end propagation delays are considered [Cottrell

2006, PingER]:

• 200ms RTT: User in East Asia, accessing a web server in North America over a

land line.

• 350ms RTT: User in South Asia, accessing a web server in North America over

a land line.

• 650ms RTT: User accessing a web server over a shared VSAT link.

 45

(a): 64Kbps.200ms

(b): 128Kbps.200ms

(c): 1Mbps.200ms

Figure 2.9: HTTP Throughput (Object Size = 5K)

 46

The FreeBSD TCP implementation tracks numerous sender and receiver

related statistics including the number of timeout recoveries, and fast retransmits. After

each TCP run, some of these statistics were gathered either directly from the TCP stack

or using the netstat utility.

2.8.4 Results: HTTP Throughput

The HTTP page download time is measured as “Page Download End

Time” – “Page Download Start Time” (Section 2.8.2). Figure 2.9 shows the HTTP

page download times over a single multistreamed SCTP association (a.k.a. SCTP) vs.

N TCP connections (N=1, 2, 4, 6, 8, 10; a.k.a. N-TCP) for the 64Kbps, 128Kbps and

1Mbps bandwidth scenarios. Results for 256Kbps bandwidth scenario can be found in

[Natarajan 2008d]. Note that each embedded object is transmitted on a different TCP

connection in 10-TCP, and employing more TCP connections is unnecessary. The

values in Figure 2.9 are averaged over 40 runs (up to 60 runs for the 10% loss case),

and plotted with 95% confidence intervals.

2.8.4.1 During No Congestion

Evaluations with 0% loss (Figure 2.9) help understand the behavior of

multiple TCPs during congestion. As mentioned earlier, the initial cwnds of both TCP

and SCTP are similar ─ 4MSS. Since there is no loss, both transports employ slow

start during the entire page download. This equivalent behavior results in similar

throughputs between SCTP and 1-TCP in 64Kbps and 128Kbps bandwidths. Recall

from Section 2.7.2 that the packet-counting FreeBSD 6.1 TCP sender increases its

cwnd more aggressively than an SCTP sender. As the available bandwidth increases

 47

(256Kbps, 1Mbps), this difference in cwnd growth facilitates 1-TCP to slightly

outperform SCTP [Natarajan 2008d].

As mentioned in Section 2.8.1, N-TCP’s aggressive sending rate can

increase an application’s throughput by up to N times during slow start. Therefore, as

the number of TCP senders increase, we expected multiple TCPs to outperform both 1-

TCP and SCTP. Surprisingly, the results indicate that multiple TCPs perform similar to

1-TCP at 1Mbps and 256Kbps bandwidths [Natarajan 2008d]. As bandwidth

decreases, multiple TCPs perform similar or worse (!) than both 1-TCP and SCTP.

Further investigation revealed the following reasons.

2.8.4.1.1 Throughput Limited by Bottleneck Bandwidth

Low bandwidth pipes can transmit only a few packets per second. For

example, a 64Kbps bottleneck cannot transmit more than ~5.3 1500byte PDUs per

second or roughly 1 PDU per 200ms RTT. A single TCP sender’s initial cwnd allows

the server to transmit 4MSS bytes of pipelined responses back-to-back, causing a low

bandwidth pipe (64Kbps, 128Kbps, and 256Kbps) to be fully utilized during the entire

RTT. More data transmitted during this RTT cannot be forwarded, and gets queued at

the bottleneck router. Therefore, data transmitted by N≥2 TCP senders do not

contribute to reducing page download times, and N-TCPs perform similar to 1-TCP in

64Kbps (N=10), 128Kbps (N=8, 10), and 256Kbps (N>2) bandwidths [Natarajan

2008d]. The 1Mbps bottleneck is completely utilized by the initial cwnd of N=4 TCP

senders (~16 1500byte PDUs per RTT). Therefore, 2≤N≤4 TCP senders slightly

improve page download times when compared to 1-TCP and N>4 TCP senders do not

further reduce page download times.

 48

As the propagation delay and RTT increase, the bottleneck router forwards

more packets per RTT. For example, the 1Mbps pipe can transmit ~53 PDUs per RTT

in the 650ms scenario vs. ~16 PDUs per RTT in the 200ms scenario. Consequently,

more TCP senders help fully utilize the 1Mbps pipe at 650ms RTT, and N-TCPs

decrease page download times [Natarajan 2008d]. However, similar to the 200ms RTT

scenario, lower bandwidths limit HTTP throughput, and N-TCPs perform similar to 1-

TCP in the 350ms and 650ms RTTs [Natarajan 2008d]

To summarize, HTTP throughput improvement is limited by the available

bandwidth in a low bandwidth last hop. As bandwidth decreases, fewer TCP senders

will fully utilize the available bandwidth, and additional TCP senders just increase the

queuing delay and decrease throughput.

2.8.4.1.2 Queuing Delay at the Bottleneck

Figure 2.10 shows the mean number of timeout expirations on data at the

server for the 64Kbps, 128Kbps and 1Mbps bandwidth scenarios. Note that the values

plotted are the mean timeouts per HTTP transfer. When N>1 TCP senders are

employed for the HTTP transfer, the plotted values denote the sum of timeouts across

all N senders. We first focus on the values at 0% loss. Surprisingly, except 1Mbps,

some TCP sender(s) in the other bandwidth scenarios undergo timeout recoveries.

Since no packets were lost, these timeouts must be spurious, and are due to the

following.

During connection establishment, a FreeBSD TCP sender estimates the

RTT, and calculates the retransmission timeout value (RTO) [FreeBSD, RFC2988].

For a 200ms RTT, the calculated RTO equals the recommended minimum of 1 second

[RFC2988].

 49

(a): 64Kbps.200ms

(b): 128Kbps.200ms

(c): 1Mbps.200ms

 Figure 2.10: RTO Expirations on Data at Server (Object Size = 5K)

 50

Connection establishment is soon followed by data transfer from the server. Lower

bandwidth translates to higher transmission and queuing delays. In a 64Kbps pipe, the

transmission of one 1500byte PDU takes ~186ms, and a queue of ~5 such PDUs

gradually increases the queuing delay and the RTT to more than 1 second. When

outstanding data remains unacknowledged for more than the 1 second RTO, the TCP

sender(s) (wrongly) assume data loss, and spuriously timeout and retransmit

unacknowledged data.

As the number of TCP senders increase, more packets arrive at the

bottleneck, and the increased queuing delay triggers spurious timeouts at a greater

number of TCP senders. Of the 4 bandwidth scenarios considered, the1Mbps transfers

experience the smallest queuing delay, and do not suffer from spurious timeouts. As the

bottleneck bandwidth decreases, queuing delay increases. Therefore HTTP transfers

over smaller bandwidths experience more spurious timeouts.

A spurious timeout is followed by unnecessary retransmissions and cwnd

reduction. If the TCP sender has more data pending transmission, spurious timeouts

delay new data transmission, and increase page download times (N=2, 4, 6, 8 TCP in

64Kbps, and N=4, 6 TCP in 128Kbps). As the number of TCP connections increase,

fewer HTTP responses are transmitted per connection. For example, each HTTP

response is transmitted on a different connection in 10-TCP. Though the number of

spurious timeouts (and unnecessary retransmissions) is highest in 10-TCP, the TCP

receiver delivers the first copy of data to the HTTP client, and discards the spuriously

retransmitted copies. Therefore, 10-TCP’s page download times are unaffected by the

spurious timeouts. Nonetheless, spurious timeouts cause wasteful retransmissions that

compete with other flows for the already scarce available bandwidth.

 51

As the propagation delay increases, the RTO calculated during connection

establishment is increased (> 1 second). Since transmission and queuing delays remain

unaffected, they impact the RTT less at higher propagation delays. Consequently,

spurious timeouts slightly decrease at 350ms and 650ms RTTs, but still remain

significant at lower bandwidths, and increase page download times [Natarajan 2008d].

To summarize, the aggressive sending rate of multiple TCP senders during

slow start does NOT necessarily translate to improved HTTP throughput in low

bandwidth last hops. Bursty data transmission from multiple TCP senders increases

queuing delay causing spurious timeouts. The unnecessary retransmissions following

spurious timeouts (i) compete for the already scarce available bandwidth, and (ii)

adversely impact HTTP throughput when compared to 1-TCP or SCTP. The

throughput degradation is more noticeable as the bottleneck bandwidth decreases.

2.8.4.2 During Congestion

Though SCTP and TCP congestion control are similar, minor differences

such as SCTP’s byte counting and more accurate gap-ack information improve SCTP’s

loss recovery and throughput (Section 2.7.2). As the loss rate increases, SCTP’s better

congestion control offsets FreeBSD TCP’s extra ack advantage during no loss, and

SCTP outperforms 1-TCP.

Recall from Section 2.8.1 that N-TCPs’ (N>1) aggressive sending rate

during congestion avoidance can, in theory, increase throughput by more than N times.

Therefore, we expected multiple TCPs to outperform both 1-TCP and SCTP. On the

contrary, multiple TCP connections worsen HTTP page download times, and the

degradation becomes more pronounced as loss rate increases. This observation is true

 52

for all 4 bandwidth scenarios studied. Further investigation revealed the following

reasons.

2.8.4.2.1 Increased Number of Timeout Recoveries at the Server

For every loss rate, the mean number of timeout expirations at the server

increases as the number of TCP senders increases (Figure 2.10). Section 2.8.4.1.2

discussed how increased queuing delays cause spurious timeouts even at 0% loss. Such

spurious timeouts, observed during lossy conditions as well, delay new data

transmission, thus worsening HTTP page download times.

Recall that the 1Mbps transfers did not suffer spurious timeouts (0% loss

in Figure 2.10c). However, multiple TCPs still amplify timeout expirations in 1Mbps

transfers. Further investigation revealed that multiple TCPs reduce ack information

which is crucial for fast retransmit-based loss recoveries.

Figure 2.11 shows the average number of bytes retransmitted during TCP

SACK recovery episodes (fast recovery) in the 64Kbps and 1Mbps transfers,

respectively. (Results for the other intermediate bandwidths were similar and hence not

shown.). Each value represents retransmissions from the server to client, and does not

include retransmissions after timeout expirations. Similar to values in Figure 2.10, each

value in Figure 2.11 represents the average bytes retransmitted per HTTP transfer, i.e.,

bytes retransmitted by all N TCP senders.

During 0% loss, data is always received in-order at the client. The acks

from client to server contain no SACK blocks, and the server does not undergo SACK

recoveries (Figure 2.11). During loss, data received out-of-order at the client triggers

dupacks containing SACK blocks. On receiving 3 dupacks, a TCP sender enters SACK

recovery and fast retransmits missing data [FreeBSD]. Higher loss rates trigger more

 53

SACK recovery episodes, and increase retransmissions during SACK recoveries

(Figure 2.11). However, for a given loss rate, the retransmissions decrease as the

number of TCP connections increase. That is, for the same fraction of lost HTTP data

(same loss rate), loss recoveries based on fast retransmits decrease as the number of

TCP senders increase.

(a): 64Kbps.200ms

(b): 1Mbps.200ms

 Figure 2.11: Fast Retransmits during SACK Recovery (Object Size = 5K)

Note that loss recovery based on fast retransmit relies on dupack

information from the client. As the number of TCP connections increase, data

 54

transmitted per connection decreases, thus reducing the number of potential dupacks

arriving at each TCP sender. Ack losses on the reverse path further decrease the

number of dupacks received. While the TCP senders implement Limited Transmit

[RFC3042] to increase dupack information, the applicability of Limited Transmit

diminishes as the amount of data transmitted per TCP connection decreases.

In summary, increasing the number of TCP connections decreases per

connection dupack information. Fewer dupacks reduce the chances of fast retransmit-

based loss recovery, resulting in each sender performing more timeout-based loss

recoveries.

2.8.4.2.2 Increased Connection Establishment Latency

The in-house HTTP client, which closely resembles Firefox’s transaction

model, first opens a single TCP connection to the server, and retrieves and parses

index.html. Then, the client establishes more TCP connection(s) for requesting

embedded objects in a pipelined fashion. Note that HTTP requests can be transmitted

over these connections only after successful connection establishment, i.e., only when

the TCP client has successfully sent a SYN and received a SYN-ACK. Any delay in

connection establishment due to SYN or SYN-ACK loss delays HTTP request (and

response) transmission.

Figure 2.12 shows the average number of SYN or SYN-ACK

retransmissions for the 64Kbps and 1Mbps transfers, respectively. (Results for the

other intermediate bandwidths were similar and hence not shown.) When multiple TCP

connections are employed for an HTTP transfer, the number of SYN, SYN-ACK

packets increase, and the probability of a SYN or SYN-ACK loss increases. Therefore,

 55

the number of SYN or SYN-ACK retransmissions tends to increase as the number of

TCP connections increase.

A SYN or SYN-ACK loss can be recovered only after the recommended

initial RTO value of 3 seconds [RFC2988], and increases the HTTP page download

time by at least 3 seconds. Consequently, losses during connection establishment

degrade HTTP throughput more when the time taken to download HTTP responses

(after connection establishment) is smaller compared to the initial RTO value.

(a): 64Kbps.200ms

(b): 1Mbps.200ms

 Figure 2.12: SYN or SYN-ACK Retransmissions (Object Size = 5K)

 56

(a): 64Kbps.200ms

(b): 128Kbps.200ms

(c): 1Mbps.200ms

 Figure 2.13: HTTP Throughput (Object Size = 10K)

 57

Figure 2.14: RTO Expirations on Data at Server (1Mbps.200ms; Object Size = 10K)

2.8.4.3 Impact of Varying Object Sizes

To investigate how object size impacts HTTP throughput, we repeated the

emulations with larger (10K) embedded objects. The results are shown in Figure 2.13.

Comparing Figures 2.9 and 2.13, we see that the trends between 1-TCP and multiple

TCPs remain similar between the 5K and 10K transfers for all bandwidth scenarios

except 1Mbps. In 1Mbps, N-TCPs perform better than 1-TCP, and the improvement is

more pronounced at higher loss rates.

Figure 2.14 shows the server’s mean timeout recoveries for the 10K

transfers in the 1Mbps scenario. Comparing values in Figure 2.14 with Figure 2.10c,

we see that the 10K transfers suffered fewer timeout recoveries per transfer time unit

than 5K transfers. In the 10K transfers, each TCP sender transfers more data and

receives more dupacks per TCP connection than the 5K transfers (Section 2.8.4.2.1).

The increased flow of acks in the 10K transfers triggered more fast-retransmissions in

SACK recovery episodes, and fewer timeout-based recoveries compared to the 5K

transfers (Figure 2.14). Consequently, N-TCPs improved HTTP throughput in the 10K

 58

transfers. However, as the last hop bandwidth decreases, the negative consequences of

multiple TCP senders, such as increased queuing delay and connection establishment

latency, increase the page download times, and N-TCPs perform similar to or worse

than 1-TCP. More importantly, note that, SCTP’s enhanced loss recovery helps

outperform N-TCPs even in the 10K transfers.

To summarize, object size affects HTTP throughput over multiple TCP

connections. Smaller objects reduce dupack information per TCP connection and

degrade HTTP throughput more than bigger objects. However, the impact of object

size decreases, and the negative consequences of multiple TCP senders dominate more

and bring down HTTP throughput at lower bandwidths.

