
 Concurrent Multipath Transfer Using Transport Layer
Multihoming: Performance during Network Failures
Preethi Natarajan1, Janardhan R. Iyengar1, Paul. D. Amer1 and Randall Stewart2

1Protocol Engineering Lab, CIS Dept
University of Delaware

{nataraja, iyengar, amer}@cis.udel.edu

2Internet Technologies Division
Cisco Systems

rrs@cisco.com

ABSTRACT
Recent research on Concurrent Multipath Transfer using SCTP
multihoming (CMT) proposed various retransmission policies to
minimize the negative impacts of receiver buffer (rbuf) blocking
that occurs during congestion. Here we investigate CMT’s
throughput degradation caused by rbuf blocking during complete
and/or short-term network failures. To improve CMT’s
performance during failure, we introduce a new state for each
destination called the “Potentially Failed” (PF) state, and propose
a retransmission policy that takes into account the PF state. Using
simulation, we evaluate our solution called CMT-PF, and
demonstrate its improved throughput over CMT in failure-prone
networks such as FCS battlefield networks.

1. INTRODUCTION
Multihoming provides added fault-tolerance at the network layer
[3]. This network level fault-tolerance is crucial for mission
critical systems such as Future Combat Systems (FCS) networks,
where interrupted communication may be a matter of life or
death. Consider for example the multihomed battlefield nodes in
Figure 1. Host A or B can remain accessible even when one of
their IP addresses becomes unreachable; perhaps due to
intermediate routing failure on the path to the interface, failure of
the interface itself, radio channel interference, or moving out-of-
range. Additionally, hosts A and B may be simultaneously
connected through multiple access technologies, and even
multiple end-to-end paths to increase resilience to path failures.

Figure 1. Example Multihoming topology

TCP does not support multihoming between two endpoints. When
an end point’s IP address becomes unreachable, existing TCP
connections will timeout and abort, forcing the application to
recover. This recovery overhead and associated delay can be
unacceptable during critical battlefield communications, where
responsiveness is vital.
The Stream Control Transmission Protocol (SCTP) [RFC2960] is

an IETF (Internet Engineering Task Force) standards track
transport layer protocol that provides TCP-like reliability,
congestion, and flow-controlled data transfer to applications.
Additionally, SCTP supports fault tolerance through transport
layer multihoming. An SCTP association (SCTP’s term for a
transport layer connection) binds multiple interfaces at each end
of the association. For example, a single SCTP association
between hosts A and B in Figure 1 can bind both IP addresses at
each end host: ({A1, A2}, {B1, B2}). Such an association allows
data transmission from host A to be sent to either B1 or B2. The
current SCTP specification designates one interface at each
destination host as the primary interface, and all new data is
transmitted to the primary interface. If ever the primary interface
fails, new data transmission fails over to an alternate reachable
destination interface.
An SCTP sender infers reachability of the receiver’s interfaces in
two ways: (i) through acks of data, and (ii) through acks of
heartbeats, which are periodic probes sent specifically to check a
destination interface’s status. A sender detects interface failures
using a tunable threshold called Path Maximum Retransmit
(PMR). After (PMR + 1) consecutive timeouts while trying to
reach a destination interface (via data or probes, or a combination
thereof), the sender marks the interface as failed. RFC2960
proposes a default PMR value of 5, which translates to 63 seconds
(6 consecutive timeouts) for failure detection [9].
Concurrent multipath transfer (CMT) proposes to achieve higher
throughput in an SCTP association by concurrently using all
independent paths between the sender and receiver for new data
transfer [6]. Reference [5] explores the receive buffer (rbuf)
blocking problem in CMT, where TPDU losses halt the sender
because the SCTP receiver’s buffer is filled with out-of-order
data. Even though the congestion window would allow new data
to be transmitted, rbuf blocking (i.e., flow control) stalls the
sender, thus resulting in throughput degradation.
To alleviate rbuf blocking due to congestion loss, [5] proposes
different retransmission policies that reduce the amount of out-of-
order data in the receive buffer. These policies consider different
path properties such as loss rate and delay, and send
retransmissions on a path with lower loss or delay. In practice, the
loss rate of a path can only be estimated, so [5] proposes the
RTX-SSTHRESH retransmission policy, where retransmissions
are sent on the path with the highest slow-start threshold (a.k.a.
ssthresh). However, [5] does not consider rbuf blocking’s impact
on throughput during network failures, which is the focus of this
paper.

