
 1 of 5

IMPROVING FILE TRANSFER IN FCS NETWORKS*

Sourabh Ladha, Paul D. Amer, Armando L. Caro Jr., Janardhan R. Iyengar
Protocol Engineering Lab

Computer and Information Sciences Department
University of Delaware

{ladha, amer, acaro, iyengar}@cis.udel.edu

ABSTRACT

We compare the performance of two transport protocols,
SCTP and the New-Reno variant of TCP, for file transfers
in two FCS networking scenarios. We argue why SCTP is
better suited for file transfers in a network prone to
resource failures. To measure performance, we
implemented FTP over SCTP in a FreeBSD environment.
Our results indicate for our tested path configurations, (1)
using SCTP as the transport for FTP significantly reduces
file transfer time, and (2) FTP over SCTP is more robust
to losses.

1. INTRODUCTION

Future Combat Systems (FCS) networks require crucial
information to be delivered between endpoints with
minimal delay. This places three key requirements on file
transfers: (1) fault tolerance to resource failures, (2)
robustness to loss events, and (3) efficient bandwidth
utilization to maximize throughput. Most applications use
TCP [11] to provide end-to-end reliability. Unfortunately,
TCP does not support fault tolerance at the transport layer.
One of the current additions to the suite of transport
protocols has been the Stream Control Transmission
Protocol (SCTP) [14]. SCTP is a standards track transport
layer protocol in the IETF (Internet Engineering Task
Force). Like TCP, SCTP provides a full duplex, reliable
transmission service to the application. In addition, SCTP
also supports transport layer multihoming, a key feature
required for network fault tolerance, which is crucial for
survivability and persistent on-the-move sessions in FCS
networks. Having noted that SCTP multihoming provides
for network fault tolerance to resource failures, this paper
focuses on the evaluation of performance of SCTP for the
other two requirements in an FCS networks setting.

*Prepared through collaborative participation in the Communication and
Network Consortium sponsored by the U.S. Army Research Laboratory under
the CTA Program, Cooperative Agreement DAAD19-01-2-0011. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon.

File Transfer Protocol (FTP) [12] is one of the most
common protocols for bulk data transfer. FTP uses TCP to
provide end-to-end reliability. We have implemented a
version of FTP in a FreeBSD environment using SCTP as
the transport. A variety of path configurations were used
to show the performance benefits of file transfers using
SCTP through controlled experiments. We present the
results of two such configurations that would be of interest
to FCS networks - an Unmanned Air Vehicle (UAV)
communication characterized by high bandwidth, and low
delay paths; and a geosynchronous satellite
communication characterized by low bandwidth, high
delay paths. Our results indicate that irrespective of the
path configurations, FTP over SCTP outperforms FTP
over TCP. Moreover as the loss rate increases on the path,
FTP over SCTP proves to be more robust.

This paper only presents the performance implications of
using SCTP as the transport for FTP without introducing
any changes in the FTP syntax or semantics. A separate
body of work currently underway in the Protocol
Engineering Lab (PEL) further reduces overhead in FTP
using multistreaming, another of SCTP’s unique transport
services. Multistreaming aggregates FTP control and data
connections in a single SCTP association and uses
command pipelining for multiple file transfers [8].

This paper is organized as follows. Section 2 gives insight
into the unique transport services of SCTP. Section 3
outlines the methodology used for experiments. Section 4
presents the results and analysis. Section 5 concludes the
paper and presents ongoing and future work in this field.

2. BACKGROUND

SCTP addresses shortcomings of TCP by providing
additional transport services to the application. We
summarize some of the key features and services that
SCTP provides to the Upper Layer Protocol (ULP), which

 2 of 5

give incentive for emerging applications to use SCTP at
the transport.

Resistance to blind Denial of Service (DoS) attacks: The
connection establishment phase in SCTP authenticates the
peers using a cookie mechanism. Thus resources at a
receiver’s system are not reserved for the incoming
association until the peer indicates through the use of
cookie that it is a valid endpoint. TCP on the other hand is
vulnerable to such attacks.

