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ABSTRACT

We have previously specified three algorithms for the
Stream Control Transmission Protocol (SCTP) re-
sulting in CMT ���	� - a protocol that uses SCTP’s mul-
tihoming feature for correctly transferring data be-
tween multihomed end hosts using multiple separate
end-to-end paths. In this paper, we evaluate CMT ���	�
against Application Striping (AppStripe) under uni-
form losses varying from 0 to 10 percent. We also
present results encouraging the use of multiple paths
in lossy networks such as battlefield networks. In this
work, we operate under the strong assumptions that
the receiver’s advertised window does not constrain
the sender, and that the bottleneck queues on the end-
to-end paths used in CMT �
�
� are independent of each
other.

1 INTRODUCTION

Multihoming among networked machines and de-
vices is a technologically feasible and increasingly
economical proposition. A host is multihomed if
it can be addressed by multiple IP addresses, as is
the case when the host has multiple network inter-
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faces. Though feasibility alone does not determine
adoption of an idea, multihoming can be expected
to be the rule rather than the exception in the near
future. In battlefield networks in particular, where
fault tolerance is crucial, multihoming will likely
become an essential feature in most network ele-
ments. Figure 1 shows one such battlefield scenario
where the endpoints are multihomed. These nodes
may be simultaneously connected through multiple
access technologies, and even multiple end-to-end
paths to increase resilience to path failure. Multiple
active interfaces suggest the simultaneous existence
of multiple paths between the multihomed hosts. We
propose using these multiple paths between multi-
homed source and destination hosts through Concur-
rent Multipath Transfer (CMT) to increase through-
put for a networked application. CMT is the simul-
taneous transfer of new data from a source host to
a destination host via two or more end-to-end paths.
In our initial efforts, we assume that the bottleneck
queues on the end-to-end paths are independent of
each other.

Figure 1: Example Multihoming Topology

The current transport protocol workhorses, TCP and
UDP, are ignorant of multihoming; TCP allows bind-
ing to only one network address at each end of a con-
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nection. At the time TCP was designed, network
interfaces were expensive components, and hence
multihoming was beyond the ken of research. In-
creasing economical feasibility and a desire for net-
worked applications to be fault tolerant at an end-
to-end level, have brought multihoming within the
purview of the transport layer. As opposed to the
application layer, CMT at the transport layer is de-
sirable since the transport layer, being the first end-
to-end layer, has finer information about the end-
to-end path(s). CMT at the application layer will
increase redundancy and room for error by requir-
ing each application programmer to separately im-
plement CMT in the application. Further, complex-
ity at the transport-application interface will increase
due to continuous information exchange between the
transport and the application.

The Stream Control Transmission Protocol
(SCTP) [4, 7, 8] is an IETF standards track
transport layer protocol that natively supports multi-
homing at the transport layer for fault tolerance and
mobility. SCTP multihoming allows binding of one
transport layer association (SCTP’s term for a con-
nection) to multiple IP addresses at each end of the
association. This binding allows an SCTP sender to
send data to a multihomed receiver through different
destination addresses. Due primarily to insufficient
research in the area, simultaneous transfer of new
data to multiple destination addresses is currently
not allowed in SCTP.

We have previously specified three algorithms for
SCTP resulting in CMT ���	� - a protocol that uses
SCTP’s multihoming feature for correctly transfer-
ring data between the multihomed end hosts using
multiple separate end-to-end paths [5]. In this pa-
per, we evaluate the performance of CMT �
�	� under
zero and higher loss conditions. In Section 2 we
briefly describe the simulation topology and Appli-
cation Striping (AppStripe), a simulated application
that performs ideal load balancing across multiple
end-to-end paths using multiple SCTP associations.
In Sections 3 and 4, we present our evaluation of
CMT �
�	� vs. AppStripe under zero and higher loss
conditions. We conclude the paper in Section 5 with
a summary of the results and some observations on
the use of multiple paths in battlefield networks.