2. PROBLEM DESCRIPTION • Prepared through collaborative participation in the Communication and
Networks Consortium sponsored by the US Army Research Lab under
Collaborative Tech Alliance Program, Coop Agreement DAAD19-01-2-
0011. The US Gov’t is authorized to reproduce and distribute reprints for
Gov’t purposes notwithstanding any copyright notation thereon.

• Supported by the University Research Program, Cisco Systems, Inc.

The following are relevant SCTP [RFC2960] facts to understand
the rbuf blocking problem in SCTP with CMT (herein simply
referred to as CMT) during failures:

• SCTP is message-oriented and transmits user data in chunks.
Each data chunk is assigned a Transmission Sequence Number
(TSN) to track order of delivery to the receiving application.

• SCTP uses delayed selective acks (SACK). The cumulative
TSN in a SACK reports the highest in-sequence TSN, and the
gap blocks report all the TSNs received between the
cumulative TSN and the highest TSN.

• The gap blocks are considered missing reports for all TSNs
that have not arrived at the receiver. When a TSN is reported
missing dupackthresh times (default = 3), the sender marks it
for fast retransmit.

• An SCTP receiver uses a single receive buffer to store out-of-
order TPDUs from the sender. Every SACK from the receiver
advertises the current available receiver window space. On
receiving a SACK, the SCTP sender subtracts the size of
outstanding data from the advertised receiver window, and
estimates the amount of new data that can be sent without
overflowing the receive buffer.

• An SCTP sender has less than a full congestion window of
outstanding data if the application has limited data to transfer.
During such scenarios, RFC2960 dictates that a SACK with a
new cumulative TSN should not increment the congestion
window, since doing so is both unnecessary and might result
in bursty traffic in the future. In the later part of this section,
we will see how rbuf blocking can also trigger this rule.

Figure 2 is a timeline diagram of a CMT sender with two
interfaces A1 and A2, transmitting data to a receiver with two
interfaces B1 and B2, i.e., the configuration shown in Figure 1.
The following are our assumptions for easier illustration of the
problem:

• In Figure 2, both the forward and reverse paths between A1
and B1 fail just after TSN 2 enters the network. For example,
the wireless radio link to interface B1 goes down.

• Delayed SACKs are turned off. Hence every received TPDU
triggers a SACK back to the sender.

• If TPDUs arrive in-order, data is immediately delivered to the
receiving application.

• The transport layer receiver buffer for this example can hold a
maximum of 5 TPDUs. (The contents of this buffer are listed
after the reception of every TPDU.)

• CMT uses RTX-SSTHRESH retransmission policy, which
always chooses path 2 for retransmissions.

• Each TSN denotes an MTU-sized data chunk, resulting in a
one-to-one correspondence between a TPDU and a TSN.

• A SACK labeled <Sa, b-c; Rd> denotes a cumulative TSN
value of a, in-order arrival of TSNs b through c (missing
report for TSNs a+1 through b-1), and an advertised receiver
window of d TPDUs.

• The initial congestion window for each path is 2 MTUs. Ci
denotes the congestion window in number of MTUs on path i
(between Ai – Bi) and Oi denotes the number of outstanding
TPDUs on path i.

References to the transport layer sender in discussions regarding
Figure 2 imply a CMT sender. In Figure 2, when path 1 fails, both
TSN 2 and the SACK for TSN 1 are lost. On path 2, TSNs 3 and 4
arrive out of order at the receiver, and are stored in the receiver