Selective Acknowledgement (SACK): A TCP sender
(without SACK) uses calculated guesses to determine
which packets were received correctly at the receiver.
TCP-SACK [9] added robustness to this mechanism by
having the receiver indicate explicitly through the SACK
option fields if it had received a segment out of order. The
SACK mechanism in SCTP is derived from TCP, but
provides more information and a faster loss recovery. The
number of SACK blocks in TCP is limited to three or four.
In SCTP there is no limit on the number of such blocks.
The congestion control response and loss recovery
mechanisms based on the SACK reports is more robust in
SCTP than in TCP.

Multihoming: A host is multihomed if it can be addressed
by multiple IP addresses [4]. TCP does not support
multihoming. Any time either endpoint's IP address
becomes inaccessible, perhaps due to interface failure,
radio channel interference, or moving out of range, TCP's
connection will timeout and abort, thus forcing the
application or user to recover. On the other hand, SCTP
has a built-in failure detection and recovery system,
known as failover, which allows associations to
dynamically send traffic to an alternate peer IP address
when needed without interrupting the ULP. This feature
provides network fault tolerance crucial for the
performance of FCS networks.

Multistreaming: Multistreaming within an SCTP
association separates flows of logically different data
within a single association. This separation removes a
burden from the application, by allowing it to identify
semantically different flows of data, and having the
transport layer “manage” these flows (as one would argue
should be the responsibility of the transport layer, not the
application). Each stream has an independent delivery
mechanism, thus allowing SCTP to differentiate between
data delivery and reliable data transmission.

3. METHODOLOGY

We used controlled experiments to compare the
performance of file transfer using TCP and SCTP.

Simulations using ns version 2.1b8 [10] were done to
verify the experimental results. Through experiments, we
were able to capture effects of connection setup-teardown
overheads, command exchanges before a file transfer
begins, and different data and control connections on the
total transfer time. The following discussion explains the
methodology used.

Approach: We performed experiments for a varied set of
path parameters with the metric for evaluation as the total
transfer time observed in file transfers.

• Bandwidth-Delay Configuration: We present the
results of two configurations: (256Kbit/s, 125ms),
(3Mbit/s, 1ms). Both the client to server and server to
client paths share common characteristics.

• Packet Loss Ratio (PLR): The PLRs studied were (0,
.01, .03, .06, and .1). Each value represents the loss
percentage for both the client to server and server to
client paths. A uniform probability distribution was
used to emulate packet loss.

Experiments: We used Netbed [16] (an outgrowth of
Emulab), which provides integrated access to
experimental networks for our experiments. Three nodes
were used for each set of experiments, one for the FTP
client (C) and one for the FTP server (S). The third node
was used as a router (R) for shaping traffic between the
client and the server. Figure 1 shows the experiment
topology.

 Bandwidth-Delay = {3Mbps-1ms, 256Kbps-125ms)
 Queue Size at R = 50 packets
 Loss Rates= {0, .01, .03, .06, .1}

 Figure 1: Experiment Topology

The client and server nodes were 850MHz Intel Pentium
III processors, and based on the Intel ISP1100 1U server
platform. All three nodes ran FreeBSD-4.6. The FreeBSD
kernel implementation of SCTP available with the KAME
Stack [7] was used on the client and server nodes. KAME
is an evolving and experimental stack mainly targeted for
IPv6/IPsec in BSD based operating systems. An updated
snapshot of the stack (KAME snap kit) is released every
week. We used the snap kit of 14Oct02. The router node
ran Dummynet [13], which simulates a drop tail router
with a queue size of 50 packets, and specified bandwidth,
propagation delay and packet loss ratio. The path

 C

 S R

 3 of 5

Bandwidth = 3Mbps
Propagation Delay = 1ms

(a)

Figure 2: Transfer Time vs. Loss Probability for multiple
transfer of 10 files of size 1MB each

Bandwidth = 256Kbps
Propagation Delay = 125ms

(b)

parameters as described earlier were varied to measure the
impact on transfer time.