2 EVALUATION METHODOLOGY

Without CMT ���	� , a multihoming-aware application
can choose to perform CMT at the application layer
by distributing data across multiple transport layer
associations, one on each path to a receiver. The
throughput obtained by such an application depends
on the scheduling algorithm that the application
uses to distribute data across the associations. We
propose Application-Striping (AppStripe), a hypo-
thetical multihome-aware application that achieves
the highest throughput achievable by an application
that distributes data across multiple SCTP associa-
tions. An application can, on the other hand, use
CMT ���	� , allowing the transport layer to perform dis-
tribution of data across paths. To evaluate the per-
formance and further the case for using CMT ���	� ,
we compare AppStripe, against an application us-
ing CMT ���	� . Figure 2 schematically describes App-
Stripe and CMT ���	� . End-to-end load balancing is
performed at the application layer by AppStripe, and
at the transport layer by CMT ���	� .
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Figure 2: Schematic - AppStripe and CMT ���	�

Since we do not have an ideal scheduling mechanism
for AppStripe to distribute data across the two SCTP
associations, we simulate an 8MB file transfer by
AppStripe as follows: Step 1: We transfer 8MB files
using two SCTP associations separately, one associ-
ation one each path from the sender to the receiver;
Step 2: We analyze the traces side by side to locate
the point in time when the total data transferred by
the two associations in-order together sums up to
8MB. This time is recorded as the optimal (i.e., min-
imum) time that would be needed by AppStripe to
transfer an 8MB file. We use a filesize of 8MB since
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it is large enough to enable the associations to spend
much of their lifetime in the congestion avoidance
phase, and small enough to maintain zero loss (for
evaluation under zero loss) by avoiding buffer over-
flow at any intermediate buffers between the sender
and the receiver.

We have implemented CMT �
�
� using the University
of Delaware’s SCTP module for the ns-2 simula-
tor [1, 3]. We use the simulation topology shown in
Figure 3 for our evaluation. The simulation setup has
two dualhomed hosts, sender A with local addresses
A1, A2, and receiver B with local addresses B1, B2.
The hosts are connected by two separate paths: Path1
(A1 - B1), and Path2 (A2 - B2). The roundtrip prop-
agation delay on both paths is 70 milliseconds. We
vary the end-to-end available bandwidth, but main-
tain a constant sum of the bandwidth-delay products
on the two paths to obtain our results. We use a con-
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Figure 3: Simulation Topology

stant sum of bandwidth-delay products to observe
the effect of varying bandwidth of the paths within
a constant sum. Since we are interested in the sum
of throughputs obtained on the paths by AppStripe
or CMT ���	� , varying the bandwidth within a constant
sum of bandwidth-delay products provides insight
into how bandwidth alone influences throughput in
these simulations. Ideally, with a constant sum of
bandwidth-delay products, the sum of throughputs
obtained on the paths should remain constant as well.
For a fixed delay of 70 milliseconds on both paths,
we maintain the sum of bandwidths of the paths con-
stant at 40Mbps. For a given set of network parame-
ters, we compare:

� the time taken to transfer an 8MB file using
AppStripe. This measurement, as a base refer-
ence, represents the best performance that can
be obtained by an application that uses multi-

ple SCTP associations to distribute traffic on the
two paths.

� the time taken to transfer a 8MB file using
CMT ���	� .

We now present evaluation of CMT �
�	� vs. AppStripe
under zero loss conditions (Section 3), and under
lossy conditions (Section 4).

3 CMT VS. APPSTRIPE: EVALUATION
UNDER ZERO LOSS

In Figure 4, the X-axis shows the difference in band-
width between Path 1 and Path 2. The sum of the
bandwidths is set to 40Mbps; at 0 on the X-axis, each
path has 20Mbps bandwidth. The one way delay is
set to 35ms on each path. Figure 4 compares the time
take to transfer an 8MB file using CMT �
�
� with the
time taken to transfer an 8MB file using AppStripe.
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Figure 4: CMT ���	� vs. AppStripe under zero loss

At all bandwidth allocations between the two paths,
CMT ���	� performs better than AppStripe. This im-
proved performance is primarily due to a faster rate
of cwnd growth during slow start with CMT due to
acks for data on multiple paths. To understand this
phenomenon better, note that in AppStripe, which
uses two SCTP associations, each delayed ack can
increase the cwnd by at most one MTU during slow
start in each association, even if the ack acknowl-
edges more than one MTU worth of data. With
delayed acks, it is likely that an ack acknowledges
more than one MTU worth of data. On the other
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hand, a CMT �
�
� receiver delays acks across the entire
CMT �
�	� association, i.e., without regard to which in-
terface packets are received on. Thus, in CMT ���	� , if
a delayed ack simultaneously acknowledges an MTU
of data on each of the two destinations, the sender
can simultaneously increase the two cwnds by one
MTU each. Thus, a single delayed ack that acknowl-
edges the data flows on the two paths can cause an
aggregate cwnd growth of two MTUs1. From ana-
lyzing the traces, we conclude that such delayed acks
which simultaneously contribute to the cwnd growth
of the two destinations cause CMT ���	� to perform bet-
ter than AppStripe. In the absence of delayed acks,
we have seen that both curves overlap exactly.