buffer. Both TSNs 3 and 4 trigger a SACK to the sender. CMT
uses the SFR algorithm [6] to decouple a path’s congestion
window evolution and TSN order of delivery. On receiving the
SACK triggered by TSN 3, the sender uses SFR and increments
C2 to 3 and decrements O1 and O2 to 1.
The sender now estimates available space at receiver buffer for
new data as the advertised window (4) – total outstanding TPDUs
in the association (2). This allows the sender to send two TSNs - 5
and 6 on path 2. On path 1, even though the congestion window
allows transmission of 1 TPDU, the sender cannot send data since
the sender is limited by the available space in the receiver’s
buffer. This scenario depicts the receiver buffer blocking problem
in CMT, where out of order data at the receive buffer prevents the
sender from transmitting new data on all paths.
When the SACK triggered by TSN 4 arrives, C2 increases to 4,
and O2 decreases to 2. The sender calculates the peer’s available
receive buffer space to be 0 (advertised receiver window – total
number of outstanding TPDUs). Again, rbuf blocking does not
allow the sender to send data on path 1.
The SACKs triggered by TSNs 5 and 6 do not increment C2 since
the amount of outstanding data on path 2 is less than C2. But
these SACKs decrement O2. Note that even though O2 is less
than C2, the sender cannot transmit new data on path 2 due to
rbuf blocking.
The loss of TSN 2 on path 1 is detected by a timeout on path 1.
This timeout is the first of the 6 (PMR = 5) consecutive timeouts
needed to detect the failure. After the timeout, C1 is set to 1 and
O1 is set to 0. RTO on path 1 is exponentially backed off. CMT
uses RTX-SSTHRESH policy and retransmits TSN 2 on path 2.
Even though O1 is less than C1, rbuf blocking prevents data
transmission on path 1.
The SACK triggered by TSN 2’s retransmission advertises a
receiver window of 5 to the sender, ending the current episode of
rbuf blocking. The sender now transmits TSN 7 on path 1 and
TSNs 8-11 on path 2. Due to failure on path 1, TSN 7 is also lost.
So TSNs 8-11 arrive out-of-order and are stored in the receiver’s
buffer. The SACK triggered by TSN 8 increments C2 to 5 and
decrements O2 to 3. Another episode of rbuf blocking kicks in
and prevents new data transmission on path 2. This new episode
can end only after retransmission of TSN 7 succeeds, which
happens after RTO on path 2 (two times the initial RTO value).
To generalize, the CMT sender transmits new data on path 1 until
(PMR + 1) number of consecutive timeouts mark path 1 as failed.
Every time new data is transmitted on the failed path, data sent on
non-failed paths arrive out-of-order and cause rbuf blocking.
After a timeout on the failed path, CMT sender infers loss on the
path. The CMT association comes out of the latest rbuf blocking
instance after a successful retransmission of the lost TPDUs.
The length of an rbuf blocking instance is proportional to the
timeout value on the failed path. Note that successive rbuf
blocking episodes become longer due to the exponentially backed
off timeout value on the failed path. Rbuf blocking also results in
the following side effects that degrade CMT’s throughput:
Preventing congestion window growth: Rbuf blocking prevents a
CMT sender from transmitting new data, resulting in flightsize <
congestion_window. In such cases, RFC2960 prevents the sender
from increasing the congestion window for future SACKs. For
example, in Figure 2, when SACKs for TSNs 5, 6, 9, 10, 11 arrive
at the sender, the sender cannot increment C2.

Figure 2. CMT during failure: Rbuf blocking

Reducing congestion window: An SCTP sender avoids bursts by
using a Congestion Window Validation algorithm similar to [10].
Whenever a sender has new data to send, it uses the MaxBurst
parameter (recommended value of 4) as follows:
If ((outstanding + MaxBurst * MTU) < Cwnd)
 Cwnd = outstanding + MaxBurst * MTU
This condition dictates the congestion window to be reduced so
that the next time the sender has data to send, it cannot send more
than (MaxBurst * MTU) bytes of data back-to-back. During an
instance of rbuf blocking, the amount of outstanding data can go
well below the congestion window. In such cases, the above rule
gets triggered, further reducing the congestion window. In Figure
2, when the SACK triggered by TSN 11 arrives at the sender, O2
decrements to 0. The window validation algorithm causes C2 to
be reduced to 4 (O2 (0) + MaxBurst (4)).

3. PROPOSED RETRANSMISSION
POLICY
Reference [9] recommends lowering the value of PMR for SCTP
flows in Internet-like environments. Correspondingly, lowering
the PMR for CMT flows reduces the number of rbuf blocking
episodes, and thus CMT’s throughput degradation during failures.
However, lowering the PMR is an incomplete solution to the
problem since rbuf blocking happens for any PMR > 0. Also, a
tradeoff exists on deciding the value of PMR – a lower value

reduces rbuf blocking vs. higher value for more robust failure
detection in a wide range of environments.