We implemented protocol changes by modifying the FTP
client and server source code available with the FreeBSD
4.6 distribution. We measured the total transfer time using
packet level traces as follows. The starting time was taken
as the time the client sends out the first packet to the
server following the user’s “mget” (mget command
allows for transfer of multiple files) command. The end
time was the time a “226 control reply” from the server
reached the client after the last transfer indicating the
completion of the mget operation. We thus captured the
effects of multiple phases of connection setup-teardown
and command exchanges involved in transferring multiple
files from the server to the client. Each combination of
parameters (2 configurations x 5 PLR) was run multiple
times to achieve a 90% confidence level for the total
transfer time. Tcpdump [15] (version 3.7.1) was used to
perform packet level traces. SCTP decoding functionality
in tcpdump was developed in collaboration of PEL and
Temple University's Netlab.

4. RESULTS AND DISCUSSION

The results presented in this section represent transfer time
taken vs. the loss rate on the path. Since both the forward
and reverse paths share common characteristics, the loss
of an ACK is as common as the loss of the data packet
although the loss of an ACK often has minimal effect
since ACKs are cumulative.

Using experiments we have captured the effect of multiple
file transfers in FTP. Thus our results include the effect of
connection setup-teardown, and command exchanges in
FTP. Due to the cookie mechanism, SCTP has one extra
“leg” in the connection establishment phase. To be fair in
our comparisons, incorporating connection setup was
particularly important. We have used the FTP multiple get
(mget) command to transfer files. The number of files
transferred for each experimental run was ten. Thus each
run involved eleven connection establishments where the
first connection was used for name list transfer and the
remaining ten connections were used for sequential file
transfers.

Figure 2(a) shows the total transfer time for varying loss
rates for a 3Mbps-1ms configuration (UAV-like
communication). The TCP variant used in our experiments
is TCP New Reno [6]. Each of the ten files transferred was
of size 1MB. At lower loss rates, FTP over SCTP takes
marginally more time than FTP over TCP. But as the loss
rate increases, FTP over SCTP tends to be more robust
and recovers better from losses thus reducing transfer

time. This result can be seen at 10% loss where FTP over
TCP takes approximately 350 seconds more as compared
to FTP over SCTP.

Figure 2(b) shows the results for a satellite type
communication setting. We see that the performance curve
in Figure 2(b) follows closely the pattern of Figure 2(a).
Thus for smaller loss rates, the per packet overhead1 in
FTP over SCTP lead to near about same performance, but
for higher loss rates, FTP over TCP takes significantly
more time than FTP over SCTP.

1 The current SCTP implementation of the BSD KAME stack does not have
extra per-packet overheads as compared to TCP.

 4 of 5

Figure 3: Transfer Time vs. Loss Probability for multiple
transfer of 10 files of size 200KB each

Bandwidth = 256Kbps
Propagation Delay = 125ms

(b)

Bandwidth = 3Mbps
Propagation Delay = 1ms

 (a)

Irrespective of the bandwidth-delay configurations, FTP
over SCTP performs better than FTP over TCP.

We performed transfers of various file sizes to asses the
performance benefits of using SCTP as the transport for
not only a bulk data transfer protocol as FTP but also for
short flows. We show the transfer results of files of size
200K for similar configurations as shown in the above
results. As seen from Figure 3, for lower loss rates SCTP
as transport performs closely to TCP but as the loss rate
increases SCTP starts to outperforms TCP.

Our experimental results show that:

• Irrespective of configuration, SCTP outperforms TCP
in terms of the total time for file transfers.

• SCTP’s congestion control mechanisms are more
robust than TCP’s, while still conforming to the
Additive Increase Multiplicative Decrease (AIMD)
algorithms recommended for congestion control
protocols.

• The improvement in file transfers using SCTP is
directly proportional to the number of files
transferred.

• The improvement in file transfers using SCTP is
directly proportional to the size of the file being
transferred.

• More significant gain of using SCTP as the transport
is seen at loss rates increase. And the difference in file
transfer time using TCP and SCTP is directly
proportional to the path loss rate.