2.9 Conclusion, Ongoing and Future Work

We examined HOL blocking and its effects on web response times in

HTTP over TCP. We proposed a multistreamed web transport such as SCTP to

alleviate HOL blocking, and designed and implemented HTTP over SCTP in the

Apache web server and Firefox browser. Emulation evaluations demonstrate that

HTTP over TCP suffers from exacerbated HOL blocking which worsened response

times in the high latency and lossy browsing conditions found in the developing world.

On the contrary, SCTP streams eliminate inter-object HOL blocking, and improve web

response times. The improvements are more visually perceivable in high latency and

lossy end-to-end paths found in the developing world.

The current workaround to improve an end user’s perceived WWW

performance is to download an HTTP transfer over multiple TCP connections. While

we expected multiple TCP connections to improve HTTP throughput, emulation

results showed that the competing and bursty nature of multiple TCP senders degraded

 59

HTTP performance especially in low bandwidth last hops. In such browsing conditions,

a single multistreamed SCTP association not only eliminates HOL blocking, but also

boosts throughput compared to multiple TCP connections.

Our body of work in HTTP over SCTP has stimulated significant interest

in the area. The Protocol Engineering Lab has also secured funding through Cisco

Systems’ University Research Program for some of the ongoing activity discussed

below.

2.9.1 IETF Internet Draft

We have proposed an Internet Draft (ID) to standardize our HTTP over

SCTP streams design [Natarajan 2008f]. This ID was presented at the 73
rd

 IETF

Meeting held at Minneapolis in November 2008. The objectives of this ID are: (i) to

highlight SCTP services that better match the needs of HTTP-based applications, (ii) to

propose the HTTP over SCTP streams design, and (iii) to share important lessons

learnt while implementing HTTP over SCTP in Apache and Firefox.

2.9.2 SCTP-enabled Apache and Firefox

Jonathan Leighton is heading this on-going effort to integrate our HTTP

over SCTP design and implementation into the Firefox distribution from mozilla.org,

and the Apache distribution from apache.org. The current activity is focused on

integrating SCTP related APIs in the Netscape Portable Runtime (NSPR) API and the

Apache Portable Runtime (APR) API, which offer platform independent network

implementations to Firefox and Apache, respectively. Subsequent work will focus on

modifying Firefox and Apache to take advantage of these SCTP related APIs, and

 60

enabling appropriate SCTP related compile options for various platforms and SCTP

implementations.

2.9.3 Minimizing Resource Requirements

As mentioned in Section 2.8, today’s web browsers reduce HOL blocking

in HTTP over TCP by downloading an HTTP transfer over multiple TCP connections.

In contrast, a browser over SCTP eliminates HOL blocking by simply increasing the

number of streams in the SCTP association. Each TCP connection or a pair of SCTP

streams (inbound/outbound) increases the processing and resource overhead at the web

server or proxy. However, the resources required to support a new pair of SCTP

streams is much less compared to a new TCP connection. For example, on FreeBSD

each inbound or outbound SCTP stream requires an additional 28 or 32 bytes,

respectively, in the SCTP Protocol Control Block (PCB), while a new TCP PCB

requires ~700 bytes [FreeBSD]. The difference in TCP vs. SCTP resource

requirements increases with the number of clients, and can be significant at a web

server farm handling thousands of clients. This difference can also be significant at

intermediate entities such as web caches that serve many web clients and/or other

caches [Squid].

The absolute difference in TCP vs. SCTP resource requirements depends

not only on the respective protocol implementations but also on how optimal the

implementations are. While the TCP stack has been optimized over the past two

decades, the SCTP stack is relatively new, and the SCTP reference implementation on

FreeBSD can be optimized further. For example, Randall Stewart, the designer of

FreeBSD SCTP estimates that the FreeBSD SCTP PCB size can be reduced by ~600

 61

bytes. Evaluating TCP vs. SCTP resource usage make more sense after such

optimizations are in place.

2.9.4 Impact on Developing Regions

While HTTP over SCTP promises better response times in high

propagation delay/low bandwidth/lossy browsing conditions, it is impractical to expect

all web servers to provide web over SCTP in the immediate future, without which

SCTP’s benefits cannot be leveraged. To address this issue, we propose a realistic, low

cost, gateway-based solution that translates HTTP over TCP to HTTP over SCTP

streams for easier and localized deployment. The solution assumes that the web

browser is capable of HTTP over SCTP, similar to the SCTP-enabled, freely available

Firefox browser used in our emulations. The gateway is physically positioned between

the server and client, such that, the gateway talks SCTP to clients over the last hop

with high propagation delay and/or low bandwidth, and talks TCP to web servers in the

outside world. For the architecture shown in Figure 2.2, the gateway is positioned

between the VSAT ground station (on the left) and the Internet cloud. We believe that

the “proxy” configuration in the SCTP-enabled Apache server is a good starting point

to achieve the gateway functionality at minimal monetary cost [Apache].

At a minimum, a gateway solution should provide faster page downloads

than HTTP over TCP. This solution can be extended to further enhance pipelined

objects’ response times. For example, the gateway could use batch image conversion

software [Gimp] to convert embedded non-progressive JPEG or PNG images to their

corresponding progressive versions before forwarding them to the clients. Image

conversion at the gateway takes on the order of milliseconds per image, but can

improve a user’s response times on the order of seconds.

 62

2.10 Related Work

Significant interest exists for designing new transport and session protocols

that better suit the needs of HTTP-based client-server applications than TCP. As

mentioned earlier, several experts agree that the best transport scheme for HTTP

would be one that supports datagrams, provides TCP compatible congestion control on

the entire datagram flow, and facilitates concurrency in GET requests [Gettys 2002].

WebMUX [Gettys 1998] was one such session management protocol that was a

product of the (now historic) HTTP-NG working group [HTTP-NG]. WebMUX

proposed using a reliable transport protocol to provide web transfers with streams for

transmitting independent objects. However, the WebMUX effort did not mature.

[Ford 2007] proposes the use of Structured Stream Transport (SST) for

web transfers. SST was proposed after [Natarajan 2006a] and functions similar to

SCTP streams. SST extends TCP to provide multiple streams over a TCP-friendly

transport connection. Simulation-based evaluations in [Ford 2007] show that SST

provides similar page download times as TCP. The primary contribution of a

multistreamed web transport is the reduction in HOL blocking, which is the focus of

our work. Using real implementations, we show that reduced HOL blocking in HTTP

over SCTP results in visually perceivable improvements to individual objects’ response

times in browsing conditions typical of developing regions. Also, we note that SCTP is

a standardized IETF protocol with many fine-tuned kernel space implementations,

while SST is a research protocol yet to be standardized.

Apart from new session and transport protocols, other sender-side

techniques focus on reducing the adverse effects of the current workaround to reduce

HOL blocking � parallel TCP connections. The Congestion Manager (CM) [RFC3124]

is a shim layer between the transport and network layers which aggregates congestion

 63

control at the end host, thereby enforcing a fair sending rate when an HTTP transfer

employs multiple TCP connections. “TCP Session” [Padmanabhan 1998] proposes

integrated loss recovery across multiple TCP connections to the same web client (these

multiple TCP connections are together referred to as a TCP session). All TCP

connections within a session are assumed to share the transmission path to the web

client. A Session Control Block (SCB) is maintained at the sender to store information

about the shared path such as its cwnd and RTT estimate. While CM and TCP Session

reduce the adverse effects of parallel TCP connections on the network and the

application, these solutions still require a web browser to open multiple TCP

connections, thereby increasing the web server’s resource requirements.

Content Delivery Networks (CDNs) replicate web content across

geographically distributed servers, and reduce response times for web users by

redirecting requests to a server closest to the client. [Krishnamurthy 2001] confirms

that CDNs reduce average web response times for web users along USA’s east coast

for static content. Unfortunately, little research exists on the prevalence of CDNs for

content providers and web users outside of developed nations. Also, CDNs cannot

lessen web response times when latency is due to (i) propagation delay and/or low

bandwidth last hop, as is the case in developing regions, or (ii) sub-optimal traffic

routing that increases end-to-end path RTTs [Baggaley 2007].

 64

Chapter 3

NON-RENEGABLE SACKS (NR-SACKS) FOR SCTP

This chapter discusses a fundamentally new transport layer

acknowledgment mechanism called Non-Renegable Selective Acks (NR-SACKs).

Sections 3.1 and 3.2 introduce reneging in current transport protocol implementations

and the inefficiencies with TCP and SCTP SACK mechanisms when received data is

non-renegable. Section 3.3 proposes NR-SACKs for SCTP, and discusses the specifics

of SCTP’s NR-SACK chunk. Sections 3.4 and 3.5 discuss simulation preliminaries and

present results comparing SACKs vs. NR-SACKs in both SCTP and CMT. Finally,

Section 3.6 concludes and presents ongoing and future work.

3.1 Introduction

Reliable transport protocols such as TCP and SCTP employ two kinds of

data acknowledgment mechanisms: (i) cumulative acks (cum-acks) indicate data that

has been received in-sequence, and (ii) selective acknowledgments (SACKs) indicate

data that has been received out-of-order. In both TCP and SCTP, while cum-acked

data is the receiver’s responsibility, SACKed data is not, and SACK information is

advisory [RFC3517, RFC4960]. While SACKs notify a sender about the reception of

specific out-of-order TPDUs, the receiver is permitted to later discard the TDPUs.

Discarding data that has been previously SACKed is known as reneging. Though

reneging is a possibility, the conditions under which current transport layer and/or

 65

operating system implementations renege, and the frequency of these conditions

occurring in practice (if any) are unknown and needs further investigation.

Data that has been delivered to the application, by definition, is non-

renegable by the transport receiver. Unlike TCP which never delivers out-of-order data

to the application, SCTP’s multistreaming and unordered data delivery services

(Chapter 1) result in out-of-order data being delivered to the application and thus

becoming non-renegable. Interestingly, TCP and SCTP implementations can be

configured such that the receiver is not allowed to and therefore never reneges on out-

of-order data (details in Section 3.2). In these configurations, even non-deliverable out-

of-order data becomes non-renegable.

The current TCP or SCTP SACK mechanism does not differentiate

between out-of-order data that “has been delivered to the application and/or is non-

renegable” vs. data that “has not yet been delivered to the application and is renegable”.

In this work, we introduce a fundamentally new third acknowledgment mechanism

called Non-Renegable Selective Acknowledgments (NR-SACKs) that enable a

transport receiver to explicitly convey non-renegable information to the sender on some

or all out-of-order TPDUs. While this work introduces NR-SACKs for SCTP, the NR-

SACKs idea can be applied to any reliable transport protocol that uses selective

acknowledgments and/or permits delivery of out-of-order data, or where a receiver

never reneges on previously acked data.

3.2 Problem Description

This section investigates the effect of SCTP’s SACK mechanism in

situations when out-of-order data is non-renegable, and identifies conditions under

which SACKs hurt performance in an SCTP or CMT association.

 66

3.2.1 Background

The SCTP (or TCP) send buffer, or the sender-side socket buffer (Figure

3.1), consists of two kinds of data: (i) new application data waiting to be transmitted

for the first time, and (ii) copies of data that have been transmitted at least once and are

waiting to be cum-acked, a.k.a. the retransmission queue (RtxQ). Data in the RtxQ is

the transport sender’s responsibility until the receiver has guaranteed their delivery to

the receiving application, and/or the receiver guarantees not to renege on the data.

Figure 3.1: Transport Layer Send Buffer

In traditional in-order data delivery service, a receiver cum-acks the latest

in-order data. Cum-acked data has either been delivered to the application or is ready

for delivery. In either case, cum-acks are an explicit assurance that the receiver will not

renege on the corresponding data. Upon receiving a cum-ack, the sender is no longer

responsible, and removes the corresponding data from the RtxQ. In the current SACK

mechanism, cum-acks are the only means to convey non-renegable information; all

selectively acked (out-of-order) data are by default renegable.

As discussed in Chapter 1, SCTP’s multistreaming service divides an end-

to-end association into independent logical data streams. Data arriving in-sequence

within a stream can be delivered to the receiving application even if the data is out-of-

order relative to the association’s overall flow of data. Also, data marked for unordered

delivery can be delivered immediately upon reception, regardless of the data’s position

 67

within the overall flow of data. Thus, SCTP’s data delivery services result in situations

where out-of-order data is delivered to the application, and is thus non-renegable.

Operating systems allow configuration of transport layer implementations

such that received out-of-order data is never reneged. For example, in FreeBSD, the

net.inet.tcp.do_tcpdrain or net.inet.sctp.do_sctp_drain sysctl parameters can be

configured to never revoke kernel memory allocated to TCP or SCTP out-of-order

data, such that non-deliverable out-of-order data is non-renegable. Thus, out-of-order

data can also be rendered non-renegable through simple user configuration.

In the following discussions, “non-renegable out-of-order data” refers to

data for which the transport receiver takes full responsibility, and guarantees not to

renege either because (i) the data has been delivered (or is deliverable) to the

application, or (ii) the receiving system (OS and/or transport layer implementation)

guarantees not to revoke the allocated memory until after the data is delivered to the

application. With the current SACK mechanism, non-renegable out-of-order data is

selectively acked, and is (wrongly) deemed renegable by the transport sender.

Maintaining copies of non-renegable data in the sender’s RtxQ is unnecessary.

3.2.2 Unordered Data Transfer using SACKs

Using a timeline diagram, this section discusses the effects of SACKs in

transfers where all out-of-order is non-renegable. The discussion is applicable to any

type of reliable data delivery service (in-order, partial-order, unordered) where all out-

of-order data is non-renegable, but uses the simple unordered SCTP data transfer

example shown in Figure 3.2.

In this example, the SCTP send buffer denoted by the rectangular box can

hold a maximum of eight TPDUs. Each SCTP PDU is assigned a unique Transmission

 68

Sequence Number (TSN). The timeline slice shown in Figure 3.2 picks up the data

transfer at a point when the sender’s cwnd C=8, allowing transmission of 8 TPDUs

(arbitrarily numbered with TSNs 11-18). Note that when TSN 18 is transmitted, the

RtxQ grows to fill the entire send buffer.

Figure 3.2: Unordered SCTP Data Transfer using SACKs

In this example, TSN 11 is presumed lost in the network. The other TSNs

are received out-of-order and immediately SACKed by the SCTP receiver. The SACKs

 69

shown have the following format: (S)ACK: CumAckTSN; GapAckStart-GapAckEnd.

Each gap-ack start and gap-ack end value is relative to the cum-ack value, and together

they specify a block of received TSNs.

At the sender, the first SACK (S:10;2-2) is also a dupack and gap-acks

TSN 12. Though data corresponding to TSN 12 has been delivered to the receiving

application, the SACK does not convey the non-renegable nature of TSN 12, requiring

the sender to continue being responsible for this TSN. Starting from the time this

SACK arrives at the sender, the copy of TSN 12 in the sender’s RtxQ is unnecessary.

The gap-ack for TSN 12 reduces the amount of outstanding data (O) to 7 TPDUs.