Figure 3. CMT-PF during failure: Less Rbuf blocking

In CMT, rbuf blocking cannot be eliminated [5]. RTX-
SSTHRESH and other retransmission policies use heuristics that
alleviate its effects during congestion losses. However, these
policies do not consider path failures.
Figure 4 is a finite state machine specifying the failure detection
process in CMT. As shown, a path is in one of the two states –
active or failed (inactive). A path is active as long as acks arrive
for data or heartbeats sent on the path. When an active path
experiences (PMR + 1) consecutive timeouts, it transitions to the
failed state, where only heartbeats are sent. The failed path returns
to the active state once the sender receives an ack for any
heartbeat.
To mitigate the recurring instances of rbuf blocking, we introduce
a path state called “potentially failed”. Loss detected by a
timeout implies either severe congestion or failure on the path.
After a single timeout on the path, a sender is unsure, and marks
the path as “potentially failed” (Figure 5). A “potentially failed”
path is not used for data transmission (or retransmission) since
transferring data on a failed path results in recurring episodes of
rbuf blocking.
We augment CMT’s RTX_SSTHRESH policy – one of the
recommended loss rate based retransmission schemes [5], to
include the “potentially failed” (PF) state, and call it CMT-PF.
The details of CMT-PF are:

• If a TPDU loss on a path is detected by dupackthresh
missing reports, use the RTX_SSTHRESH retransmission
policy to select any of the active paths for retransmission.

• If the TPDU loss on a path is detected by timeout, the path
transitions to the PF state (Figure 5). A path in the PF state is

not used for transmitting any data. (Exception: if all paths of
an association are in the PF state, data is still sent on the path
with the least errorcount − the number of consecutive
timeouts on the path. If the errorcounts of all paths are the
same, data is sent on the last active path. This exception
ensures that CMT-PF does not perform worse than CMT
when all paths have possibly failed.)

• After the initial timeout, heartbeats are sent on the PF path,
with exponential backoff of RTO in case of timeout, until (i)
an ack for a heartbeat transitions the path back to the active
state, or (ii) an additional PMR consecutive timeouts on
heartbeats confirm the path as failed, after which the path
transits to failed, and heartbeats are sent with the frequency
described in RFC2960.

• Once a heartbeat ack indicates the PF path is alive, its
congestion window is set to either 1 MTU (CMT-PF1), or 2
MTUs (CMT-PF2), and data transmission follows slow start
phase. (A discussion of CMT-PF1 vs. CMT-PF2 occurs at
the end of this section.)

• Arrival of acks for retransmissions of timed-out data, do not
transition a PF path to the active state, since there is
ambiguity in deciding whether the ack was for the original
transmission or the retransmission(s).