5. CONCLUSIONS AND FUTURE WORK

In this paper we show that SCTP proves to be a better
transport for FCS-like networks, which are prone to losses
and failures. In summary we conclude that:

• Using SCTP as the transport for FTP improves the
transfer time and throughput for paths suffering from
loss, irrespective of the bandwidth-delay
configuration.

• For lower loss rates, the per-packet overhead in SCTP
results in marginally lower throughput as compared to
TCP.

• SCTP multihoming provides an implicit advantage
through network fault tolerance to an FCS networks.
Multihoming allows for transparent transfer of files in

 FTP even when one of the paths becomes inaccessible.

We point out certain limitations of the work presented in
this paper:

• We have used a uniform loss distribution model for
emulating losses on the path. A more realistic scenario
would include burst losses or multiple losses in a
window. These loss distributions seem a natural
extension to this paper.

• One of the weaknesses in our work is that we compare
SCTP against New-Reno TCP without SACK. Since
SCTP uses Selective Acks (SACK) to perform better
loss recovery, this comparison may be unfair. We are
currently investigating comparisons involving TCP
with SACK.

 5 of 5

• A number of recent additions to the TCP congestion
control [2, 3] fine-tune TCP’s behavior to result in
faster recovery from loss events and lesser timeouts.
Another extension to our work could be to take such
TCP fine tunings into consideration and re-evaluate
simulations.

In the process of experimentation we analyzed a number
of inefficiencies in the design of FTP. Our current work
involves making FTP more efficient by using SCTP
multistreaming. Multistreaming involves mapping the
existing multiple connection semantics in FTP to SCTP
streams, and using a single SCTP association for the entire
FTP session. In general, we are working on migrating
application protocols to exploit SCTP features to result in
a better performance.

ACKNOWLEDGMENTS

We thank Randall Stewart for providing support for the
KAME stack implementation of SCTP. We are grateful to
Jay Lepreau and the support staff of Netbed (formerly
known as Emulab), the Utah Network Emulation Testbed
(which is primarily supported by NSF grant ANI-00-
82493 and Cisco Systems) for making their facilities
available for our experiments.

DISCLAIMER

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S.
Government.

REFERENCES

[1] M. Allman, V. Paxson, W. Stevens, TCP Congestion
Control. RFC 2581, 4/99.

[2] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton,
Early Retransmit for TCP. draft-allman-tcp-early-rexmt-
00.txt (work in progress), 2/03.

[3] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP's
Loss Recovery Using Limited Transmit. RFC 3042, 1/01.

[4] R. Braden. Requirements for Internet Hosts
Communication Layers. RFC1122, 10/89.

[5] S. Floyd, K. Fall, Promoting the Use of End-to-End
Congestion Control in the Internet. IEEE/ACM ToN, 8/99.

[6] S. Floyd, T. Henderson, The NewReno Modification to
TCP's Fast Recovery Algorithm. RFC 2582, 4/99.

[7] KAME Project, www.kame.net.

[8] S. Ladha, P. Amer, Improving multiple file transfers
using SCTP multistreaming, Univ of DE, CISC TR2003-06,
5/03.

[9] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP
Selective Acknowledgment Options. RFC 2018, 10/96.

[10] UC Berkeley, LBL, USC/ISI, and Xerox Parc. Ns-2,
v2.1b8, www.isi.edu/nsnam/ns.

[11] J. Postel, Transmission Control Protocol (TCP). RFC
793, 9/81.

[12] J. Postel, J. Reynolds, File Transfer Protocol (FTP).
RFC 959, 10/85.

[13] L. Rizzo, Dummynet: A simple approach to the
evaluation of network protocols. ACM Comp Comm
Review, 27(1), 1/97.

[14] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V.
Paxson, Stream Control Transmission Protocol. RFC 2960,
10/00.

[15] TCPDUMP public repository, www.tcpdump.org

[16] B. White, J. Lepreau, L. Stoller, R. Ricci, S.
Guruprasad, M. Newbold, M. Hibler, C. Barb, A. Joglekar,
An Integrated Experimental Environment for Dist’d Systems
and Networks. 5th Symp on OS Design and Implementation,
12/02. Boston.