Since O<C, the sender could in theory transmit new data, but in practice cannot do so

since the completely filled send buffer blocks the sending application from writing new

data into the transport layer. We call this situation send buffer blocking. Note that send

buffer blocking prevents the sender from fully utilizing the cwnd.

The second and third dupacks (S:10;2-3, S:10;2-4) increase the number of

unnecessary TSNs in the RtxQ, and send buffer blocking continues to prevent new data

transmission. On receipt of the third dupack, the sender halves the cwnd (C=4), fast

retransmits TSN 11, and enters fast recovery. Dupacks received during fast recovery

further increase the amount of unnecessary data in the RtxQ, prolonging inefficient

RtxQ usage. Note that though these dupacks reduce outstanding data (O<C), send

buffer blocking prevents new data transmission.

The sender eventually exits fast recovery when the SACK for TSN 11’s

retransmission (S:18) arrives. The sender removes the unnecessary copies of TSNs 12-

18 from the RtxQ, and concludes the current instance of send buffer blocking. Since

send buffer blocking prevented the sender from fully utilizing the cwnd before, the new

 70

cum ack (S:18) does not increase the cwnd [RFC4960]. The application writes data

into the newly available send buffer space and the sender now transmits TSNs 19-22.

Based on the timeline in Figure 3.2, the following observations can be

made regarding transfers with non-renegable out-of-order data:

• The unnecessary copies of non-renegable out-of-order data waste kernel

memory (RtxQ). The amount of wasted memory is a function of flightsize

(amount of data “in flight”) during a loss event; a larger flightsize wastes more

memory.

• When the RtxQ grows to fill the entire send buffer, send buffer blocking ensues,

which can degrade throughput.

3.2.3 Implications to CMT

As discussed in Chapter 1, CMT is an experimental SCTP extension that

exploits SCTP multihoming for simultaneous transfer of new data over multiple

independent paths [Iyengar 2006]. Similar to an SCTP sender, the CMT sender uses a

single send buffer and RtxQ for data transfer. However, the CMT sender’s total

flightsize is the sum of flightsizes on each path. Since the amount of kernel memory and

the probability of send buffer blocking increase as the transport sender’s flightsize

increases (previous subsection), we hypothesize that a CMT association is even more

likely than an SCTP association to suffer from the inefficiencies of the existing SACK

mechanism.

3.3 Solution: Non-renegable Selective Acks

Non-Renegable Selective Acknowledgments (NR-SACKs) [Natarajan

2008a, Natarajan 2008e] enable a receiver to explicitly convey non-renegable

 71

information on out-of-order data. In SCTP, NR-SACKs provide the same information

as SACKs for congestion and flow control, and the sender is expected to process this

information identical to SACK processing. In addition, NR-SACKs provide the added

option to report some or all of the out-of-order data as being non-renegable.

3.3.1 NR-SACK Chunk Details

Before sending/receiving NR-SACKs, the endpoints first negotiate NR-

SACK usage during association establishment. An endpoint supporting the NR-SACK

extension lists the NR-SACK chunk in the Supported Extensions Parameter carried in

the INIT or INIT-ACK chunk [RFC5061]. During association establishment, if both

endpoints support the NR-SACK extension, then each endpoint acknowledges received

data with NR-SACK chunks instead of SACK chunks.

The proposed NR-SACK chunk for SCTP is shown in Figure 3.3. Since

NR-SACKs extend SACK functionality, the NR-SACK chunk has several fields

identical to the SACK chunk: the Cumulative TSN Ack, the Advertised Receiver

Window Credit, Gap Ack Blocks, and Duplicate TSNs. These fields have identical

semantics to the corresponding fields in the SACK chunk [RFC4960]. NR-SACKs also

report non-renegable out-of-order data chunks in the NR Gap Ack Blocks, a.k.a. “nr-

gap-acks”. Each NR Gap Ack Block acknowledges a continuous subsequence of non-

renegable out-of-order data chunks. All data chunks with TSNs ≥ (Cumulative TSN

Ack + NR Gap Ack Block Start) and ≤ (Cumulative TSN Ack + NR Gap Ack Block

End) of each NR Gap Ack Block are reported as non-renegable. The Number of NR

Gap Ack Blocks (M) field indicates the number of NR-Gap Ack Blocks included in the

NR-SACK chunk.

 72

Note that each sequence of TSNs in an NR Gap Ack Block will be a

subsequence of one of the Gap Ack Blocks, and there can be more than one NR Gap

Ack Block per Gap Ack Block. Also, non-renegable information cannot be revoked. If

a TSN is nr-gap-acked in any NR-SACK chunk, then all subsequent NR-SACKs gap-

acking that TSN should also nr-gap-ack that TSN. Complete details of NR-SACK

chunk can be found in [Natarajan 2008a].

Figure 3.3: NR-SACK Chunk for SCTP

The second least significant bit in the Chunk Flags field is the (A)ll bit. If

the ‘A’ bit is set to '1', all out-of-order data blocks acknowledged in the NR-SACK

chunk are non-renegable. The ‘A’ bit enables optimized sender/receiver processing and

reduces the size of NR-SACK chunks when all out-of-order TPDUs at the receiver are

non-renegable.

 73

3.3.2 Unordered Data Transfer using NR-SACKs

NR-SACKs provide an SCTP receiver with the option to convey non-

renegable information on out-of-order data. When a receiver guarantees not to renege

an out-of-order data chunk and nr-gap-acks the chunk, the sender no longer needs to

keep that particular data chunk in its RtxQ, thus allowing the sender to free up kernel

memory sooner than if the data chunk were only gap-acked.

Figure 3.4: Unordered SCTP Data Transfer using NR-SACKs

Figure 3.4 is analogous to Figure 3.2’s example, this time using NR-

SACKs. The sender and receiver are assumed to have negotiated the use of NR-

 74

SACKs during association establishment. As in the example of Figure 3.2, TSNs 11-18

are initially transmitted, and TSN 11 is presumed lost. For each TSN arriving out-of-

order, the SCTP receiver transmits an NR-SACK chunk instead of SACK chunk. Since

all out-of-order data are non-renegable in this example, every NR-SACK chunk has the

‘A’ bit set, and the nr-gap-acks report the list of TSNs that are both out-of-order and

non-renegable.

All NR-SACKs in Figure 3.4 have the following format: (N)R-SACK:

CumAckTSN; NRGapAckStart-NRGapAckEnd. The first NR-SACK (N:10;2-2) is

also a dupack. This NR-SACK cum-acks TSN 10, and (nr-)gap-acks TSN 12. Once the

data sender is informed that TSN 12 is non-renegable, the sender frees up the kernel

memory allocated to TSN 12, allowing the application to write more data into the

newly available send buffer space. Since TSN 12 is also gap-acked, the amount of

outstanding data (O) is reduced to 7, allowing the sender to transmit new data – TSN

19.

On receipt of the second and third dupacks that newly (nr-)gap-ack TSNs

13 and 14, the sender removes these TSNs from the RtxQ. On receiving the second

dupack, the sender transmits new data – TSN 20. On receipt of the third dupack, the

sender halves the cwnd (C=4), fast retransmits TSN 11, and enters fast recovery.

Dupacks received during fast recovery (nr-)gap-ack TSNs 15-20. The sender frees

RtxQ accordingly, and transmits new TSNs 21, 22 and 23. The sender exits fast

recovery when the NR-SACK with new cum-ack (N:20) arrives. This new cum-ack

increments C=5, and decrements O=3. The sender now transmits new TSNs 24 and 25.

The explicit non-renegable information in NR-SACKs ensures that the

RtxQ contains only necessary data − TPDUs that are actually in flight or “received and

 75

renegable”. Comparing Figures 3.2 and 3.4, we observe that NR-SACKs use the RtxQ

more efficiently.

3.4 Evaluation Preliminaries

The ns-2 SCTP and CMT modules [NS-2, Ekiz 2007] were extended to

support and process NR-SACK chunks. The simulation-based evaluations compare

long-lived SCTP or CMT flows using SACKs vs. NR-SACKs under varying cross-

traffic loads. This section discusses the experiment setup and other evaluation

preliminaries in detail.

3.4.1 Simulation Setup

[Andrew 2008] recommends specific simulation setups and parameters for

realistic evaluations of TCP extensions and congestion control algorithms. These

recommendations include network topologies, details of cross-traffic generation, and

delay distributions mimicking patterns observed in the Internet. We adhere to these

recommendations for a realistic evaluation of SACKs vs. NR-SACKs.

The SCTP evaluations use the dumb-bell topology shown in Figure 3.5,

which models the access link scenario specified in [Andrew 2008]. The central

bottleneck link connects routers R1 (left) and R2 (right), has a 100Mbps capacity, and

2ms one-way propagation delay. Both routers employ drop tail queuing and the queue

size is set to the bandwidth-delay product of a 100ms flow. Each router is connected to

three cross-traffic generating edge nodes via 100Mbps edge links with the following

propagation delays: 0ms, 12ms, 25ms (left) and 2ms, 37ms, 75ms (right). Each left

edge node generates cross-traffic destined to every right edge node and vice-versa.

 76

Thus, without considering queuing delays, the RTTs for cross-traffic flows sharing the

bottleneck link range from 8ms—204ms.

[Andrew 2008] recommends application level cross-traffic generation over

packet level generation, since, in the latter scenario, cross-traffic flows do not respond

to the user/application/transport behavior of competing flows. Also, [Andrew 2008]

proposes the use of Tmix [Weigle 2006] traffic generator. However, the recommended

Tmix connection vectors were unavailable at the time of performing our evaluations.

Therefore, we decided to employ existing ns-2 application level traffic generation tools,

recommended by [Wang 2007a, Wang 2007b]. Since our simulation setup uses

application level cross-traffic, we believe that the general conclusions from our

evaluations will hold for evaluations using the Tmix traffic generator.

Figure 3.5: Topology for SCTP Experiments (Topology 1)

Cross-traffic generated by three kinds of applications are considered: (i)

non-greedy, responsive HTTP sessions generated by PackMime implementation [Cao

2004], (ii) rate controlled, unresponsive video sessions over UDP, and (iii) greedy,

 77

responsive bulk file transfer sessions over TCP. We are unaware of existing

measurement studies on the proportion of each kind of traffic observed in the Internet.

Therefore, the simulations assume a simple, yet reasonable rule for the traffic mix

proportion − more HTTP traffic than video or FTP traffic.

Each edge node runs a PackMime session to every edge node on the other

side, and the amount of generated HTTP traffic is controlled via the PackMime rate

parameter. Similarly, each edge node establishes video and FTP sessions to every edge

node on the other side, and the number of video/FTP sources on each node impacts the

amount of video/FTP traffic. To avoid synchronization issues, the PackMime, video,

and FTP sessions start at randomly chosen times during the initial 5 seconds of the

simulation. The default segment size for all TCP traffic results in 1500 byte IP PDUs;

the segment size for 10% of the FTP flows is modified to result in 576 byte IP PDUs.

Also, the PackMime request and response size distributions are seeded in every

simulation run, resulting in a range of packet sizes at the bottleneck [Andrew 2008].

The bottleneck router load is measured as (L) = (mean queue length ÷ total

queue size). Four packet-level load/congestion variations are considered: (i) Low

(~15% load, < 0.1% loss), (ii) Mild (~45% load, 1-2% loss), (iii) Medium (~60% load,

3-4% loss), (iv) Heavy (~85% load, 8-9% loss).

Topology 1 (Figure 3.5) is used to evaluate SCTP flows. CMT evaluations

are over the dual-dumbbell topology shown in Figure 3.6 (topology 2). Topology 2

consists of two independent bottleneck links between routers R1-R2 and R3-R4. Similar

to topology 1, each router in topology 2 is attached to 3 cross-traffic generating edge

nodes, with similar bottleneck and edge link bandwidth/delay characteristics. In both

topologies, nodes S and R are the SCTP or CMT sender and receiver, respectively. In

 78

topology 2, both S and R are multihomed, and the CMT sender uses the two

independent paths (paths 1 and 2) for simultaneous data transfer. In both topologies, S

and R are connected to the bottleneck routers via 100Mbps duplex edge links, with

14ms one-way delay. Thus, the one-way propagation delay experienced by the SCTP

or the CMT flow corresponds to 30ms, approximating the US coast-to-coast

propagation delay [Shakkottai 2004].

Figure 3.6: Topology for CMT Experiments (Topology 2)

In both topologies, the bottleneck links experience bi-directional cross-

traffic; the cross-traffic load is similar on both forward and reverse directions. In

topology 1, the cross-traffic load varies from low to heavy. For CMT evaluations using

 79

topology 2, the bottlenecks experience asymmetric path loads; path 1 cross-traffic load

varies from low to heavy, while path 2 experiences low load.

The SCTP or CMT flow initiates an unordered data transfer ~18-20

seconds after the simulation begins such that, all data received out-of-order at R is

deliverable, and thus, non-renegable. Trace collection begins after a 20 second warm-

up period from the start of SCTP or CMT traffic, and ends when the simulation

completes after 70 seconds. The CMT sender uses the recommended RTX-

SSTHRESH retransmission policy, i.e., retransmissions are sent on the path with

highest ssthresh [Iyengar 2006].

3.4.2 Metric: Efficient Retransmission Queue Utilization

In transfers using SACKs, the RtxQ consists of two kinds of data (Figure

3.2): (i) necessary data – data that is either “in flight” and has not yet reached

receiver’s transport layer, or data that has been received but is renegable by the

transport receiver, and (ii) unnecessary data – data that is received out of order and is

non-renegable. The RtxQ is most efficiently utilized when all data in the RtxQ are

necessary. As the fraction of unnecessary data increases, the RtxQ is less efficiently

utilized.

The transport sender modifies the RtxQ as and when SACKs or NR-

SACKs arrive. The RtxQ size varies during the course of a file transfer, but can never

exceed the send buffer size. For time duration ti in the transfer, let,

ri = size of retransmission queue, and

ki = amount of necessary data in the RtxQ.

During ti, only ki ÷ ri of the RtxQ is efficiently utilized, and the efficiency

changes whenever ki or ri changes.

 80

Let
n

n

r

k

r

k

r

k
K,,

1

1

0

0 be the efficient RtxQ utilization values during time

durations ()∑ = Ttttt inK,, 10 , respectively. The time weighted efficient RtxQ

utilization averaged over T is calculated as T
r

k
tUtilRtxQ

i

i

i ÷







×= ∑_ . To measure

RtxQ utilization, the ns-2 SCTP (or CMT) sender tracks ki, ri, and ti until association

shutdown. Let,

W = time when trace collection begins after the initial warm-up time, and

E = simulation end time.

In the following discussions, the time weighted efficient RtxQ utilization

averaged over the entire trace collection time, i.e., T = (E – W), is referred to as

RtxQ_Util.

In an unordered transfer using NR-SACKs, all out-of-order data will be nr-

gap-acked and the RtxQ should contain only necessary data. Therefore, we expect an

SCTP or CMT flow using NR-SACKs to most efficiently utilize the RtxQ (RtxQ_Util

= 1) under all circumstances.