Figure 4. CMT failure detection

Figure 5. CMT-PF failure detection

Figure 3 depicts the CMT-PF timeline diagram for the scenario
described in Figure 2. All events are identical up to the first RTO
for TSN 2 on path 1. After this timeout, path 1 transitions to the
PF state. TSN 2 is retransmitted on path 2. On path 1, RTO
exponentially backs off and a heartbeat is sent. Due to failure on
path 1, this heartbeat is lost. The loss is detected by a timeout
which will be the second of the (PMR + 1) number of consecutive
timeouts required to mark path 1 as failed.
Meanwhile, receiver buffer space is released once TSN 2 reaches
the destination on path 2. From this point onwards, data is
transmitted on path 2 alone, preventing further rbuf blocking.
Since rbuf blocking is reduced, we expect CMT-PF to provide
higher throughput than CMT during path failures.
Now, we consider the case when timeout on a path, say p, is due
to congestion rather than failure. For our analysis, we assume that
the congestion cleared just before the sender experiences the
timeout so that data or heartbeats sent on p after the timeout reach
the receiver. Depending on receiver buffer size and the different
paths’ characteristics, the sender might or might not be rbuf
blocked before the timeout, leading to the following two
scenarios:
Sender is limited by rbuf before the timeout: This scenario is
similar to the failure scenario described in Sections 2 and 3 for
CMT and CMT-PF, respectively. Both CMT and CMT-PF cannot
send new data on any path until the rbuf blocking is cleared. They
try to retransmit the lost TPDUs, which are no longer outstanding.
The only difference is that CMT considers p for retransmissions,
(similar to Figure 2), whereas CMT-PF will not (Figure 3). (In
CMT-PF, the sender transmits a heartbeat on p.) Both CMT and
CMT-PF can send new data only when a SACK arrives
advertising enough receiver window space.
Sender is not limited by rbuf before and after the timeout: With
CMT, the congestion window on p allows the sender to send 1
MTU worth of retransmission or new data. The SACK triggered
by this data will increment p’s congestion window by 1 MTU.
Therefore, at the end of 1 RTT after the timeout, (i) the
congestion window on p will be 2 MTUs, and (ii) 1 MTU worth
of new data has been successfully sent on p (Figure 6).
In CMT-PF, no data is sent on the PF path, p, after the timeout.
CMT-PF sends a heartbeat on p and retransmits lost TPDUs along
with new data on other active paths. Path p is marked active when
the heartbeat ack arrives at the sender. Therefore, at the end of 1
RTT after the timeout, (i) congestion window on p is 1 MTU
(CMT-PF1) and (ii) no new data has been sent on p (Figure 7).
Thus, CMT has 1 RTT “lead” in its congestion window evolution.
Assuming no further losses on p, at the end of n RTTs after the
timeout, congestion window on p will be 2n with CMT, and 2n-1
with CMT-PF1.
To avoid the 1 RTT lag in CMT-PF1’s congestion window
evolution, we propose CMT-PF2 (see Figure 8) which initializes
the congestion window to 2 MTUs after a heartbeat ack arrives.
Assuming that today’s Internet router queues deal with packets
rather than bytes, the successful routing of a heartbeat PDU is
equivalent to the successful routing of a data PDU. Hence, a
heartbeat ack can be used to clock the transport layer sender in the
same way as a data ack. We hypothesize that CMT-PF2 will
perform on par with CMT in case of timeouts due to congestion.

Figure 6. CMT data transfer when no rbuf blocking

Figure 7. CMT-PF1 data transfer when no rbuf blocking

4. EVALUATION OF CMT-PF vs. CMT
We implemented CMT-PF in University of Delaware’s
SCTP/CMT module for the ns-2 network simulator [7,8]. The
simulation topology is shown in Figure 9. The multihomed
sender, A, has two independent paths to the multihomed receiver,
B. The edge links between A or B to the routers, represent last-
hop link characteristics. The end-to-end one-way delay is 45ms
on both paths, representing typical coast-to-coast delays
experienced by significant fraction of the flows in the Internet
[11].We believe the results and conclusions in this paper are
independent of the actual bandwidth and delay configurations, as
long as these configurations are the same on both paths.

4.1 During Permanent Failure
We perform a simple experiment to understand the elementary
differences between CMT and CMT-PF during permanent path
failures. In this experiment, path 2 fails after 5 seconds from the
start of an 8MB file transfer from A to B. We simulate path 2
failure by bringing down the link between routers R20 and R21.
The receiver buffer is set to 64KB and there are no congestion
losses on both paths.
When path 2 fails, all TPDUs and acks transmitted over the path
are lost, causing the sender to experience back-to-back timeouts.
Both CMT and CMT-PF experience the first timeout on path 2 at

around 6.03 seconds, and detect path 2 failure after 6 back-to-
back timeouts (PMR = 5), at around 69 seconds.

Figure 8. CMT-PF2 data transfer when no rbuf blocking

Figure 9. Simulation Topology

After the first timeout, CMT-PF transitions path 2 to the PF state
and transmits only heartbeats on the path and avoids further rbuf
blocking due to the failure. The reduction in rbuf blocking helps
CMT-PF to complete the file transfer (~ 15 seconds) using path 1
alone, even before path 2 failure is detected (Figure 10). On the
other hand, CMT transmits data on path 2 after each timeout
during failure detection, causing recurring rbuf blocking
instances. Thus, CMT experiences throughput degradation until
69 seconds, after which CMT uses path 1 alone and completes the
8MB transfer at around 80 seconds.