To understand the overall ’U’ shape of either of the
AppStripe or CMT ���	� curves, consider the following
two scenarios -
Scenario 1: two concurrent SCTP associations over
paths each with end-to-end available bandwidth X
bps, and
Scenario 2: a single SCTP association over one path
with end-to-end available bandwidth 2X bps.

If we assume the same end-to-end propagation delay
for all paths and same rwnd for both scenarios, it can
be seen that in the slow start phase, Scenario 1 will
have a cwnd growth rate faster than the Scenario 2.
The following steps through the first few stages in
the cwnd growth for the two scenarios may clarify
this point. Assuming delayed acks result in one ack
for every two data packets received:

1. At time 0: In Scenario 1, aggregate cwnd is 4
MTUs (2 MTUs per destination). In Scenario
2, aggregate cwnd is 2 MTUs.

2. After 1 RTT: In Scenario 1, aggregate cwnd is
6 MTUs. In Scenario 2, aggregate cwnd is 3
MTUs.

3. After 2 RTTs: In Scenario 1, aggregate cwnd
is 8 MTUs. In Scenario 2, aggregate cwnd is 4
MTUs.

Such cwnd increase continues until the sender enters
1This phenomenon is also described in Section 5 of [5]

congestion avoidance. With our simulation parame-
ters, the sender enters congestion avoidance after the
cwnd increases beyond the rwnd. We can thus see
that there is an faster rate of cwnd growth in Scenario
1 than in Scenario 2 during the slow start phase.

The overall ’U’ shape of either of the AppStripe or
CMT ���	� curves in Figure 4 can be now partly ex-
plained on the basis of the two scenarios we have
described. At the center of the X-axis, both paths
have equal bandwidth (20Mbps each). This point
on the X-axis is equivalent to Scenario 1 described
above. Further from the center of the X-axis, the
paths have increasingly disparate bandwidth charac-
teristics (with the bandwidth of one path decreas-
ing linearly to zero, while bandwidth of the other
path increases linearly to 40Mbps), and the sim-
ulations tend towards Scenario 2 described above.
Thus, due to differing cwnd growth rates, the time
taken for Application-Striping to transfer an 8MB
file increases as the bandwidth difference between
the paths increases and the sum of the bandwidths is
maintained a constant. A second phenomenon which
further explains the shape of the curves is described
in Section 4.1.

We thus demonstrate under zero loss conditions that
even if the application uses an ideal scheduling algo-
rithm to distribute data across multiple SCTP asso-
ciations, CMT-SCTP ���	� will perform at least as well
such an application.

4 CMT VS. APPSTRIPE: EVALUATION
UNDER UNIFORM LOSS

In this section, we present an evaluation of CMT ���	�
vs. AppStripe under uniform loss. For both App-
Stripe and CMT ���	� , we use rtx to same retransmis-
sion policy - a retransmission is sent to the same
destination as the original transmission. The de-
fault policy of SCTP, which specifies retransmission
to an alternate destination performs markedly worse,
and has been shown to have significant performance
problems [2]. The topology for the simulations is
described in Section 2. We first present performance
results comparing CMT ���	� vs. AppS in Section 4.1.
To demonstrate the the performance differences ob-
served are attributable to delayed acks and the CMT
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delayed ack algorithm, we present performance re-
sults comparing CMT ��� (CMT �
�
� without the CMT
delayed ack algorithm) vs. AppS, both without de-
layed acks, in Section 4.1. These experiments were
performed under the hypothesis that CMT �
�	� would
perform at least as well as AppS. We point out that
the benefits of performing CMT at the transport layer
vs. at the application layer have been presented ear-
lier in Section 1, and provide justification for using
CMT �
�	� instead of an application such as AppS. Fur-
ther, we remind the reader that AppS is a simulated
application that performs ideal scheduling of data,
and is used only as a reference for our performance
measurements.