3.4.3 Retransmission Queue Utilization during Loss Recovery

Typically, in SCTP transfers, data is always received in-order during no

losses, unless the intermediate routers reorder packets. Consequently, during no losses,

SCTP flows employing either SACKs or NR-SACKs utilize the RtxQ most efficiently,

and the corresponding RtxQ_Util values equal unity. The two acknowledgment

mechanisms differ in RtxQ usage only when data is received out-of-order, which ensues

when an SCTP flow suffers packet losses. Specifically, in SCTP, the duration of NR-

SACKs’ impact on the RtxQ is limited to loss recovery periods. To evaluate the impact

of the two ack schemes during loss recovery periods, the ns-2 SCTP sender timestamps

 81

every entry/exit to/from loss recovery. Since none of the routers reorder packets in our

simulations, the SCTP sender uses the following naive rule − the sender enters loss

recovery on the receipt of SACKs (or NR-SACKs) with at least one gap-ack block,

and exits loss recovery on the receipt of SACKs (or NR-SACKs) with a new cum-ack

and zero gap-acks. We found that this simple rule resulted in a good approximation of

the actual loss recovery periods.

Let
m

m

r

k

r

k

r

k
K,,

1

1

0

0 be the efficient RtxQ utilization values during the loss

recovery periods ()∑ = Lllll imK,, 10 , respectively. The time weighted efficient RtxQ

utilization averaged over only the loss recovery durations of trace collection (L) is

refereed to as RtxQ_Util_L, and is calculated as L
r

k
lLUtilRtxQ

i

i

i ÷







×= ∑__ .

An SCTP sender tracked both RtxQ_Util and RtxQ_Util_L. Depending on

the paths’ bandwidth/delay characteristics, a CMT association experiences data

reordering even under no loss conditions. Data transmitted on the shorter delay path

will be received out-of-order w.r.t. data transmitted on other path(s). Therefore, the

naïve rule mentioned above cannot be employed to estimate entry/exit of CMT sender’s

loss recovery, and the CMT sender tracked only RtxQ_Util.

3.5 Results

For each type of sender (SCTP or CMT), different send buffer sizes

imposing varying levels of memory constraints are considered: 32K, 64K and INF

(unconstrained space) for SCTP, and 128K, 256K and INF for CMT. The results

presented here are averaged over 30 runs, and plotted with 95% confidence intervals.

In the following discussions, an SCTP flow using SACKs or NR-SACKs is referred to

 82

as SCTP-SACKs and SCTP-NR-SACKs, respectively. Similarly, a CMT flow using

SACKs or NR-SACKs is referred to as CMT-SACKs and CMT-NR-SACKs.

3.5.1 Retransmission Queue Utilization

As the end-to-end path gets more congested, SCTP-SACKs’ RtxQ_Util_L

remains fairly consistent ~0.5 (Figure 3.7), while the RtxQ_Util decreases (Figure 3.8).

Figure 3.7: RtxQ Utilization during Loss Recovery in SCTP

The RtxQ_Util_L values indicate that irrespective of path loss rate, SCTP-

SACKs efficiently utilize only ~50% of RtxQ during loss recovery; ~50% of RtxQ is

wasted buffering unnecessary data. At lower congestion levels (lower cross-traffic), the

frequency of loss events and the fraction of transfer time spent in loss recovery are

smaller, resulting in negligible RtxQ wastage during the entire trace collection period

(RtxQ_Util). As loss recoveries become more frequent, SCTP-SACKs’ inefficient

RtxQ utilization during loss recovery lowers the corresponding RtxQ_Util values. The

simulation results show that, on average, SCTP-SACKs waste ~20% of the RtxQ

during moderate congestion and ~30% during heavy congestion conditions. The

 83

amount of wasted kernel memory increases as the number of transport connections

increase, and can be significant at a server handling large numbers of concurrent

connections, such as a web server.

Figure 3.8: RtxQ Utilization in SCTP

Figure 3.9: RtxQ Utilization in CMT

By definition of the RtxQ_Util metric, NR-SACKs are expected to utilize

the RtxQ most efficiently, even during loss recovery periods (Section 3.4.2). The

 84

simulation results confirm this hypothesis. Under all traffic loads, RtxQ_Util values for

both SCTP-NR-SACKs and CMT-NR-SACKs (Figure 3.9) are unity.

In CMT evaluations, path 2 experiences low traffic load, while path 1’s

traffic load varies from low to heavy (Figure 3.6). Recall that a CMT sender transmits

data concurrently on both paths. Asymmetric path congestion levels aggravate data

reordering in CMT. As path 1 congestion level increases, TPDU losses on the higher

congested path 1 cause data transmitted on the lower congested path 2 to arrive out-

of-order at the receiver. CMT congestion control is designed such that losses on path 1

do not affect the cwnd/flightsize on path 2 [Iyengar 2006]. While losses on path 1 are

being recovered, sender continues data transmission on path 2, increasing the amount

of non-renegable out-of-order data in the RtxQ. As the paths become increasingly

asymmetric in their congestion levels, the amount of non-renegable out-of-order data in

the RtxQ increases, and brings down CMT-SACKs’ RtxQ_Util (Figure 3.9).

Increasing the send buffer/RtxQ space improves SCTP-SACKs’ or CMT-

SACKs’ kernel memory (RtxQ) utilization only to a certain degree. In Figures 3.8 and

3.9, RtxQ_Util for the INF send buffer is essentially the upper bound on how efficient

SCTP or CMT employing SACKs utilizes the RtxQ. Therefore, we conclude that

TPDU reordering results in inevitable RtxQ wastage in transfers using SACKs. The

amount of wasted memory increases as TPDU reordering and loss recovery durations

increase. Also, smaller send buffer sizes further degrade RtxQ_Util_L and RtxQ_Util

values in transfers using SACKs. This degradation is more pronounced in CMT (Figure

3.9). Further investigations reveal this effect to be due to send buffer blocking,

discussed next.

 85

3.5.2 Send Buffer Blocking in CMT

When the RtxQ grows to fill the entire send buffer, send buffer blocking

ensues, preventing the application from writing new data into the transport layer

(Section 3.2.2). In both SCTP and CMT, send buffer blocking increases as the send

buffer is more constrained (decreases). In addition, CMT employs multiple paths for

data transfer, increasing a sender’s total flightsize in comparison to SCTP. Therefore,

we hypothesized that CMT would suffer more send buffer blocking than SCTP

(Section 3.2.3). Indeed, in the simulations, CMT suffered significant send buffer

blocking even for 128K and 256K send buffer sizes. In this section, we focus on the

effects of send buffer blocking in CMT.

CMT using either acknowledgment scheme suffers from send buffer

blocking for 128K and 256K buffer sizes. In CMT-SACKs, send buffer blocking

continues until cum-ack point moves forward, i.e., until loss recovery ends. As path 1

congestion level increases, timeout recoveries become more frequent, causing longer

loss recovery durations. Therefore, as congestion increases, the CMT-SACKs sender is

blocked for longer periods of transfer time. On the other hand, send buffer blocking in

CMT-NR-SACKs is unaffected by the congestion level on path 1. As and when NR-

SACKs arrive (on path 2), the CMT-NR-SACK sender removes nr-gap-acked data

from the RtxQ, allowing more data transmission. CMT-SACKs’ longer send buffer

blocking durations adversely impact performance as discussed below.

3.5.2.1 Ineffective Use of Send Buffer Space

Send buffer blocking limits RtxQ growth and reduces throughput. The

impact on throughput is minimized when the available send buffer space is utilized as

much as possible.

 86

Figure 3.10: RtxQ Evolution in CMT-SACKs

Figure 3.11: RtxQ Evolution in CMT-NR-SACKs

Figures 3.10 and 3.11 illustrate CMT sender’s RtxQ evolution over 40

seconds of a transfer using SACKs and NR-SACKs, respectively. The figures show

that both CMT-SACKs and CMT-NR-SACKs suffer from send buffer blocking − the

maximum RtxQ size in the figures corresponds to 100% of send buffer (128K).

However, the RtxQ evolution in CMT-SACKs (Figure 3.10) exhibits more variance –

 87

reaches the maximum and drops to 0 multiple times, while CMT-NR-SACKs’ RtxQ

size is closer to 128K most of the time (Figure 3.11).

Figure 3.12: RtxQ Evolution in CMT-SACKs (~1.5 sec)

Figure 3.12 is a zoom of CMT-SACKs’ RtxQ evolution over an arbitrary

1.5 second period. At point A (time 66.36sec), RtxQ size hits the maximum, and the

sender is blocked from transmitting any more data. Subsequent SACKs reduce the

amount of outstanding data, but send buffer blocking prevents the sender from clocking

out new data. At time 66.42sec, path 1’s retransmission timer expires; the sender

detects loss, and retransmits TSN 20369 on path 2. At time 66.48sec (point B), sender

receives a SACK with a new cum-ack (TSN=20457) and completely clears RtxQ

contents, ending the current instance of send buffer blocking. The sender immediately

transmits new data on both paths, and the RtxQ evolution after the new cum-ack

(TSN=20457) is shown by the (green) dashed line. The cwnd on path 1 allows

transmission of 2 MTU sized TPDUs (TSNs 20458 and 20459). The cwnd on path 2 is

127162 bytes, but the Maxburst parameter [RFC4960] limits the sender to transmit

 88

only 4 MTU sized TPDUs − TSNs 20460-20463. Once the sender transmits data on

both paths, RtxQ size increases to ~8.6K, shown by point C. Subsequent SACKs allow

more data transmission and at point D the sender’s RtxQ reaches the maximum causing

the next instance of send buffer blocking.

Though CMT-NR-SACKs also incurs send buffer blocking (Figure 3.11),

nr-gap-acks free up RtxQ space allowing the sender to steadily clock out more data. A

constrained send buffer is better utilized, and the transmission is less bursty with NR-

SACKs than SACKs. The improved send buffer use contributes to throughput

improvements (discussed later).

3.5.2.2 Efficient Retransmission Queue Utilization

In Figure 3.9, CMT-SACKs’ RtxQ_Util worsens as send buffer blocking

increases (send buffer size decreases). As discussed earlier, in CMT-SACKs, send

buffer blocking prevents new data transmission until loss recovery ends. Lack of new

data transmission resulted in fewer and sometimes insufficient acks to trigger fast

retransmits. Consequently, blocked CMT-SACKs experienced more timeout recoveries

(RTOs) at heavy traffic loads than non-blocked CMT-SACKs (Figure 3.13). As the

send buffer is more constrained, the average number of RTOs increase, and the fraction

of transfer time spent in loss recovery increases. Longer loss recovery durations

increase the duration of inefficient RtxQ utilization, and bring down blocked CMT-

SACKs’ RtxQ_Util values compared to non-blocked (INF) CMT-SACKs’ RtxQ_Util.

On the other hand, CMT-NR-SACKs steadily clock out data, and do not

incur excessive RTOs during send buffer blocking. CMT-NR-SACKs’ mean number of

RTOs for 128K and 256K buffer sizes are similar to the INF case (Figure 3.13). To

summarize, send buffer blocking worsens CMT-SACKs’ RtxQ utilization. Blocked

 89

CMT-SACKs’ inefficient send buffer usage increases the number of timeout

recoveries, and degrades throughput when compared to CMT-NR-SACKs.

Figure 3.13: Mean Number of RTOs during Heavy Cross-traffic in CMT

3.5.2.3 Throughput

When the send buffer never limits RtxQ growth (INF send buffer size),

both CMT-SACKs and CMT-NR-SACKs do not experience send buffer blocking, and

perform similarly (Figure 3.14). However, CMT-SACKs achieve the same throughput

as CMT-NR-SACKs at the cost of larger RtxQ sizes.

Using terminology defined in Section 3.4.2, the average RtxQ size, RtxQ

over the entire trace collection period (T) is calculated as, () .TrtRtxQ ii ÷×= ∑

Figure 3.15 plots CMT-SACKs vs. CMT-NR-SACKs RtxQ for the INF case. As path 1

cross-traffic load increases, the bandwidth available for the CMT flow decreases, and

CMT-NR-SACKs’ RtxQ decreases (Figure 3.15).

 90

Figure 3.14: CMT-SACKs vs. CMT-NR-SACKs Throughput

Figure 3.15: CMT-SACKs vs. CMT-NR-SACKs Average RtxQ Size

Similarly, CMT-SACKs’ RtxQ decreases as traffic load increases from low to mild.

However, a different factor dominates and increases CMT-SACKs’ RtxQ during

medium and heavy traffic conditions. Note that RtxQ growth is never constrained in the

INF case, enabling the CMT sender to transmit as much data as possible on path 2

 91

while recovering from losses on path 1. At medium and heavy cross-traffic loads, loss

recovery durations increase due to increased timeout recoveries, and the CMT-SACKs

sender transmits more data on path 2 compared to mild traffic conditions. This factor

increases CMT-SACKs’ RtxQ during medium and heavy traffic conditions.

Going back to Figure 3.14, when the send buffer size limits RtxQ growth,

CMT-NR-SACKs’ efficient RtxQ utilization enables CMT-NR-SACKs to perform

better than CMT-SACKs. The throughput improvements in CMT-NR-SACKs increase

as conditions that aggravate send buffer blocking increases. I.e., NR-SACKs improve

throughput more as send buffer becomes more constrained and/or when the paths

become more asymmetric in the congestion levels. Alternately, CMT-NR-SACKs

achieve similar throughput as CMT-SACKs using smaller send buffer sizes. For

example, during mild, medium and heavy path 1 cross-traffic load, CMT-NR-SACKs

with 128K send buffer performs similar or better than CMT-SACKs with 256K send

buffer. Also, CMT-NR-SACKs with 256K send buffer performs similar to CMT-

SACKs with larger (unconstrained) send buffer.

3.6 Conclusion, Ongoing and Future Work

This work investigated the effects of existing transport layer SACK

mechanism when data received out-of-order is non-renegable. We conclude that

SACKs cause inevitable sender memory wastage, which worsens as data reordering

and loss recovery durations increase. We proposed a new ack mechanism, Non-

Renegable Selective Acknowledgments (NR-SACKs) for SCTP, which provides the

transport receiver with the option to convey non-renegable information on some or all

out-of-order data. The concept of NR-SACKs is applicable to any reliable transport

employing SACKs and/or provides out-of-order data delivery.

 92

Note that a transfer employing NR-SACKs never performs worse than a

transfer using SACKs. When out-of-order data is non-renegable, NR-SACKs perform

better than SACKs. Simulations confirmed that in both SCTP and CMT, NR-SACKs

utilize send buffer and RtxQ space most efficiently. Send buffer blocking in CMT with

SACKs adversely impacts end-to-end performance, while efficient send buffer use in

CMT with NR-SACKs alleviates send buffer blocking. Therefore, NR-SACKs not only

reduce sender’s memory requirements, but also improve throughput in CMT. The only

negative with NR-SACKs is the added complexity of implementation, and the extra

overhead to generate and process NR-SACKs. We argue these negatives are negligible.