4.2 During Short-term Failure
We do two experiments where path 2 fails for a brief period (from
5 to 10 seconds) after start of an 8MB file transfer between hosts
A and B.
 In the first short-term failure experiment, no losses occur on both
paths. Path 2 failure from 5 to 10 seconds causes three back-to-
back timeouts on the path. As in the failure case, CMT transfers
data after each of these timeouts on path 2. The resulting rbuf
blocking in CMT, prevents the efficient use of path 1 for data
transfer, and lowers CMT throughput when compared to CMT-PF
(Figure 11). Once path 2 recovers at 10 seconds, CMT’s data and
CMT-PF’s heartbeat transmissions on the path (after the 3rd
timeout − ~12.5 seconds) are successful, and both CMT and
CMT-PF complete the file transfer without further rbuf blocking.
In Figure 11, CMT-PF2 performs slightly better than CMT-PF1
just after path 2 is marked active, since CMT-PF2 has a 1 RTT
lead in congestion window evolution. This fine difference

between the two PF variations becomes clearly visible when
zoomed in.

Figure 10. Throughput during failure detection

Figure 11. Throughput during short-term failure

In the second short-term failure experiment, we study the
performance differences between CMT and CMT-PF under
varying rbuf constraints. The goal is to observe whether CMT-
PF’s gains over CMT are related to the receiver’s buffer size. In
this experiment, both paths experience a low 1% loss rate, and
host A transfers an 8MB file to host B. Figure 12 plots the
average throughput with a 5% error margin, measured during the
5 second short-term failure for various rbuf values. Since rbuf
blocking increases as the receiver buffer size decreases [5], CMT-
PF’s ability to reduce rbuf blocking matters more for smaller rbuf
values. I.e., CMT-PF’s throughput improvement over CMT
increases with decreasing rbuf sizes. Again, the differences
between CMT-PF1 and CMT-PF2 are very negligible in this
experiment.

4.3 During Congestion
We perform a final set of experiments to study CMT-PF
performance when timeouts on a path are due to congestion rather
than failure. Path 1 has a fixed loss rate (1%) and path 2’s loss
rate varies from 1-10%. The receive buffer is set to 64KB and

Figure 13 plots CMT and CMT-PF’s transfer times with a 5%
margin of error, for an 8MB file.

 Figure 12. Throughput during short-term failure

Figure 13. Transfer time during congestion

As explained in Section 3, after experiencing a timeout on a path,
CMT and CMT-PF behave differently. CMT-PF transitions that
path to the PF state, and does not send data on the path until the
path is marked active. On the other hand, CMT considers that
path for data transmission without any delay.
When a path’s loss rate is low, most of the TPDU losses on the
path can be recovered through fast retransmits, resulting in very
few timeout recoveries. Hence, in Figure 13, when path 2 loss
rates are lower (both paths’ loss rates are symmetric), the number
of timeout recoveries on path 2 are low, and no substantial
performance difference between CMT and CMT-PF can be
observed.
With increase in path 2 loss rates, the number of timeouts on path
2 increases and we expected CMT to outperform CMT-PF.
However, Figure 13 shows that both CMT-PF1 and CMT-PF2
perform slightly better than CMT when the paths’ loss rates are
asymmetric. The reason is as follows. High loss rates on path 2
induce back-to-back timeouts on the path. During loss recovery
via timeout, if the sender is rbuf blocked, the length of this rbuf
blocking period is proportional to the timeout recovery (RTO)

period. Back-to-back timeouts result in exponentially increasing
RTO values. Hence, consecutive timeouts on data result in
exponentially increasing rbuf blocking periods that increase the
overall file transfer time.
 Figure 14 tabulates the number of retransmission timeouts on
data for CMT, CMT-PF1 and CMT-PF2, observed in our
simulation runs when path 2 loss rate = 10%. Timeout recovery
periods of 2, 4 and 8 seconds are due to the exponentially backed
off RTO values at the end of 2, 3 and 4 consecutive timeouts
respectively. The table shows that while CMT experiences 2, 4
and 8 second timeout recoveries, both CMT-PF1 and CMT-PF2
do not experience any, implying that CMT-PF does not suffer
back-to-back timeouts on data in these simulation runs. CMT-PF
marks a path as PF after a single timeout and only heartbeats are
transmitted on the PF path. Hence, at high path 2 loss rates, the
subsequent timeouts on the path are on heartbeats and not on data.
During the back-to-back timeouts on heartbeats on path 2, CMT-
PF (re)transmits data on the lower loss rate path 1 alone, and
avoids any extended or recurring rbuf blocking periods. Thus,
CMT-PF performs better than CMT when paths have asymmetric
loss rates.