4.1 EVALUATION WITH DELAYED ACKS

Figure 5 shows CMT ���	� vs. AppS under 0.1, 2,
5 and 10 percent uniform loss on both paths. We
describe three salient observations from the perfor-
mance graphs:

Observation 1: When only one path is used, i.e, at the
edges in the graphs where the available bandwidth
combination of the paths is 40Mbps and 0Mbps,
CMT �
�	� performs worse than AppS. CMT �
�	� per-
formance degrades further as the loss rate increases.
This performance degradation is attributed to the
CMT delayed ack algorithm [5]. Since the receiver
observes significant reordering with CMT (without
the CMT delayed ack algorithm), acks are almost
never delayed, thus increasing the number of acks
being sent back to the data sender. To curb the in-
crease in ack traffic, the CMT delayed ack algorithm
delays acks even when the receiver observes reorder-
ing. In the presence of loss, the CMT �
�
� data sender
compensates for fewer acks received to allow fast re-
transmits to happen “on time”2. The data receiver
sends an ack on the expiration of a delayed ack timer,
which is set to the recommended value of 200ms [8].

Under high loss rates, the data sender often has a
small cwnd value, and thus there is no continuous
flow of data packets to ensure continuity in delayed
acks being sent by the CMT �
�	� data receiver. The

2The interested reader is referred to [5] for more details on
the CMT delayed ack algorithm.

CMT ���	� receiver thus often waits for the delayed
ack timer to expire before sending an ack, even if
a loss has occured, thus often adding 200ms to the
roundtrip time. The performance degradation of
CMT ���	� is thus due to the increase in number of de-
layed ack timeouts at the data receiver. As loss rates
increase, the number of losses increase, and hence
the number of loss recoveries that are delayed due to
the delayed ack timer increase, thus increasing total
transfer time.

This phenomenon of increased delayed ack timeouts
is not observed when multiple paths are used in our
simulation settings, mostly because there is almost
always flow of data on either of the two paths used,
thus helping maintain continuity in flow of delayed
acks. We are currently investigating if the increase in
the number of delayed ack timeouts can occur under
other path parameter combinations, and if so, will
propose extensions to the CMT delayed ack algo-
rithm. If increased ack traffic is not an concern in the
deployment domain, then we suggest that the CMT
delayed ack algorithm be turned OFF in general to
avoid such performance degradation. In general, we
suggest that CMT not be used when only one path is
used since there is no benefit from CMT with only a
single path.

Observation 2: CMT ���	� performs the same as, or
better than AppS under all loss rates and all other
bandwidth combinations. In these cases, two phe-
nomena occur simultaneously: (i) increased number
of delayed ack timeouts increase the transfer time of
CMT ���	� (as described in Observation 1), and (ii) de-
layed acks simultaneously contributing to the cwnd
growth of both destinations during slow start (as de-
scribed in Section 3 to explain better performance of
CMT ���	� over AppS under zero loss). Since, under
higher loss rates, the sender experiences more data
timeout retransmissions, the sender is often operat-
ing in the slow start phase. From the performance
graphs, it is evident that the influence of the benefit
to CMT �
�	� during slow start is greater than that of
the increased number of delayed ack timeouts, thus
causing performance improvement of CMT �
�	� over
AppS.
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Figure 5: 8MB Transfer Time: CMT �
�	� Vs. AppStripe

Observation 3: For both CMT �
�	� and AppS curves,
as the loss rate increases, the overall ’U’ shape can
still be seen. Since the influence of the initial slow
start phase decreases as the loss rate increases, the
phenomenon described during the initial slow start
phase in Section 3 for explaining the ’U’ shape of the
curves has lesser impact on the shape of the curves
under high loss rates. A second phenomenon, which
we now present, becomes dominant and describes
the shape of the curves. Consider the approximate
TCP (also approximately SCTP) throughput equa-
tion [6] which can be presented as:

���������
	������������������������ ���

where
�

is the loss rate, and
�����

is the roundtrip
time. We make use of the same two scenarios used
in Section 3 for our explanation here. In Scenario
1, the total throughput obtained by either AppStripe
or CMT �
�	� is effectively the sum of throughputs ob-
tained by two SCTP associations, one on each path to

the destination host. Since in our simulation settings,
the roundtrip times of the two paths are dominated by
the same roundtrip propagation delay (

�����! #"%$� 
) of

70ms, and the loss rates of both paths are the same,
the total throughput obtained in Scenario 1 by either
CMT ���	� or AppStripe can be approximated as:
���������
	��&��!�('*) �,+.-�/ "%01$32.4 �657�������8�� 9":$� ;�<� �=�

In Scenario 2, the total throughput obtained by ei-
ther AppStripe or CMT �
�
� is effectively the through-
put obtained by a single SCTP association on the
one path. Again, since in our simulation set-
tings, roundtrip time of the path is dominated by a
roundtrip propagation delay (

���8� 9":$� 
) of 70ms, the

throughput obtained in Scenario 2 by either CMT ���	�
or AppStripe can be approximated as:
���������
	��&��!� '*) �,+.-�/ "%01$?>@4 �����������8�  9":$� � � �=�

which is only half the throughput obtained in Case
1. This difference in throughput between Scenario 1
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Figure 6: 8MB Transfer Time: CMT ���	� Vs. AppStripe (no delayed acks)

and Scenario 2 explains the large increase in transfer
time from the center to the edges (roughly twice) in
Figure 5.

Thus, since the propagation delay dominated
roundtrip time is almost the same for all simula-
tion settings, a large difference is observed when the
topology changes from a single path (40Mbps and
0Mbps combinations) to multiple paths (38Mbps and
2Mbps combinations), even though the bandwidth
delay product sum is maintained constant. Thus, if
the loss rates on all paths are the same, transmission
delays are negligible compared to the propagation
delays, and propagation delays on all paths are the
same, then the sender gains significantly by adding
another path instead of adding an equal amount of
bandwidth to the existing path.

4.2 EVALUATION WITHOUT DELAYED
ACKS

We now present performance comparison of CMT �
�
- CMT ���	� without the CMT delayed ack algo-
rithm [5] - vs. AppStripe; without delayed acks. In
this set of simulations, each data packet resulted in
an ack being sent by the data receiver to the data
sender. Figure 6 shows CMT ��� vs. AppStripe un-
der 0.1, 2 and 5 percent uniform loss on both paths.
CMT ��� performs as well as AppStripe under all loss
rates and bandwidth combinations3 .

3Some variability, though negligible, can be observed in the
performance difference between CMT ��� and AppStripe in the
graphs. This variability is due to association startup and tear-
down effects, not due to protocol mechanisms, and can be ig-
nored.
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5 CONCLUSION

In this paper, we evaluated CMT ���	� against App-
Stripe under uniform losses varying from 0 to 5 per-
cent. We demonstrate that CMT �
�
� performs as well
as, if not better than AppStripe under most condi-
tions, except when a single path is used. We attribute
this performance degradation to increase in the num-
ber of delayed ack timeouts. We are currently in-
vestigating if an increase in the number of delayed
ack timeouts can occur under other path parameter
combinations, and if so, will propose extensions to
the CMT delayed ack algorithm. If increased ack
traffic is not an concern in the deployment domain,
then we suggest that the CMT delayed ack algorithm
be turned OFF in general to avoid such performance
degradation. In general, we suggest that CMT not
be used when only one path is used since there is no
benefit from CMT with only a single path.

We presented results encouraging the use of multiple
paths in lossy networks such as battlefield networks
in Section 4.1. If the loss rates on all paths are the
same, transmission delays are negligible compared
to the propagation delays, and propagation delays on
all paths are the same, then the sender gains signif-
icantly by adding another path instead of adding an
equal amount of bandwidth to the existing path.

We are currently evaluating CMT ���	� against App-
Stripe using a more general topology under common
network parameter settings in wireline and wireless
networks. We plan to also perform evaluation in the
presence of cross-traffic and congestion losses. We
then plan to propose and investigate the performance
of different retransmission policies for CMT ���	� .

6 DISCLAIMER

The views and conclusions contained in this docu-
ment are those of the authors and should not be in-
terpreted as representing the official policies, either
expressed or implied, of the Army Research Labora-
tory or the U.S. Government.
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