3.6.1 IETF Internet Draft

We plan to standardize the design and processing specifics of the SCTP

NR-SACK chunk, and have proposed the same as an IETF Internet Draft in the

transport area working group (TSVWG) [Natarajan 2008a]. The details of the NR-

SACK chunk and the simulation results were presented at the 71
st
 and 72

nd
 IETF

meetings. Based on the positive feedback from the TSVWG members, the proposal has

been modified to be an experimental item, and is currently being implemented in the

reference SCTP implementation on FreeBSD. As future work, we also plan on

conducting empirical studies to gather information on how often reneging occurs, if

any, in practice.

3.6.2 NR-SACKs Implementation in FreeBSD

Ertugrul Yilmaz is heading the on-going effort to implement NR-SACKs in

the FreeBSD SCTP stack. This effort involves defining the NR-SACK chunk structure,

modifying the sender and receiver code to generate and process NR-SACKs,

 93

respectively, and defining a test suite to debug the NR-SACKs implementation. In the

future, we plan to draw on the FreeBSD implementation to compare SACKs vs. NR-

SACKs performance for both SCTP and CMT.

 94

Chapter 4

CMT PERFORMANCE DURING FAILURE

This chapter discusses the third problem – Concurrent Multipath Transfer

(CMT) performance during path failures. Section 4.1 motivates this research by

discussing the commonness of link failures in the Internet. Section 4.2 overviews

CMT’s failure detection process, and discusses how CMT’s throughput degrades

during path failures. Section 4.3 details a proposed solution to the problem – CMT

with the “potentially-failed” destination state (CMT-PF). Sections 4.4 and 4.5 present

simulation based evaluations of CMT vs. CMT-PF during failure and congestion,

respectively. Finally, Section 4.6 concludes and presents ongoing, future and related

work.

4.1 Motivation

As discussed in Chapter 1, SCTP natively supports transport layer

multihoming for fault-tolerance purposes. Concurrent Multipath Transfer (CMT)

[Iyengar 2006] is an experimental SCTP extension that assumes multiple independent

paths between multihomed end points, and exploits the independent paths for

simultaneous transfer of new data (see Chapter 1).

Path failures arise when a router or a link connecting two routers fails due

to planned maintenance activities or unplanned accidental reasons such as hardware

malfunction or software error. Ideally, the routing system detects unplanned link

failures, and reconfigures the routing tables to avoid routing traffic via the failed link.

 95

Using data from an ISP’s routing logs, [Markopoulou 2004] observes that link failures

are part of everyday operation. Around 80% of the failures are unplanned, and the

time-to-repair for any particular failure can be on the order of hours. Existing research

also highlights problems with Internet backbone routing that result in long route

convergence times. [Labovitz 2000] shows that Internet's interdomain routers may take

as long as tens of minutes to reconstruct new paths after a failure. During these delayed

convergences, end-to-end Internet paths experience intermittent loss of connectivity in

addition to increased packet loss, latency, and reordering.

Using probes, [Paxson 1997] and [Zhang 2000] find that “significant

routing pathologies” prevent selected pairs of hosts from communicating about 1.5% to

3.3% of the time. Importantly, the authors also find that this trend has not improved

with time. Reference [Labovitz 1999] examines routing table logs of Internet

backbones to find that 10% of all considered routes were available less than 95% of the

time, and more than 65% of all routes were available less than 99.99% of the time. The

duration of these path outages were heavy-tailed and about 40% of path outages took

more than 30 minutes to repair. In [Chandra 2001], the authors use probes to confirm

that failure durations are heavy-tailed, and report that 5% of detected failures last more

than 2.75 hours, and as long as 27.75 hours. The pervasiveness of path failures in

practice motivates us to study their impact on CMT.

4.2 CMT Performance during Path Failure

This section gives an overview of CMT’s failure detection procedure and

describes how CMT’s performance suffers during path failures.

 96

4.2.1 Failure Detection in CMT

Since CMT is an extension to SCTP, CMT retains SCTP’s failure

detection process. A CMT sender uses a tunable failure detection threshold called

Path.Max.Retrans (PMR) [RFC4960]. As shown in the finite state machine of Figure

4.1, a destination is in one of the two states – active or failed (inactive). A destination

is active as long as acks come back for data or heartbeats (probes) sent to that

destination. When a sender experiences more than PMR consecutive timeouts while

trying to reach a specific active destination, that destination is marked as failed. Only

heartbeats (i.e., no data) are sent to a failed destination. A failed destination returns to

the active state when the sender receives a heartbeat ack. RFC4960 proposes a default

PMR value of 5, which translates to at least 63 seconds (6 consecutive timeouts) for

failure detection.

Figure 4.1: Failure Detection in CMT

4.2.2 Receive Buffer Blocking in CMT

[Iyengar 2005] explores the “rbuf blocking” problem in CMT, where

TPDU losses throttle data transmission once the CMT receiver’s buffer (rbuf) is filled

 97

with out-of-order data. Even though the cwnd would allow new data to be transmitted,

rbuf blocking (i.e., flow control) stalls the sender, causing throughput degradation.

Rbuf blocking problem cannot be eliminated in CMT [Iyengar 2005]. To

reduce rbuf blocking’s negative impact during congestion, [Iyengar 2005] proposes

different retransmission policies that use heuristics for faster loss recovery. These

policies consider different path properties such as loss rate and delay, and try to reduce

rbuf blocking by sending retransmissions on a path with lower loss or delay. In practice,

the loss rate of a path can only be estimated, so [Iyengar 2005] proposed the

RTX_SSTHRESH policy, where retransmissions are sent on the path with the largest

slow-start threshold. Since RTX_SSTHRESH outperformed other retransmission

policies during congestion, [Iyengar 2005] recommended the RTX_SSTHRESH policy

for CMT. However, [Iyengar 2005] did not consider CMT performance during path

failures. As we shall show, CMT with the RTX_SSTHRESH policy suffers from

significant rbuf blocking during path failures.

4.2.3 Rbuf Blocking during Path Failure

CMT’s failure-induced rbuf blocking problem is modeled via the timeline

shown in Figure 4.2. The CMT sender (A) has two interfaces – A1 and A2, and

transmits data to a receiver (B) with two interfaces – B1 and B2. All four addresses are

bound in the CMT association such that the sender employs the 2 independent paths –

path 1 and path 2, for data transmission. Ci and Oi denote the cwnd in number of

MTUs, and the number of outstanding TPDUs, respectively, on path i. The initial cwnd

for each path=2 MTUs. The data transfer example also assumes the following for easier

illustration: (a) each SCTP PDU contains a single data chunk resulting in a one-to-one

 98

correspondence between an SCTP PDU and TSN, and (b) each SCTP PDU is MTU-

sized.

In Figure 4.2, a SACK labeled <Sa, b-c; Rd> acknowledges all TSNs upto

and including the cumulative TSN value of a, in-order arrival of TSNs b through c

(missing report for TSNs a+1 through b-1), and an advertised receiver window1

capable of buffering d more TSNs. On receiving a SACK, sender A subtracts the

number of outstanding TSNs from the advertised receiver window, and calculates the

amount of new data that can be sent without overflowing the receive buffer. The

transport layer receive buffer for this example can hold a maximum of 5 TSNs, and its

contents are listed after the reception of every TSN.

In the example, both forward and reverse paths between A1 and B1 fail just

after TSN 2 enters the network. Hence, TSN 2 and the SACK for TSN 1 are presumed

lost. TSNs 3 and 4 arrive out of order, each trigger a SACK, and are stored in the

receive buffer. The CMT sender uses the Cwnd Update for CMT (CUC) algorithm

[Iyengar 2006] to decouple a path’s cwnd evolution and data ordering. On receiving

the SACK triggered by TSN 3, the sender uses CUC to increment C2 to 3, and

decrement O1 and O2 to 1. The available receive buffer space for new data is calculated

as advertised receive window (4) – total outstanding TSNs in the association (2). This

available receive buffer space allows the sender to transmit two TSNs, 5 and 6, on path

1 Advertised receiver window (a_rwnd) has different connotations in TCP and SCTP.

TCP’s a_rwnd denotes the available memory in rbuf, starting from the left edge of

received sequence space [RFC793]. SCTP’s a_rwnd denotes the available memory

after considering all TPDUs not yet delivered to the application layer, including the

out-of-order TPDUs [RFC4960].

 99

2. On path 1, even though 1 MTU worth of new data can be transmitted (C1 > O1),

rbuf blocking, i.e., flow control stalls data transmission.

Figure 4.2: Rbuf Blocking in CMT during Failure

On receiving the SACK triggered by TSN 4, the sender increases C2 to 4,

and decreases O2 to 2. Lack of receive buffer space (advertised receive window – total

 100

number of outstanding TSNs) continues to prevent transmission of new data on path 2.

Since O2 < C2, the SACKs triggered by TSNs 5 and 6 do not increment C2 [RFC4960]

(discussed later). But these SACKs decrement O2. Even though O2 < C2, rbuf blocking

stalls data transmission on path 2.

Path 1’s retransmission timer expires and the sender detects the loss of

TSN 2. Note that this timeout is the first of the 6 (PMR = 5) consecutive timeouts

needed to detect path 1 failure. After this timeout, C1 is set to 1, O1 is set to 0, and path

1’s RTO value is doubled [RFC4960]. The CMT sender employs the

RTX_SSTHRESH policy and retransmits TSN 2 on path 2. Data cannot be transmitted

on path 1 due to rbuf blocking.

On receiving TSN 2, the receiver delivers data from TSNs 2-6 to the

application. The corresponding SACK advertises a receive window of 5 TSNs, and

concludes the current rbuf blocking instance. The sender now transmits TSN 7 on path

1, and TSNs 8-11 on path 2. Due to path 1 failure, TSN 7 is lost, and TSNs 8-11 are

received out-of-order and stored in the receiver’s buffer. The SACK triggered by TSN

8 increments C2 to 5 and decrements O2 to 3. The available receive buffer space for

new data=0, triggering another instance of rbuf blocking, which stalls data transmission

until TSN 7 is successfully retransmitted. Note that the loss of TSN 7 can be recovered

only after a timeout on path 1, and due to the exponential backoff algorithm, path 1’s

current RTO value is twice the previous value.

To generalize, sender A transmits new data on path 1 until (PMR + 1)

number of consecutive timeouts mark path 1 as failed. During failure detection, data

transmitted on non-failed path(s) arrive out-of-order, resulting in consecutive rbuf

blocking instances. Each rbuf blocking instance concludes when the sender retransmits

 101

lost TPDUs after an RTO. The length of an rbuf blocking instance is therefore

proportional to the failed path’s RTO. Also, each rbuf blocking instance is

exponentially longer than the previous instance due to the exponential backoff of RTO

values.

Rbuf blocking results in the following side-effects that further degrade

CMT’s throughput:

Preventing congestion window growth: Note that rbuf blocking prevents

the sender from fully utilizing the cwnd. When the amount of outstanding data is less

than the cwnd, RFC4960 prevents the sender from increasing the cwnd for future

SACKs. For example, in Figure 4.2, when the sender receives the SACKs for TSNs 5,

6, 9-11, arrive, the sender cannot increment C2.

Reducing congestion window: To reduce burstiness in data transmission,

an SCTP sender employs a congestion window validation algorithm similar to

[RFC2861]. During every transmission, the sender uses the MaxBurst parameter

(recommended value of 4) as follows:

 If ((outstanding + MaxBurst * MTU) < Cwnd)

 Cwnd = outstanding + MaxBurst * MTU

This algorithm reduces the cwnd during idle periods so that at the next

sending opportunity, the sender cannot transmit more than (MaxBurst * MTU) bytes of

data. During rbuf blocking, the amount of outstanding data can become smaller than

the cwnd. In such cases, the above rule is triggered and further reduces the cwnd. In

Figure 4.2, when the SACK triggered by TSN 11 arrives at the sender, O2 decrements

to 0. The window validation algorithm causes C2 to be reduced to 4 (O2 (0) +

MaxBurst (4)).

 102

4.3 CMT with Potentially Failed Destination State

[Caro 2005] recommends lowering the value of PMR for SCTP flows in

Internet-like environments. Correspondingly, lowering the PMR for CMT flows

reduces the number of rbuf blocking episodes during failure detection. However,

lowering the PMR is an incomplete solution to the problem since a CMT flow is rbuf

blocked for any PMR > 0 (discussed later). Also, a tradeoff exists on deciding the value

of PMR – a lower value reduces rbuf blocking but increases the chances of spurious

failure detection, whereas a higher PMR increases rbuf blocking and reduces spurious

failure detection in a wide range of environments.

4.3.1 Details of CMT-PF

To mitigate the recurring instances of rbuf blocking during path failures,

our proposed solution introduces a new destination state called “potentially-failed” in

the FSM of Figure 4.1. The new FSM, shown in Figure 4.3, is based on the rationale

that loss detected by a timeout implies either severe congestion or failure en route.

After a single timeout on a path, a sender is unsure, and marks the corresponding

destination as “potentially-failed” (PF). A PF destination is not used for data

transmission or retransmission. CMT’s retransmission policies are augmented to

include the PF state. CMT with the new set of retransmission policies is called CMT-

PF [Natarajan 2006b]. Details of CMT-PF are:

• If a TPDU loss is detected by RFC4960’s threshold number of missing

reports, one of CMT’s current retransmission policies, such as

RTX_SSTHREH, is used to select an active destination for “fast”

retransmissions.

 103

• If a TPDU loss is detected by a timeout, the corresponding destination

transitions to the PF state (Figure 4.3). The sender does not transmit data

to a PF destination. However, when all destinations are in the PF state, the

sender transmits data to the destination with the least number of

consecutive timeouts. In case of tie, data is sent to the last active

destination. This exception ensures that CMT-PF does not perform worse

than CMT when all paths have potentially failed (discussed further in

Section 4.6).

Figure 4.3: CMT-PF Failure Detection (PMR > 0)

• Heartbeats are sent to PF destination(s) with an exponential backoff of

RTO after every timeout until either (i) a heartbeat ack transitions the

destination back to the active state, or (ii) an additional PMR consecutive

timeouts confirm the path failure, upon which the destination transitions to

the failed state, and heartbeats are sent with a lower frequency as described

in RFC4960.

 104

• Once a heartbeat ack indicates a PF destination is alive, the destination’s

cwnd is set to either 1 MTU (CMT-PF1), or 2 MTUs (CMT-PF2), and the

sender follows the slow start algorithm to transmit data to this destination.

Detailed analysis on the cwnd evolution of CMT-PF1 vs. CMT-PF2 can be

found in Section 4.6.

• Acks for retransmissions do not transition a PF destination to the active

state, since a sender cannot determine whether the ack was for the original

transmission or the retransmission(s).

4.3.2 CMT-PF Data Transfer during Failure

Figure 4.4 depicts an analogous CMT-PF timeline for the scenario

described in Figure 4.2. All events are identical between the two figures up to the first

timeout on path 1. After this timeout, the CMT-PF sender transitions path 1 to the PF

state, transmits a heartbeat on path 1, and retransmits TSN 2 on path 2. The heartbeat

loss on the failed path (path 1) is detected on the next timeout. This timeout is the

second of (PMR + 1) consecutive timeouts required to detect path 1 failure.

Meanwhile, receiver buffer space is released once the retransmitted TSN 2 is received

on path 2. From this point onwards, data is transmitted only on path 2, without further

rbuf blocking.