Figure 14. Distribution of timeout recovery periods for data

(path 2 loss rate = 10%)

4.4 Discussion
In Section 4.3 we demonstrated how CMT-PF’s ability to avoid
back-to-back data timeouts on a highly congested path, improves
its performance over CMT, when the other path(s) experience
lower loss rates. To formulate this observation, let x be CMT-PF’s
total gain in transfer time when it avoids back-to-back data
timeouts during a bulk transfer. Let y be the time CMT-PF wasted
by not using a PF path during the data transfer. We believe that
CMT-PF’s improvement over CMT in Section 4.3 was because x
> y. Hence, we hypothesize that CMT-PF could perform worse
than CMT in the following congestion scenarios:

• (x = 0) and (y > 0): I.e., during the complete file
transfer, the congestion on a path is such that there are
no back-to-back timeouts on the path. All timeouts are
singleton and CMT-PF wastes time by not using a PF
path for data transfer (y > 0) after every timeout.

• (x < y): At the end of the data transfer, CMT-PF’s gain
in transfer time is smaller than the time CMT-PF lost by
not using a PF path for data transfer.

We are currently investigating the plausibility of such congestion
scenarios.

5. CONCLUSION AND FUTURE WORK
We investigated rbuf blocking and the associated throughput
degradation in CMT, caused by complete and short-term failures.
To improve CMT performance during failures, we proposed
CMT-PF. CMT-PF includes a new destination state called the
“Possibly Failed” (PF) state, and enhances CMT’s retransmission
policies to include the PF state.
Using simulations, we evaluated CMT-PF under different failure
scenarios that are characteristic of battlefield FCS networks, and
demonstrated CMT-PF’s throughput gains over CMT during those
failure scenarios. We also demonstrated how CMT-PF’s ability to
avoid back-to-back timeouts on data improves its performance
over CMT when the paths have asymmetric loss rates.
In the future, we will identify congestion scenarios as discussed in
Section 4.4 and evaluate CMT-PF under those scenarios. We will
also evaluate CMT-PF vs. CMT during asymmetric path delays
and during congestion created by cross-traffic as opposed to
random losses.

6. DISCLAIMER
The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory or the U. S. Government.

7. REFERENCES
[1] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.

Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V.
Paxson, “Stream Control Transmission Protocol,” RFC 2960,
10/00

[2] R. Stewart, Q. Xie, “Stream Control Transmission Protocol
(SCTP): A Reference Guide,” Addison Wesley, 2001, ISBN:
0-201-72186-4

[3] R. Braden, “Requirements for Internet hosts –
communication layers,” RFC1122, 10/89

[4] Stream Control Transmission Protocol, www.sctp.org/

[5] J. Iyengar, P. Amer, R. Stewart, “Receive buffer blocking in
concurrent multipath transfer,” GLOBECOM 2005, St.
Louis, 11/05

[6] J. Iyengar, P. Amer, R. Stewart, “Concurrent multipath
transfer using SCTP multihoming over independent end-to-
end paths,” IEEE/ACM Trans on Networking (to appear)

[7] UC Berkeley, LBL, USC/ISI, and Xerox Parc, “ns-2
documentation and software,” Version 2.1b8, 2001,
www.isi.edu/nsnam/ns.

[8] A. Caro and J. Iyengar, “ns-2 SCTP module,” Version 3.2,
December 2002, http://pel.cis.udel.edu.

[9] A. Caro. End-to-end Fault Tolerance using Transport Layer
Multihoming. PhD Dissertation, CISC Dept, University of
Delaware.

[10] M. Handley, J. Padhye, S. Floyd, “TCP Congestion Window
Validation,” RFC2861, 06/00

[11] S. Shakkottai, R. Srikant, A. Broido, k. claffy, “The RTT
distribution of TCP Flows in the Internet and its Impact on
TCP-based flow control,” Tech. Rep., Cooperative
Association for Internet Data Analysis (CAIDA), 02/04

	ABSTRACT
	1. INTRODUCTION
	2. PROBLEM DESCRIPTION
	3. PROPOSED RETRANSMISSION POLICY
	4. EVALUATION OF CMT-PF vs. CMT
	4.1 During Permanent Failure
	4.2 During Short-term Failure
	4.3 During Congestion
	4.4 Discussion

	5. CONCLUSION AND FUTURE WORK
	6. DISCLAIMER
	7. REFERENCES