4.4 CMT vs. CMT-PF Evaluations during Failure

CMT-PF was implemented in the University of Delaware’s SCTP/CMT

module for the ns-2 network simulator [NS-2, Ekiz 2007]. This section discusses the

performance of CMT vs. CMT-PF during permanent and short-term failure scenarios.

 105

Figure 4.4: CMT-PF Reduces Rbuf Blocking during Failure

In the simulation topology (Figure 4.5), the multihomed sender, A, has two

independent paths to the multihomed receiver, B. The edge links between A (or B) to

the routers represent last-hop link characteristics. The end-to-end one-way delay is

45ms on both paths, representing typical coast-to-coast delays experienced by

significant fraction of the flows in the Internet [Shakkottai 2004]. We note that the final

conclusions regarding CMT vs. CMT-PF are independent of the actual bandwidth and

delay configurations used in the topology, as long as these configurations are similar on

both paths.

 106

Figure 4.5: Topology for Failure Experiments

The sender A transfers an 8MB file to receiver B using both path 1 and

path 2. Path 2 fails during the file transfer; this failure is simulated by bringing down the

bidirectional link between routers R20 and R21. Unless stated otherwise, the PMR=5,

rbuf=64KB, and both paths experience Bernoulli losses with low loss rate (1%). We

acknowledge that the Bernoulli loss model is less realistic than the nature of losses

observed in the Internet. Since evaluations in this Section assume failure scenarios and

rare loss events (1% or no loss), we expect the final conclusions between CMT vs.

CMT-PF to remain similar even with a more realistic loss model

4.4.1 Evaluations during Permanent Failure

In the following experiments, path 2 fails permanently 5 seconds after the

file transfer begins.

 107

4.4.1.1 Evaluations during Single Permanent Failure (without Congestion)

This experiment highlights the essential differences between CMT and

CMT-PF during a permanent path failure. To eliminate the influence of congestion-

induced rbuf blocking, the simulation is setup such that the sender does not experience

any congestion losses on either paths.

Figure 4.6: CMT vs. CMT-PF during Permanent Failure

The path 2 failure causes back-to-back timeouts at the sender. Both

senders (CMT and CMT-PF) experience the first timeout on path 2 at ~6 seconds, and

detect the failure after 6 back-to-back timeouts (PMR=5), at ~69 seconds (Figure 4.6).

During the failure detection period, CMT continues to transmit data on path 2,

experiencing consecutive timeouts and recurring rbuf blocking instances, while CMT-

PF does not. CMT’s throughput suffers until 69 seconds (until failure detection), after

which CMT uses path 1 alone and completes the file transfer at around 80 seconds. On

the other hand, CMT-PF transitions path 2 to PF state after the first timeout, and

transmits only heartbeats on path 2 avoiding further rbuf blocking. Reduced rbuf

 108

blocking helps CMT-PF to complete the file transfer (~15 seconds) using path 1 alone,

even before path 2 failure is detected.

4.4.1.2 Evaluations during Varying Failure Detection Thresholds (PMR Values)

To achieve faster yet robust failure detection, [Acaro 2005] argues for

varying the PMR based on a network’s loss rate, and suggests PMR=3 for the Internet.

Since the sender detects path failure after (PMR+1) consecutive timeouts, CMT’s

failure-induced rbuf blocking varies as the PMR varies. Let,

Tf = time when path 2 fails, and

Td = time when the sender detects path 2 failure (after PMR+1

consecutive timeouts).

The goodput during failure detection (G) is defined as,

G = (application data received between Tf and Td ÷ (Td – Tf)).

Figure 4.7 plots CMT vs. CMT-PF average goodput (G) (in KB/second)

with 5% error margin, for varying PMR values. The dashed line in Figure 4.7 denotes

the maximum attainable goodput of an SCTP file transfer (application data received ÷

transfer time) using path 1 alone.

When the failure detection threshold is most aggressive (PMR=0), both

CMT and CMT-PF detect path 2 failure after the first timeout. The senders experience

similar rbuf blocking during this failure detection period and perform similarly (Figure

4.7). As PMR increases, the number of rbuf blocking instances during failure detection

increases, resulting in increasing performance benefits from CMT-PF. As seen in Figure

4.7 as PMR and the failure detection duration increases, CMT-PF’s goodput increases,

whereas CMT’s goodput decreases. Starting from PMR=3, CMT-PF’s goodput is

comparable or equal to the maximum attainable SCTP goodput. To conclude, during

 109

permanent failure, CMT-PF performs as well as CMT for PMR=0, and better than

CMT for PMR > 0.

Figure 4.7: CMT vs. CMT-PF under Varying PMR Values

4.4.2 Evaluations during Short-term Failure

In the following experiments, path 2 (Figure 4.5) fails temporarily during

the file transfer between A and B. The link between routers R20 and R21 goes down

after 5 seconds from the start of file transfer, and is restored 5 seconds later.

4.4.2.1 Evaluations during Single Short-term Failure (without Congestion)

This experiment highlights how CMT and CMT-PF differ during a short-

term failure. Neither path experiences any congestion loss. The short-term failure is

long enough for the sender (CMT or CMT-PF) to experience three back-to-back

timeouts on path 2. As in the failure case, CMT transmits data on path 2 after each of

these timeouts, while CMT-PF does not. Therefore, CMT suffers from consecutive

rbuf blocking and lower throughput than CMT-PF (Figure 4.8). Once path 2 recovers

 110

at 10 seconds, CMT’s data and CMT-PF’s heartbeat transmissions on the path (after

the 3
rd

 timeout − ~12.5 seconds) are successful, and both CMT and CMT-PF complete

the file transfer without further rbuf blocking.

Figure 4.8: CMT vs. CMT-PF during Short-term Failure

4.4.2.2 Evaluations during Varying Receive Buffer Sizes

This second short-term failure experiment analyzes CMT vs. CMT-PF

under varying levels of receive buffer constraints (receive buffer sizes). Let,

Tf = time when path 2 fails, and

Tr = time when path 2 is restored.

The goodput during the short-term failure (G) is defined as,

G = (application data received between Tf and Tr ÷ (Tr – Tf)).

Figure 4.9 plots CMT vs. CMT-PF average goodput (G) (in KB/second),

with 5% error margin. As the receive buffer becomes more constrained, i.e., as rbuf

size decreases, the chances of rbuf blocking increases. Consequently, CMT-PF’s ability

 111

to alleviate rbuf blocking is more valuable at smaller rbuf sizes, and CMT-PF performs

increasingly better than CMT as rbuf size decreases.

Figure 4.9: CMT vs. CMT-PF under Varying Rbuf Sizes

4.5 CMT vs. CMT-PF Evaluations during Congestion

The evaluations in the previous section confirmed that transitioning a

destination to the PF state and avoiding data transmission on the PF path alleviates

failure-induced rbuf blocking. During permanent and short-term failure scenarios,

CMT-PF performed similar or better but never worse than CMT. We now investigate

how the PF state transition fares when timeouts are caused by non-failure scenarios

such as congestion [Natarajan 2008b].

Consider the case when timeout on a path, say p, is due to congestion

rather than failure. Depending on the rbuf size and the different paths’ characteristics,

the transport sender may or may not be rbuf blocked until and/or after the timeout

expiration, leading to the following two scenarios:

 112

Sender is limited by rbuf: Both CMT and CMT-PF senders cannot transmit

new data until the rbuf blocking is cleared, i.e., until after successful retransmission(s)

of lost data. The only difference is that CMT considers p for retransmissions, whereas

CMT-PF transmits a heartbeat on p, and tries to retransmit lost data on other active

paths. (If all destinations are in the PF state, the CMT-PF sender transitions the

destination with the least number of consecutive timeouts to the active state (Section

4.3), and retransmits lost data to this new active destination.)

Sender is not limited by rbuf: Assume that SCTP PDUs (data or

heartbeats) transmitted after the first timeout on path p successfully reach the receiver.

In CMT, the cwnd allows 1 MTU worth of new data transmission on p (Figure 4.10),

and the corresponding SACK increments path p’s cwnd by 1 MTU. At the end of 1

RTT after the timeout (shown by point A in Figure 4.10), (i) the cwnd on p=2 MTUs,

and (ii) 1 MTU worth of new data has been successfully sent on p.

CMT-PF transmits a heartbeat on p and new data on other active path(s).

(Note: if all destinations are marked PF, the CMT-PF sender transitions a PF

destination to the active state.) Path p is marked active when the heartbeat ack reaches

the sender. Therefore, after 1 RTT from the timeout (shown by point B in Figure 4.11),

(i) cwnd on p =1 MTU (CMT-PF1), and (ii) no new data has been sent on p.

Comparing points A and B in Figures 4.10 and 4.11, respectively, it can be seen that

CMT has a 1 RTT “lead” in path p’s cwnd growth. Assuming no further losses on p,

after n RTTs, the cwnd on p will be 2n with CMT, and 2n-1 with CMT-PF1.

 113

Figure 4.10: CMT Data Transfer during no Rbuf Blocking

Figure 4.11: CMT-PF1 Data Transfer during no Rbuf Blocking

 114

Figure 4.12: CMT-PF2 Data Transfer during no Rbuf Blocking

To avoid the 1 RTT lag in CMT-PF1’s cwnd evolution, we propose CMT-

PF2 which initializes path p’s cwnd to 2 MTUs after receiving a heartbeat ack (shown

by point C in Figure 4.12). Assuming that today’s Internet router queues deal with

packets rather than bytes, the successful routing of a heartbeat PDU is equivalent to the

successful routing of a data PDU. Hence, a heartbeat ack can be used to clock the

transport layer sender in the same way as a data ack. In the following sections, any

reference to CMT-PF implies CMT-PF2.

4.5.1 Simulation Setup

The simulation evaluations consider a dual-dumbbell topology with a more

realistic loss model, as shown in Figure 4.13. Each router, R, is attached to five edge

nodes. Dual-homed edge nodes A and B are the transport (CMT or CMT-PF) sender

and receiver, respectively. The other edge nodes are single-homed, and introduce

cross-traffic that instigates bursty periods of congestion and bursty congestion losses at

the routers. Their last-hop propagation delays are randomly chosen from a uniform

 115

distribution between 5-20 ms, resulting in end-to-end one-way propagation delays

ranging ~35-65ms [Shakkottai 2004]. All links (both edge and core) have a buffer size

twice the link's bandwidth-delay product, which is a reasonable setting in practice.

Figure 4.13: Topology for Non-failure Experiments

Each single-homed edge node has eight traffic generators, introducing

cross-traffic with a Pareto distribution. The cross-traffic packet sizes are chosen to

resemble the distribution found on the Internet: 50% are 44B, 25% are 576B, and 25%

are 1500B [CAIDA, Fraleigh 2003]. The cross-traffic flows start at random times

during the initial 5 seconds of the simulation. After an initial warm-up period of 10

seconds, sender A transmits a 32MB file to receiver B over paths 1 and 2. The result is

a data transfer between A to B, over a network with self-similar cross-traffic, which

resembles the observed nature of traffic on data networks [Leland 1993].

 116

For both CMT and CMT-PF flows, rbuf=64KB, PMR=5, and loss rates are

controlled by varying the cross-traffic load. The graphs in the subsequent discussions

plot the average goodput (file size ÷ transfer time) of CMT vs. CMT-PF with 5% error

margin.

4.5.2 Evaluations during Symmetric Loss Conditions

In the symmetric loss case, the aggregate cross-traffic load on both paths

are similar and vary from 40%-100% of the core link’s bandwidth.

4.5.2.1 Evaluations during Symmetric Path Delays

Both CMT and CMT-PF perform similarly (Figure 4.14) during low loss

rates (i.e., low cross-traffic), since, most of the TPDU losses are recovered via fast

retransmits as opposed to timeout recoveries.

Figure 4.14: CMT vs. CMT-PF during Symmetric Loss and RTT Conditions

As the cross-traffic load and loss rate increases, the number of timeouts on each path

increases. Under such conditions, the probability that both paths are simultaneously

 117

marked “potentially-failed” increases in CMT-PF. To ensure that CMT-PF does not

perform worse when all destinations are marked PF, CMT-PF transitions the

destination with the smallest number of consecutive timeouts to the active state,

allowing data to be sent to that destination (refer to Section 4.3). This modification

guarantees that CMT-PF performs on par with CMT even when both paths experience

high loss rates (Figure 4.14).

4.5.2.2 Evaluations during Asymmetric Path Delays

Under symmetric loss conditions, we now study how a path’s RTT affects

the throughput differences between CMT and CMT-PF. Note that any difference

between CMT and CMT-PF transpires only after a timeout on a path. Assume that a

path experiences a timeout event, and the next TPDU loss on the path takes place after

n RTTs. After the timeout, CMT slow starts on the path, and the number of TPDUs

transmitted on the path at the end of n RTTs = 1 + 2 + 4 … + 2n = (2(n +1) – 1).

CMT-PF uses the first RTT for a heartbeat transmission, and slow starts with initial

cwnd=2 after receiving the heartbeat-ack. In CMT-PF, the number of TPDUs

transmitted by end of n RTTs on the path = 0 + 2 + 4 … + 2n = (2(n +1) – 2). Thus,

after n RTTs, CMT transmits 1 TPDU more than CMT-PF, and the 1 TPDU difference

is unaffected by the path’s RTT. Therefore, when paths experience symmetric RTTs

(a.k.a. symmetric RTT conditions), we expect the performance ratio between CMT and

CMT-PF to remain unaffected by the RTT value.

We now consider a more interesting scenario when the independent end-

to-end paths experience symmetric loss rates, but asymmetric RTT conditions. That is,

path 1’s RTT=x sec, and path 2’s RTT=y sec (x ≠ y). How do x and y impact CMT vs.

 118

CMT-PF performance? More importantly, does CMT-PF perform worse when the

paths have asymmetric RTTs?

Using topology in Figure 4.5, we performed the following Bernoulli loss

model experiment to gain insight. The Bernoulli loss model simulations, while less

realistic, take much less time than cross-traffic ones, and initial investigations revealed

that both loss models resulted in similar trends between CMT and CMT-PF. Path 1’s

one-way propagation delay was fixed at 45ms while path 2’s one-way delay varied as

follows: 45ms, 90ms, 180ms, 360ms, and 450ms. Both paths experience identical loss

rates ranging from 1%-10%.

Figure 4.15: CMT vs. CMT-PF Goodput Ratios during Symmetric Loss and

Asymmetric RTT Conditions

Figure 4.15 plots the ratio of CMT’s goodput over CMT-PF’s (relative

performance difference) with 5% error margin. As expected, both CMT and CMT-PF

perform equally well during symmetric RTT conditions. As the asymmetry in paths’

 119

RTTs increases, an interesting dynamic dominates and CMT-PF performs slightly

better than CMT (goodput ratios < 1).

Further investigation revealed the following about CMT vs. CMT-PF rbuf

blocking durations, shown in Figure 4.16. For each combination of path 2’s delay and

loss rate, Figure 4.16 plots the ratio of rbuf blocked durations (CMT over CMT-PF)

during timeout recoveries. As path 2 one-way delay and loss rate increases, the ratio

becomes increasingly greater than 1, signifying that a CMT sender suffers longer rbuf

blocking durations than CMT-PF.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

45 90 180 360 450

Path 2 One-way Delay (ms)

R
a
ti

o
 o

f
R

b
u

f
B

lo
c
k
e
d

 T
im

e
o

u
t

R
e
c
o

v
e
ry

D
u

a
ti

o
n

s
 (

C
M

T
/C

M
T

-P
F

)

6% Loss Rate

7% Loss Rate

8% Loss Rate

9% Loss Rate

10% Loss Rate

Figure 4.16: CMT vs. CMT-PF Rbuf Blocking Durations

Note that rbuf blocking depends on the frequency of loss events (loss rate),

and the duration of loss recovery. As loss rate increases, the probability that a sender

experiences consecutive timeout events on the path increases. After the first timeout,

CMT-PF transitions the path to PF, and avoids data transmission on the path (as long

as another active path exists) until a heartbeat-ack confirms the path as active. But, a

CMT sender suffers back-to-back timeouts on data sent on the path, with exponential

 120

backoff of timeout recovery period. As path 2’s RTT increases, path 2’s RTO

increases, and the back-to-back timeouts on data result in longer rbuf blocking

durations in CMT than CMT-PF. Therefore, as path 2‘s RTTs increase, CMT’s

goodput degrades more than CMT-PF’s, and the goodput ratio decreases (Figure

4.15).

In summary, during symmetric loss conditions, CMT and CMT-PF

perform equally well when paths experience symmetric RTT conditions. As the RTT

asymmetry increases, CMT-PF demonstrates a slight advantage at higher loss rates.

4.5.3 Evaluations during Asymmetric Loss Conditions

In the asymmetric loss experiment, paths 1 and 2 experience different

cross-traffic loads. The aggregate cross-traffic load on path 1 is set to 50% of the core

link bandwidth, while on path 2 the load varies from 50%-100% of the core link

bandwidth.

Table 4.1: CMT vs. CMT-PF Mean Consecutive Data Timeouts on Path 2

As discussed in the previous sub-section, as path 2’s cross-traffic load

increases, the probability that a sender experiences back-to-back timeouts on path 2

increases. CMT suffers a higher number of consecutive timeouts on data (Table 4.1)

resulting in more extended rbuf blocking periods when compared with CMT-PF.

 121

Therefore, as path 2’s cross-traffic load increases, CMT-PF performs better than CMT

(Figure 4.18).

Figure 4.18: CMT vs. CMT-PF during Asymmetric Loss Conditions

Table 4.2: CMT vs. CMT-PF Mean Number of Transmissions

The asymmetric loss experiment also helps to understand the following

difference in CMT vs. CMT-PF’s transmission strategy. In CMT, RTX_SSTHRESH is

a retransmission policy, and is not applied to new data transmissions. In CMT-PF, a

path is marked PF after a timeout, and as long as active path(s) exist, CMT-PF avoids

retransmissions on the PF path. Once the retransmissions are all sent, CMT-PF’s data

 122

transmission strategy is applied to new data, and CMT-PF avoids new data

transmissions on the PF path. As shown in Table 4.2, when compared to CMT, CMT-

PF reduces the number of (re)transmissions on the higher loss rate path 2 and

(re)transmits more on the lower loss rate path 1. This transmission difference (ratio of

transmissions on path 1 over path 2) between CMT-PF and CMT increases as the paths

become more asymmetric in their loss conditions.

In summary, CMT-PF does not perform worse than CMT during

asymmetric path loss conditions. In fact, CMT-PF is a better transmission strategy

than CMT, and performs better as the asymmetry in path loss increases.

4.6 Conclusion, Ongoing and Related Work

Using simulations, we demonstrated that retransmission policies using

CMT with a “potentially-failed” destination state (CMT-PF) outperform CMT during

permanent and short-term failures. During permanent failures, CMT-PF employs a

better failure detection process than CMT even under aggressive failure detection

thresholds. Investigations during symmetric loss conditions revealed that CMT-PF

performs as well as CMT during symmetric path RTTs, and slightly better when the

paths experience asymmetric RTT conditions. Also, CMT-PF employs a better

transmission strategy than CMT during asymmetric loss conditions.

Our evaluations conclude that CMT-PF (i) reduces rbuf blocking during

failure scenarios, and (ii) performs on par or slightly better than CMT during non-

failure scenarios. Since our findings demonstrate CMT-PF performs better or similar

but never worse than CMT, we recommend CMT be replaced by CMT-PF in existing

and future implementations and RFCs.

 123

4.6.1 CMT-PF Implementation in FreeBSD

Joeseph Szymanski extended the FreeBSD CMT implementation to include

CMT-PF. The following emulation experiments were performed using this FreeBSD

implementation.

Figure 4.19: Emulation Topology for CMT vs. CMT-PF Experiments

The experimental topology, shown in Figure 4.19, consists of three nodes

running FreeBSD 7 ─ a client node, a server node, and a third node running the

Dummynet traffic shaper [Rizzo 1997]. The server and client nodes are connected by

two independent paths, with symmetric bandwidth and propagation delay

characteristics. The paths also experience Bernoulli losses, with loss rates varying from

0%-10%. The forward and reverse queue sizes for both paths are set to 1000KB. The

transport layer receive window=64KB, and PMR=5. At time t=0, the server initiates a

bulk file transfer to the client.

 124

4.6.1.1 Single Failure Scenario

To validate the behavioral differences between CMT and CMT-PF, we

emulated a single failure scenario, similar to the scenario described in Section 4.4.1.1.

Neither paths experience loss in this experiment. At time t=5, path 2 fails; this failure is

emulated by setting up appropriate Dummynet rules to block all packets traversing on

path 2 to and from the client and server, respectively Figure 4.20 plots the cumulative

bytes received at the client during this transfer.

Figure 4.20: CMT vs. CMT-PF during Permanent Path Failure

Figure 4.20 can be compared with the corresponding simulation results

shown in Figure 4.6. As observed in the simulations, path 2 failure causes consecutive

timeouts and rbuf blocking instances in CMT, which prevents data transmission until

failure detection (~69 seconds). After failure detection, CMT transmits data using only

path 1, and finishes the file transfer ~80 seconds. The CMT-PF sender transitions path

 125

2 to PF after the first timeout (~6.5 seconds), and transmits only heartbeats on path 2.

Data transmission continues on path 1 and the file transfer finishes ~18 seconds.

4.6.1.2 Symmetric Loss Conditions

This experiment is designed to compare CMT vs. CMT-PF under varying

congestion levels. Similar to the scenario described in Section 4.5.2.1, paths 1 and 2

experience symmetric loss rates, varying from 1%-10%. Figure 4.21 plots the average

goodput (file size ÷ transfer time) of CMT vs. CMT-PF with 5% error margin.

Figure 4.21: CMT vs. CMT-PF during Symmetric Loss Conditions

As observed in the simulations (Figure 4.14), both CMT and CMT-PF

perform similarly during low loss rates, since, most of the TPDU losses are recovered

via fast retransmits as opposed to timeout recoveries. As loss rate increases, the

probability that both paths are simultaneously marked PF increases in CMT-PF. Unlike

the simulation results, CMT-PF performs slightly worse than CMT during such high

 126

loss conditions. Further investigation exposed few potential bugs in the CMT-PF

implementation. We are currently exploring these issues.

4.6.2 CMT-PF Applicability during Mobile Handovers

Mobile SCTP (mSCTP) [Koh 2004, Koh 2005] provides transport layer

features such as multihoming and dynamic address reconfiguration [RFC5061] to

achieve seamless handover in the context of heterogeneous wireless access networks.

[Budzisz 2008] investigates the possibility of using CMT to increase throughput of an

mSCTP association during handover scenarios. Since path failures are common in a

wireless network, [Budzisz 2008] proposes to employ CMT-PF instead of CMT.

Simulation evaluations presented in [Budzizs 2008] show that, while CMT-

PF’s performance during handover is sensitive to various parameters, CMT-PF reduces

rbuf blocking and improves throughput for parameters typical of today’s heterogeneous

wireless access networks.

 127

Chapter 5

SUMMARY AND CONCLUSIONS

This dissertation investigated three issues related to the transport layer and

proposed solutions to address these issues. This chapter summarizes our contributions

for each issue, and concludes the dissertation.

5.1 Issue (1): Web over Multistreamed Transport

We examined HOL blocking, and its effects on web response times in

HTTP over TCP. Since a multistreamed transport such as SCTP eliminates inter-object

HOL blocking, we hypothesized that SCTP streams would improve web response

times. We designed and implemented HTTP over SCTP in the open source Apache

server and Firefox browser. Emulation evaluations showed that persistent and pipelined

HTTP 1.1 transfers over a single multistreamed SCTP association improves web

response times when compared to similar transfers over a single TCP connection. The

difference in TCP vs. SCTP response times increases and is more visually perceivable in

the high latency and lossy browsing conditions found in the developing world.

The current workaround to improve an end user’s perceived WWW

performance is to download an HTTP transfer over multiple TCP connections. While

we expected multiple TCP connections to improve HTTP throughput, emulation

results showed that the competing and bursty nature of multiple TCP senders degraded

HTTP performance especially in low bandwidth last hops. In such browsing conditions,

 128

a single multistreamed SCTP association not only eliminated HOL blocking, but also

boosted throughput compared to multiple TCP connections.

Our body of work in HTTP over SCTP has triggered significant interest in

the area. We are currently working with the IETF to standardize our HTTP over SCTP

streams design.

5.2 Issue (2): Reneging and Selective Acks

We investigated how the existing SACK mechanism degrades end-to-end

performance when out-of-order data is non-rengable. Using simulation, we showed that

SACKs result in inevitable send buffer wastage, which increases as the frequency of

loss events and loss recovery durations increase. We introduced a fundamentally new

ack mechanism, Non-Renegable Selective Acknowledgments (NR-SACKs), for SCTP.

An SCTP receiver used NR-SACKs to explicitly identify some or all out-of-order data

as being non-renegable, allowing the sender to free up send buffer sooner than if the

data were only SACKed. Simulation comparisons showed that NR-SACKs enabled (i)

efficient utilization of a transport sender’s memory, and (ii) throughput improvements

in CMT. We are currently working with the IETF to standardize NR-SACKs for

SCTP.

5.3 Issue (3): CMT during Path Failures

We demonstrated that CMT suffers from significant throughput

degradation during permanent and short-term path failures. We introduced a new

destination state called the “Potentially Failed” (PF) state. CMT’s failure detection and

(re)transmission policies were augmented to include the PF state. The modified CMT,

called CMT-PF, outperformed CMT during failures − even under aggressive failure

 129

detection thresholds. During non-failure scenarios such as congestion, CMT-PF

performed on par or better but never worse than CMT. In light of these findings, we

recommend CMT be replaced by CMT-PF in existing and future CMT implementations

and RFCs.

 130

REFERENCES

[Almeida 1996] J. Almeida, V. Almeida, D. Yates, "Measuring the Behavior of a

World-Wide Web Server," Technical Report TR-96-025, Computer Science

Department, Boston University, Boston, USA, 1996.

[Akamai 2006] "Akamai and JupiterResearch Identify 4 Seconds as New Threshold of

Acceptability for Retail Web Page Response Times,” Press Release, Akamai

Technologies Inc, November 2006.

www.akamai.com/html/about/press/releases/2006/press_110606.html.

[Alamgir 2002] R. Alamgir, M. Atiquzzaman, W. Ivancic, "Effect of Congestion

Control on the Performance of TCP and SCTP over Satellite Networks",

NASA Earth Science Technology Conference, Pasadena, USA, June 2002.

[Andrew 2008] L. Andrew, C Marcondes, S. Floyd, L. Dunn, R. Guillier, W. Gang, L.

Eggert, S. Ha, I. Rhee. "Towards a Common TCP Evaluation Suite," PFLDnet,

Manchester, UK, March 2008.

[Apache] The Apache Software Foundation, October 2007. www.apache.org

[Arlitt 1997] M. Arlitt, C. Williamson, "Internet Web Servers: Workload

Characterization and Performance Implications," IEEE/ACM Transactions on

Networking, 5(5), pp. 631�645, October 1997.

[Baggaley 2007] J. Baggaley, B. Batpurev, J. Klaas, “Technical Evaluation Report 61:

The World-Wide Inaccessible Web, Part 2: Internet Routes,” International

Review of Research in Open and Distance Learning, 8(2), 2007.

[Balakrishnan 1998a] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, R.

Katz, “TCP Behavior of a Busy Internet Server: Analysis and Improvements,”

IEEE INFOCOM, San Francisco, USA, March 1998.

[Balakrishnan 1998b] H. Balakrishnan, R. Katz, "Explicit Loss Notification and

Wireless Web Performance," IEEE GLOBECOM, Sydney, Australia,

November 1998.

[Balakrishnan 1999] H. Balakrishnan, H.S. Rahul, S. Seshan, “An Integrated

Congestion Management Architecture for Internet Hosts,” ACM SIGCOMM,

Cambridge, USA, August 1999.

 131

[Barford 1999] P. Barford, A. Bestavros, A. Bradley, M. Crovella, "Changes in Web

Client Access Patterns: Characteristics and Caching Implications," World Wide

Web Journal, 2(1-2), pp. 15�28, 1999.

[Bickhart 2005] R. Bickhart, “SCTP Shim for Legacy TCP Applications”, MS Thesis,

Department of Computer & Information Sciences, University of Delaware,

USA, August 2005.

[Briscoe 2007] B. Briscoe, "Flow Rate Fairness: Dismantling a Religion," ACM

Computer Communications Review, 37(2), pp. 63�74, April 2007.

[Budzizs 2008] L. Budzisz, "Stream Control Transmission Protocol (SCTP): A

Proposal for Seamless Handoff Management at the Transport Layer in

Heterogeneous Wireless Networks," PhD Dissertation in progress, Department

of Signal Theory and Communications, Technical University of Catalonia

(UPC), Barcelona, Spain, October 2008.

[CAfrica] Connectivity in Africa, October 2007. www.connectivityafrica.ca.

[CAIDA] CAIDA: Packet Sizes and Sequencing, March 1998. www.caida.org

[Cao 2004] J. Cao, W.S. Cleveland, Y. Gao, K. Jeffay, F.D. Smith, M.C, Weigle,

"Stochastic Models for Generating Synthetic HTTP Source Traffic", IEEE

INFOCOM, Hong Kong, China, March 2004.

[Caro 2005] A. Caro, "End-to-End Fault Tolerance using Transport Layer

Multihoming," PhD Dissertation, Department of Computer & Information

Sciences, University of Delaware, USA, August 2005.

[Caro 2006] A. Caro, P. Amer, R. Stewart, "Retransmission Policies for Multihomed

Transport Protocols," Computer Communications, 29(10), pp. 1798�1810,

June 2006.

[Chakravorty 2002] R. Chakravorty, I. Pratt, "WWW Performance over GPRS," IEEE

International conference in Mobile and Wireless Communications Networks,

Stockholm, Sweden, September 2002.

[Chan 2002] M.Chan , R. Ramjee, "TCP/IP Performance over 3G Wireless Links with

Rate and Delay Variation," 8th International Conference on Mobile Computing

and Networking, Georgia, USA, September 2002.

 132

[Chandra 2001] B. Chandra, M. Dahlin, L. Gao, A. Nayate, "End-to-End WAN

Service Availability," 3rd USENIX Symposium on Internet Technologies and

Systems, San Francisco, USA, March 2001.

[Cottrell 2006] L. Cottrell, A. Rehmatullah, J. Williams, A. Khan, "Internet Monitoring

and Results for the Digital Divide," International ICFA Workshop on Grid

Activities within Large Scale International Collaborations, Sinaia, Romania,

October 2006.

[Diot 1999] C. Diot, F. Gagnon, "Impact of Out-of-sequence Processing on the

Performance of Data Transmission," Computer Networks, 31(5), pp. 475�492,

March 1999.

[Du 2006] B. Du, M. Demmer, E. Brewer, "Analaysis of WWW Traffic in Cambodia

and Ghana," 15th International Conference on World Wide Web, Edinburgh,

Scotland, May 2006.

[Ekiz 2007] N. Ekiz, P. Natarajan, J. Iyengar, A. Caro, “ns-2 SCTP Module,” Version

3.7, September 2007. pel.cis.udel.edu.

[Faber 1999] T. Faber, J. Touch, W. Yue, "The TIME-WAIT State in TCP and Its

Effect on Busy Servers," IEEE INFOCOM, New York, USA, March 1999.

[Ford 2007] B. Ford, "Structured Streams: A New Transport Abstraction," ACM

SIGCOMM, Kyoto, Japan, August 2007.

[Fraleigh 2003] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R.

Rockell, T. Seely, C. Diot, “Packet-level Traffic Measurements from the Sprint

IP Backbone,” IEEE Network, 17(6), pp. 6�16, November 2003.

[FreeBSD] FreeBSD TCP and SCTP Implementation, October 2007.

www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/

[Gettys 1998] J. Gettys, H. Nielsen, "The WebMUX Protocol," IETF Internet Draft

(expired), August, 1998.

[Gettys 2002] J. Gettys, Email to End2end-interest Mailing List, October, 2002.

www.postel.org/pipermail/end2end-interest/2002-October/002436.html.

[Gimp] The GNU Image Manipulation Program, www.gimp.org.

[Gurtov 2004] A. Gurtov, S. Floyd, "Modeling Wireless Links for Transport

Protocols," ACM Computer Communication Review, 34(2), pp. 85�96, April

2004.

 133

[Houtzager 2003] G. Houtzager, C. Williamson, "A Packet-Level Simulation Study of

Optimal Web Proxy Cache Placement," 11th IEEE International Symposium on

Modeling, Analysis, and Simulation of Computer and Telecommunications

Systems, Orlando, USA, October 2003.

[HTTP-NG] HTTP-NG working group (historic). www.w3.org/Protocols/HTTP-NG/

[Iyengar 2005] J. Iyengar, P. Amer, R. Stewart, "Receive Buffer Blocking in

Concurrent Multipath Transfer," IEEE GLOBECOM, St. Louis, USA,

November 2005.

[Iyengar 2006] J. Iyengar, P. Amer, R. Stewart, “Concurrent Multipath Transfer using

SCTP Multihoming over Independent End-to-end Paths,” IEEE/ACM

Transactions on Networking, 14(5), pp. 951�964, October 2006.

[Jacobson 1988] V. Jacobson, "Congestion Avoidance and Control," ACM

SIGCOMM, Stanford, USA, August 1988.

[Jurvansuu 2007] M. Jurvansuu, J. Prokkola, M. Hanski, P. Perala, "HSDPA

Performance in Live Networks," IEEE International Conference on

Communications, Glasgow, Scotland, June 2007.

[Koh 2004] S. Koh, M. Chang, M. Lee, “mSCTP for Soft Handover in Transport

Layer," IEEE Communications Letters, 8(3), pp. 189�191, March 2004.

[Koh 2005] S. Koh, Q. Xie, “Mobile SCTP (mSCTP) for IP Handover Support, draft-

sjkoh-msctp, IETF Internet Draft (expired),” October 2005.

[Krishnamurthy 2001] B. Krishnamurthy, C. Wills, Y. Zhang, "On the Use and

Performance of Content Distribution Networks," ACM SIGCOMM Internet

Measurement Workshop, California, USA, November 2001.

[Labovitz 1999] C. Labovitz, A. Abuja, F. Jahania, "Experimental Study of Internet

Stability and Wide-Area Backbone Failures," 29th International Symposium on

Fault-Tolerant Computing, Madison, USA, June 1999.

[Labovitz 2000] C. Labovitz, A. Abuja, A. Bose, F. Jahanian, "Delayed Internet

Routing Convergence," ACM SIGCOMM, Stockholm, Sweden, August 2000.

[Leland 1993] W. Leland, M. Taqqu, W. Willinger, D. Wilson, "On the Self-similar

Nature of Ethernet Traffic," ACM SIGCOMM, San Francisco, USA,

September 1993.

 134

[Mahdavi 1997] J. Mahdavi, S. Floyd, "TCP-Friendly Unicast Rate-Based Flow

Control," Technical note sent to the end2end-interest mailing list, January 1997.

[Markopoulou 2004] A. Markopoulou, G.Iannaccone, S. Bhattacharyya, C. Chuah and

C. Diot, "Characterization of Failures in an IP Backbone," IEEE INFOCOM,

Hong Kong, China, March 2004.

[Movies] HTTP over SCTP versus HTTP over TCP Movies, October 2007.

http://www.cis.udel.edu/%7Eamer/PEL/leighton.movies/index.html

[Mozilla] Mozilla Suite of Applications, October 2007. www.mozilla.org.

[Natarajan 2006a] P. Natarajan, J. Iyengar, P. Amer, R. Stewart, "SCTP: An

Innovative Transport Layer Protocol for the Web," 15th International

conference on World Wide Web, Edinburgh, Scotland, May 2006.

[Natarajan 2006b] P. Natarajan, J. Iyengar, P. Amer, R. Stewart, "Concurrent

Multipath Transfer using Transport Layer Multihoming: Performance under

Network Failures," IEEE MILCOM, Washington D. C., USA, October 2006.

[Natarajan 2007] P. Natarajan, P. Amer, R. Stewart, "The Case for Multistreamed Web

Transport in High Latency Networks," TR2007-342, Department of Computer

& Information Sciences, University of Delaware, USA, October 2007.

[Natarajan 2008a] P. Natarajan, P. Amer, E. Yilmaz, R. Stewart, J. Iyengar, "Non-

Renegable Selective Acknowledgements (NR-SACKs) for SCTP," draft-

natarajan-tsvwg-nrsack, IETF Internet Draft (in progress), August 2008.

[Natarajan 2008b] P. Natarajan, N. Ekiz, P. Amer, J. Iyengar, R. Stewart, "Concurrent

Multipath Transfer using Transport Layer Multihoming: Introducing the

Potentially-failed Destination State," IFIP-TC6 Networking, Singapore,

Singapore, May 2008.

[Natarajan 2008c] P. Natarajan, P. Amer, R. Stewart, "Multistreamed Web Transport

for Developing Regions," ACM SIGCOMM Workshop on Networked Systems

for Developing Regions (NSDR), Seattle, USA, August 2008.

[Natarajan 2008d] P. Natarajan, F. Baker, P. Amer, "Multiple TCP Connections

Improve HTTP Throughput � Myth or Fact?," TR2008-333, Department of

Computer & Information Sciences, University of Delaware, USA, August 2008.

 135

[Natarajan 2008e] P. Natarajan, N. Ekiz, E. Yilmaz, P. Amer, J. Iyengar, R. Stewart,

"Non-Renegable Selective Acknowledgements (NR-SACKs) for SCTP," 16th

International Conference on Network Protocols, Orlando, USA, October 2008.

[Natarajan 2008f] P. Natarajan, P. Amer, J. Leighton, R. Stewart, J. Iyengar, "SCTP as

a Transport Protocol for HTTP," draft-natarajan-http-over-sctp, IETF Internet

Draft (in progress), October 2008.

[Nielsen 1999] J. Nielsen, “Designing Web Usability: The Practice of Simplicity,” New

Riders, 1999, ISBN: 156205810X

[NS-2] ns-2 documentation and software, Version 2.33, March 2008.

www.isi.edu/nsnam/ns.

[Padmanabhan 1998] V. N. Padmanabhan, “Addressing the Challenges of Web Data

Transport,” PhD Dissertation, Computer Science Division, University of

California at Berkeley, USA, September 1998.

[Paxon 1997] V. Paxson, "End-to-End Routing Behavior in the Internet," IEEE/ACM

Transactions on Networking, 5(5), pp. 601�615, October 1997.

[PEL] Protocol Engineering Lab Home Page, http://pel.cis.udel.edu

[PingER] PingER Detail Reports, October 2007. http://www-

wanmon.slac.stanford.edu/cgi-wrap/pingtable.pl

[Rahman 2002] S. Rahman, M. Pipattanasomporn, "Alternate Technologies for

Telecommunications and Internet Access in Remote Locations," 3rd

Mediterranean Conference and Exhibition on Power Generation, Transmission,

Distribution and Energy Conversion, Greece, November 2002.

[RFC1122] R. Braden, “Requirements for Internet hosts – Communication Layers,”

RFC1122, October 1989.

[RFC1379] R. Braden, “Transaction TCP - Concepts,” RFC 1379, September 1992.

[RFC2581] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” RFC

2581, April 1999.

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach , T.

Berners-Lee, "Hypertext Transfer Protocol � HTTP/1.1," RFC 2616, June

1999.

 136

[RFC2760] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Henderson, J.

Heidemann, J. Touch, H. Kruse, S. Ostermann, K. Scott, J. Semke, "Ongoing

TCP Research Related to Satellites," RFC 2760, Febraury 2001.

[RFC2861] M. Handley, J. Padhye, S. Floyd, “TCP Congestion Window Validation,”

RFC2861, June 2000.

[RFC2988] V. Paxson, M. Allman, "Computing TCP's Retransmission Timer," RFC

2988, November 2000.

[RFC3042] M. Allman, H. Balakrishnan, S. Floyd, "Enhancing TCP's Loss Recovery

using Limited Transmit," RFC 3042, January 2001.

[RFC3124] H. Balakrishnan, S. Seshan, "The Congestion Manager," RFC 3124, June

2001.

[RFC3135] J. Border, M. Kojo, J. Griner, G. Montenegro, Z. Shelby, "Performance

Enhancing Proxies Intended to Mitigate Link-Related Degradations," RFC

3135, June 2001.

[RFC3390] M. Allman, S. Floyd, C. Partridge, "Increasing TCP's Initial Window,"

RFC 3390, October 2002.

[RFC3465] M. Allman, "TCP Congestion Control with Appropriate Byte Counting

(ABC)," RFC3465, February 2003.

[RFC3481] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, F. Khafizov, "TCP

over Second (2.5G) and Third (3G) Generation Wireless Networks," RFC

3481, February 2003.

[RFC3517] E. Blanton, M. Allman, K. Fall, L. Wang, "A Conservative Selective

Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP," RFC

3517, April 2003.

[RFC4960] R. Stewart, “Stream Control Transmission Protocol," RFC 4960,

September 2007.

[RFC5061] R. Stewart, Q. Xie, M. Tuexen, S. Maruyama, and M. Kozuka, "Stream

Control Transmission Protocol (SCTP) Dynamic Address reconfiguration,"

RFC 5061, September 2007.

[RFC793] J. Postel, "Transmission Control Protocol," RFC 793, September 1981.

 137

[RFC896] J. Nagle, "Congestion Control in IP/TCP Internetworks," RFC 896, January

1984.

[Rizzo 1997] L. Rizzo, "Dummynet: A Simple Approach to the Evaluation of Network

Protocols," ACM Computer Communications Review, 27(1), pp. 31�41,

January 1997.

[SCTP] Stream Control Transmission Protocol Home Page, www.sctp.org

[Shakkottai 2004] S. Shakkottai, R. Srikant, A. Broido, K. Claffy, “The RTT

distribution of TCP Flows in the Internet and its Impact on TCP-based flow

control,” Technical Report, Cooperative Association for Internet Data Analysis

(CAIDA), February, 2004.

[Sivakumar 2000] H. Sivakumar, S. Bailey, R. Grossman, "PSockets: The Case for

Application-level Network Striping for Data Intensive Applications using High

Speed Wide Area Networks," High-Performance Network and Computing

Conference, Dallas, USA, November 2000.

[Squid] The Squid Web Cache, www.squid-cache.org.

[Stewart 2008a] R. Stewart, P. Lei, M. Tuexen, "Stream Control Transmission

Protocol (SCTP) Stream Reset," draft-stewart-tsvwg-sctpstrrst, IETF Internet

Draft (in progress), December 2008.

[Stewart 2008b] R. Stewart, Q. Xie, L. Yarrol, K. Poon, M. Tuexen, "Sockets API

Extensions for Stream Control Transmission Protocol (SCTP),” draft-ietf-

tsvwg-sctpsocket, IETF Internet Draft (in progress), January 2009.

[Tarahaat] Tarahaat Home Page, October 2007. www.tarahaat.com/tara/home.

[Tullimas 2008] S. Tullimas, T. Nguyen, R. Edgecomb, S. Cheung, "Multimedia

streaming using multiple TCP connections," ACM Transactions in Multimedia

Computing Communications and Applications, 4(2), pp. 1�20, 2008.

[VSAT-systems] VSAT Internet Service Provider, October 2007. www.vsat-

systems.com.

[Wang 1998] Z. Wang, P. Cao, "Persistent Connection Behavior of Popular

Browsers," Research Note, December 1998.

www.cs.wisc.edu/~cao/papers/persistent-connection.html

[Wang 2007a] G. Wang, Y. Xia, D. Harrison, "An ns-2 TCP Evaluation Tool:

Installation Guide and Tutorial," April 2007. http://labs.nec.com.cn/tcpeval.htm.

 138

[Wang 2007b] G. Wang, Y. Xia, D. Harrison, "An NS2 TCP Evaluation Tool," draft-

irtf-tmrg-ns2-tcp-tool, IETF Internet Draft (expired), November 2007.

[Weigle 2006] M. C. Weigle, P. Adurthi, F. Hern´andez-Campos, K. Jeffay, and F. D.

Smith, “Tmix: a Tool for Generating Realistic TCP Application Workloads in

ns-2,” ACM Computer Communication Review, 36(3), pp. 65–76, July 2006.

[WiderNet] WiderNet Project Home Page, October 2007.www.widernet.org.

[Williams 2005] A. Williams, M. Arlitt, C. Williamson, K. Barker, "Web Workload

Characterization: Ten Years Later," Book Chapter in "Web Content Delivery,"

Springer, 2005. ISBN: 0-387-24356-9.

[Williamson 2003] C. Williamson, N. Markatchev, "Network-Level Impacts on User-

Level Web Performance. International Symposium on Performance Evaluation

of Computer and Telecommunication Systems, Montreal, Canada, July 2003.

[Zhang 2000] Y. Zhang, V. Paxson, S. Shenker, "The Stationarity of Internet Path

Properties: Routing, Loss, and Throughput," ACIRI Technical Report, May

2000.

